1
|
Lin CH, Tsai CH, Chou CC, Wu WF. A Transient π-π or Cation-π Interaction between Degron and Degrader Dual Residues: A Key Step for the Substrate Recognition and Discrimination in the Processive Degradation of SulA by ClpYQ (HslUV) Protease in Escherichia coli. Int J Mol Sci 2023; 24:17353. [PMID: 38139184 PMCID: PMC10743992 DOI: 10.3390/ijms242417353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP147th) of SulA, a cell-division inhibitor recognized by ClpYQ and that the Phe143rd residue in degron site is necessary for SulA native folded structure. However, the functional association of this degron site with the ClpYQ degrader is unknown. Here, we investigated the molecular insights into substrate recognition and discrimination by the ClpYQ protease. We found that the point mutants ClpYY91FQ, ClpYY91HQ, and ClpYY91WQ, carrying a ring structure at the 91st residue of ClpY, efficiently degraded their natural substrates, evidenced by the suppressed bacterial methyl-methane-sulfonate (MMS) sensitivity, the reduced β-galactosidase activity of cpsB::lacZ, and the lowest amounts of MBP-SulA in both in vivo and in vitro degradation analyses. Alternatively, mimicking the wild-type SulA, SulAF143H, SulAF143K and SulAF143W, harboring a ring structure or a cation side-group in 143rd residue of SulA, were efficiently degraded by ClpYQ in the bacterial cells, also revealing shorter half-lives at 41 °C and higher binding affinities towards ClpY in pull-down assays. Finally, ClpYY91FQ and ClpYY91HQ, were capable of effectively degrading SulAF143H and SulAF143K, highlighting a correspondingly functional interaction between the SulA 143rd and ClpY 91st residues. According to the interchangeable substituted amino acids, our results uniquely indicate that a transient π-π or cation-π interaction between the SulA 143rd and ClpY 91st residues could be aptly gripped between the degron site of substrates and the pore site of proteases (degraders) for substrate recognition and discrimination of the processive degradation.
Collapse
Affiliation(s)
- Chu-Hsuan Lin
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chun-Chi Chou
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Hsieh FC, Chang LK, Tsai CH, Kuan JE, Wu KF, Wu C, Wu WF. Roles of double-loop (130~159 aa and 175~209 aa) in ClpY(HslU)-I domain for SulA substrate degradation by ClpYQ(HslUV) protease in Escherichia coli. J GEN APPL MICROBIOL 2021; 66:297-306. [PMID: 32435002 DOI: 10.2323/jgam.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An Escherichia coli ATP-dependent two-component protease, ClpYQ(HslUV), targets the SulA molecule, an SOS induced protein. ClpY recognizes, unfolds and translocates the substrates into the proteolytic site of ClpQ for degradation. ClpY is divided into three domains N, I and C. The N domain is an ATPase; the C domain allows for oligomerization, while the I domain coordinates substrate binding. In the ClpYQ complex, two layer pore sites, pore I and II, are in the center of its hexameric rings. However, the actual roles of two outer-loop (130~159 aa, L1 and 175~209 aa, L2) of the ClpY-I domain for the degradation of SulA are unclear. In this study, with ATP, the MBP-SulA molecule was bound to ClpY oligomer(s). ClpYΔL1 (ClpY deleted of loop 1) oligomers revealed an excessive SulA-binding activity. With ClpQ, it showed increased proteolytic activity for SulA degradation. Yet, ClpYΔL2 formed fewer oligomers that retained less proteolytic activity, but still had increased SulA-binding activity. In contrast, ClpYΔpore I had a lower SulA-binding activity. ClpYΔ pore I ΔL2 showed the lowest SulA-binding activity. In addition, ClpY (Q198L, Q200L), with a double point mutation in loop 2, formed stable oligomers. It also had a subtle increase in SulA-binding activity, but displayed less proteolytic activity. As a result, loop 2 has an effect on ClpY oligomerization, substrate binding and delivery. Loop 1 has a role as a gate, to prevent excessive substrate binding. Thus, accordingly, ClpY permits the formation of SulA-ClpY(6x), with ATP(s), and this complex then docks through ClpQ(6x) for ultimate proteolytic degradation.
Collapse
Affiliation(s)
- Fan-Ching Hsieh
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Lu-Kao Chang
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Chih-Hsuan Tsai
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Jung-En Kuan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Ke-Feng Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Cindy Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| |
Collapse
|
3
|
Exploring Successful Parameter Region for Coarse-Grained Simulation of Biomolecules by Bayesian Optimization and Active Learning. Biomolecules 2020; 10:biom10030482. [PMID: 32245275 PMCID: PMC7175118 DOI: 10.3390/biom10030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
Accompanied with an increase of revealed biomolecular structures owing to advancements in structural biology, the molecular dynamics (MD) approach, especially coarse-grained (CG) MD suitable for macromolecules, is becoming increasingly important for elucidating their dynamics and behavior. In fact, CG-MD simulation has succeeded in qualitatively reproducing numerous biological processes for various biomolecules such as conformational changes and protein folding with reasonable calculation costs. However, CG-MD simulations strongly depend on various parameters, and selecting an appropriate parameter set is necessary to reproduce a particular biological process. Because exhaustive examination of all candidate parameters is inefficient, it is important to identify successful parameters. Furthermore, the successful region, in which the desired process is reproducible, is essential for describing the detailed mechanics of functional processes and environmental sensitivity and robustness. We propose an efficient search method for identifying the successful region by using two machine learning techniques, Bayesian optimization and active learning. We evaluated its performance using F1-ATPase, a biological rotary motor, with CG-MD simulations. We successfully identified the successful region with lower computational costs (12.3% in the best case) without sacrificing accuracy compared to exhaustive search. This method can accelerate not only parameter search but also biological discussion of the detailed mechanics of functional processes and environmental sensitivity based on MD simulation studies.
Collapse
|
4
|
Specific regions of the SulA protein recognized and degraded by the ATP-dependent ClpYQ (HslUV) protease in Escherichia coli. Microbiol Res 2018; 220:21-31. [PMID: 30744816 DOI: 10.1016/j.micres.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease, in which ClpQ is the peptidase subunit and ClpY is the ATPase and unfoldase. ClpY functions to recognize protein substrates, and denature and translocate the unfolded polypeptides into the proteolytic site of ClpQ for degradation. However, it is not clear how the natural substrates are recognized by the ClpYQ protease and the mechanism by which the substrates are selected, unfolded and translocated by ClpY into the interior site of ClpQ hexamers. Both Lon and ClpYQ proteases can degrade SulA, a cell division inhibitor, in bacterial cells. In this study, using yeast two-hybrid and in vivo degradation analyses, we first demonstrated that the C-terminal internal hydrophobic region (139th∼149th aa) of SulA is necessary for binding and degradation by ClpYQ. A conserved region, GFIMRP, between 142th and 147th residues of SulA, were identified among various Gram-negative bacteria. By using MBP-SulA(F143Y) (phenylalanine substituted with tyrosine) as a substrate, our results showed that this conserved residue of SulA is necessary for recognition and degradation by ClpYQ. Supporting these data, MBP-SulA(F143Y), MBP-SulA(F143N) (phenylalanine substituted with asparagine) led to a longer half-life with ClpYQ protease in vivo. In contrast, MBP-SulA(F143D) and MBP-SulA(F143S) both have shorter half-lives. Therefore, in the E. coli ClpYQ protease complex, ClpY recognizes the C-terminal region of SulA, and F143 of SulA plays an important role for the recognition and degradation by ClpYQ protease.
Collapse
|
5
|
Wehmer M, Sakata E. Recent advances in the structural biology of the 26S proteasome. Int J Biochem Cell Biol 2016; 79:437-442. [PMID: 27498189 DOI: 10.1016/j.biocel.2016.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Abstract
There is growing appreciation for the fundamental role of structural dynamics in the function of macromolecules. In particular, the 26S proteasome, responsible for selective protein degradation in an ATP dependent manner, exhibits dynamic conformational changes that enable substrate processing. Recent cryo-electron microscopy (cryo-EM) work has revealed the conformational dynamics of the 26S proteasome and established the function of the different conformational states. Technological advances such as direct electron detectors and image processing algorithms allowed resolving the structure of the proteasome at atomic resolution. Here we will review those studies and discuss their contribution to our understanding of proteasome function.
Collapse
Affiliation(s)
- Marc Wehmer
- Department of Molecular Structural Biology, Max Planck institute of Biochemistry, 82152, Martinsried, Germany
| | - Eri Sakata
- Department of Molecular Structural Biology, Max Planck institute of Biochemistry, 82152, Martinsried, Germany.
| |
Collapse
|
6
|
Yu H, Singh Gautam AK, Wilmington SR, Wylie D, Martinez-Fonts K, Kago G, Warburton M, Chavali S, Inobe T, Finkelstein IJ, Babu MM, Matouschek A. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome. J Biol Chem 2016; 291:14526-39. [PMID: 27226608 PMCID: PMC4938175 DOI: 10.1074/jbc.m116.727578] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 11/23/2022] Open
Abstract
The proteasome has pronounced preferences for the amino acid sequence of its substrates at the site where it initiates degradation. Here, we report that modulating these sequences can tune the steady-state abundance of proteins over 2 orders of magnitude in cells. This is the same dynamic range as seen for inducing ubiquitination through a classic N-end rule degron. The stability and abundance of His3 constructs dictated by the initiation site affect survival of yeast cells and show that variation in proteasomal initiation can affect fitness. The proteasome's sequence preferences are linked directly to the affinity of the initiation sites to their receptor on the proteasome and are conserved between Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human cells. These findings establish that the sequence composition of unstructured initiation sites influences protein abundance in vivo in an evolutionarily conserved manner and can affect phenotype and fitness.
Collapse
Affiliation(s)
- Houqing Yu
- From the Department of Molecular Biosciences and the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | | | - Shameika R Wilmington
- From the Department of Molecular Biosciences and the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Dennis Wylie
- the Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Kirby Martinez-Fonts
- From the Department of Molecular Biosciences and the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Grace Kago
- From the Department of Molecular Biosciences and
| | | | - Sreenivas Chavali
- the Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, and
| | - Tomonao Inobe
- Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan
| | | | - M Madan Babu
- the Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, and
| | - Andreas Matouschek
- From the Department of Molecular Biosciences and the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208,
| |
Collapse
|
7
|
Luan B, Huynh T, Li J, Zhou R. Nanomechanics of Protein Unfolding Outside a Generic Nanopore. ACS NANO 2016; 10:317-323. [PMID: 26655061 DOI: 10.1021/acsnano.5b04557] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein folding and unfolding have been the subject of active research for decades. Most of previous studies in protein unfolding were focused on temperature, chemical, and/or force (such as in atomic force microscopy (AFM)) induced denaturations. Recent studies on the functional roles of proteasomes (such as ClpXP) revealed a different unfolding process in cell, during which a target protein is mechanically unfolded and pulled into a confined, pore-like geometry for degradation. While the proteasome nanomachine has been extensively studied, the mechanism for unfolding proteins with the proteasome pore is still poorly understood. Here, we investigate the mechanical unfolding process of ubiquitin with (or really outside) a generic nanopore, and compare such process with that in the AFM pulling experiment. Unexpectedly, the required force for protein unfolding through a pore can be much smaller than that by the AFM. Simulation results also unveiled different nanomechanics, tearing fracture vs shearing friction, in these two distinct types of mechanical unfoldings.
Collapse
Affiliation(s)
- Binquan Luan
- Computational Biological Center, IBM Thomas J. Watson Research , Yorktown Heights, New York 10598, United States
| | - Tien Huynh
- Computational Biological Center, IBM Thomas J. Watson Research , Yorktown Heights, New York 10598, United States
| | - Jingyuan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Ruhong Zhou
- Computational Biological Center, IBM Thomas J. Watson Research , Yorktown Heights, New York 10598, United States
| |
Collapse
|
8
|
Kravats AN, Tonddast-Navaei S, Stan G. Coarse-Grained Simulations of Topology-Dependent Mechanisms of Protein Unfolding and Translocation Mediated by ClpY ATPase Nanomachines. PLoS Comput Biol 2016; 12:e1004675. [PMID: 26734937 PMCID: PMC4703411 DOI: 10.1371/journal.pcbi.1004675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023] Open
Abstract
Clp ATPases are powerful ring shaped nanomachines which participate in the degradation pathway of the protein quality control system, coupling the energy from ATP hydrolysis to threading substrate proteins (SP) through their narrow central pore. Repetitive cycles of sequential intra-ring ATP hydrolysis events induce axial excursions of diaphragm-forming central pore loops that effect the application of mechanical forces onto SPs to promote unfolding and translocation. We perform Langevin dynamics simulations of a coarse-grained model of the ClpY ATPase-SP system to elucidate the molecular details of unfolding and translocation of an α/β model protein. We contrast this mechanism with our previous studies which used an all-α SP. We find conserved aspects of unfolding and translocation mechanisms by allosteric ClpY, including unfolding initiated at the tagged C-terminus and translocation via a power stroke mechanism. Topology-specific aspects include the time scales, the rate limiting steps in the degradation pathway, the effect of force directionality, and the translocase efficacy. Mechanisms of ClpY-assisted unfolding and translocation are distinct from those resulting from non-allosteric mechanical pulling. Bulk unfolding simulations, which mimic Atomic Force Microscopy-type pulling, reveal multiple unfolding pathways initiated at the C-terminus, N-terminus, or simultaneously from both termini. In a non-allosteric ClpY ATPase pore, mechanical pulling with constant velocity yields larger effective forces for SP unfolding, while pulling with constant force results in simultaneous unfolding and translocation. Cell survival is critically dependent on tightly regulated protein quality control, which includes chaperone-mediated folding and degradation. In the degradation pathway, AAA+ nanomachines, such as bacterial Clp proteases, use ATP-driven mechanisms to mechanically unfold, translocate, and destroy excess or defective proteins. Understanding these remodeling mechanisms is of central importance for deciphering the details of essential cellular processes. We perform coarse-grained computer simulations to extensively probe the effect of substrate protein topology on unfolding and translocation actions of the ClpY ATPase nanomachine. We find that, independent of SP topology, unfolding proceeds from the tagged C-terminus, which is engaged by the ATPase, and translocation involves coordinated steps. Topology-specific aspects include more complex unfolding and translocation pathways of the α/β SP compared with the all-α SP due to high stability of β-hairpins and interplay of tertiary contacts. In addition, directionality of the mechanical force applied by the Clp ATPase gives rise to distinct unfolding pathways.
Collapse
Affiliation(s)
- Andrea N. Kravats
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sam Tonddast-Navaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ha-Duong T. Coarse-grained models of the proteins backbone conformational dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 805:157-69. [PMID: 24446361 DOI: 10.1007/978-3-319-02970-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coarse-grained models are more and more frequently used in the studies of the proteins structural and dynamic properties, since the reduced number of degrees of freedom allows to enhance the conformational space exploration. This chapter attempts to provide an overview of the various coarse-grained models that were applied to study the functional conformational changes of the polypeptides main chain around their native state. It will more specifically discuss the methods used to represent the protein backbone flexibility and to account for the physico-chemical interactions that stabilize the secondary structure elements.
Collapse
Affiliation(s)
- Tap Ha-Duong
- BIOCIS - UMR CNRS 8076, Faculté de Pharmacie - Université Paris Sud, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France,
| |
Collapse
|
10
|
Abstract
By focusing on essential features, while averaging over less important details, coarse-grained (CG) models provide significant computational and conceptual advantages with respect to more detailed models. Consequently, despite dramatic advances in computational methodologies and resources, CG models enjoy surging popularity and are becoming increasingly equal partners to atomically detailed models. This perspective surveys the rapidly developing landscape of CG models for biomolecular systems. In particular, this review seeks to provide a balanced, coherent, and unified presentation of several distinct approaches for developing CG models, including top-down, network-based, native-centric, knowledge-based, and bottom-up modeling strategies. The review summarizes their basic philosophies, theoretical foundations, typical applications, and recent developments. Additionally, the review identifies fundamental inter-relationships among the diverse approaches and discusses outstanding challenges in the field. When carefully applied and assessed, current CG models provide highly efficient means for investigating the biological consequences of basic physicochemical principles. Moreover, rigorous bottom-up approaches hold great promise for further improving the accuracy and scope of CG models for biomolecular systems.
Collapse
Affiliation(s)
- W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
11
|
Abstract
The ubiquitin proteasome system (UPS) is the main ATP-dependent protein degradation pathway in the cytosol and nucleus of eukaryotic cells. At its centre is the 26S proteasome, which degrades regulatory proteins and misfolded or damaged proteins. In a major breakthrough, several groups have determined high-resolution structures of the entire 26S proteasome particle in different nucleotide conditions and with and without substrate using cryo-electron microscopy combined with other techniques. These structures provide some surprising insights into the functional mechanism of the proteasome and will give invaluable guidance for genetic and biochemical studies of this key regulatory system.
Collapse
|
12
|
Jana B, Morcos F, Onuchic JN. From structure to function: the convergence of structure based models and co-evolutionary information. Phys Chem Chem Phys 2014; 16:6496-507. [PMID: 24603809 DOI: 10.1039/c3cp55275f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding protein folding and function is one of the most important problems in biological research. Energy landscape theory and the folding funnel concept have provided a framework to investigate the mechanisms associated to these processes. Since protein energy landscapes are in most cases minimally frustrated, structure based models (SMBs) have successfully determined the geometrical features associated with folding and functional transitions. However, structural information is limited, particularly with respect to different functional configurations. This is a major limitation for SBMs. Alternatively, statistical methods to study amino acid co-evolution provide information on residue-residue interactions useful for the study of structure and function. Here, we show how the combination of these two methods gives rise to a novel way to investigate the mechanisms associated with folding and function. We use this methodology to explore the mechanistic aspects of protein translocation in the integral membrane protease FtsH. Dual basin-SBM simulations using the open and closed state of this hexameric motor reveals a functionally important paddling motion in the catalytic cycle. We also find that Direct Coupling Analysis (DCA) predicts physical contacts between AAA and peptidase domains of the motor, which are crucial for the open to close transition. Our combined method, which uses structural information from the open state experimental structure and co-evolutionary couplings, suggests that this methodology can be used to explore the functional landscape of complex biological macromolecules previously inaccessible to methods dependent on experimental structural information. This efficient way to sample the conformational space of large systems creates a theoretical/computational framework capable of better characterizing the functional landscape in large biomolecular assemblies.
Collapse
Affiliation(s)
- Biman Jana
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| | | | | |
Collapse
|
13
|
Nyquist K, Martin A. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Trends Biochem Sci 2013; 39:53-60. [PMID: 24316303 DOI: 10.1016/j.tibs.2013.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022]
Abstract
ATP-dependent proteases exist in all cells and are crucial regulators of the proteome. These machines consist of a hexameric, ring-shaped motor responsible for engaging, unfolding, and translocating protein substrates into an associated peptidase for degradation. Here, we discuss recent work that has established how the six motor subunits coordinate their ATP-hydrolysis and translocation activities. The closed topology of the ring and the rigidity of subunit/subunit interfaces cause conformational changes within a single subunit to drive motions in other subunits of the hexamer. This structural effect generates allostery between the ATP-binding sites, leading to a preferred order of binding and hydrolysis events among the motor subunits as well as a unique biphasic mechanism of translocation.
Collapse
Affiliation(s)
- Kristofor Nyquist
- QB3 Institute, University of California, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Andreas Martin
- QB3 Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Talakhun W, Khamnamtong B, Nounurai P, Klinbunga S, Menasveta P. Characterization, expression and localization of valosin-containing protein in ovaries of the giant tiger shrimp Penaeus monodon. Gene 2013; 533:188-98. [PMID: 24095778 DOI: 10.1016/j.gene.2013.09.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
Abstract
Valosin-containing protein (VCP), a member of the ATPase-associated with diverse cellular activity (AAA) family, was identified from the giant tiger shrimp (Penaeus monodon). The full-length cDNA of the PmVCP mRNA consisted of 2,724 bp containing an ORF of 2,367 bp corresponding to a deduced polypeptide of 788 amino acids. The deduced PmVCP protein contained two putative Cdc48 domains (positions 17-103, E-value=2.00e-36 and 120-186, E-value=3.60e-11) and two putative AAA domains (positions 232-368, E-value=3.67e-24 and 505-644, E-value=3.73e-25). PmVCP mRNA expression in ovaries was greater than that in testes in both juveniles and broodstock. PmVCP was significantly up-regulated in stages II and IV ovaries in intact wild broodstock (P<0.05) but it was not differentially expressed during ovarian development in eyestalk-ablated broodstock (P>0.05). The expression level of PmVCP mRNA in ovaries of 14-month-old shrimp was not affected by progesterone injection (0.1μg/g body weight, P>0.05). In contrast, exogenous 5-HT administration (50μg/g body weight) resulted in an increase of PmVCP mRNA in ovaries of 18-month-old shrimp at 6 and 24h post-injection (hpi) (P<0.05). The rPmCdc48-VCP protein and its polyclonal antibody were successfully produced. Cellular localization revealed that PmVCP was localized in the ooplasm of previtellogenic oocytes. Subsequently, it was translocated into the germinal vesicle of vitellogenic oocytes. Interestingly, PmVCP was found in nucleo-cytoplasmic compartments, in the cytoskeletal architecture and in the plasma membrane of mature oocytes in both intact and eyestalk-ablated broodstock.
Collapse
Affiliation(s)
- Witchulada Talakhun
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
15
|
Too PHM, Erales J, Simen JD, Marjanovic A, Coffino P. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit. J Biol Chem 2013; 288:13243-57. [PMID: 23530043 DOI: 10.1074/jbc.m113.452524] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND ATP-dependent proteases translocate and unfold their substrates. RESULTS A human virus sequence with only Gly and Ala residues causes similar dysfunctions of eukaryotic and prokaryotic protease motors: unfolding failure. CONCLUSION Sequences with amino acids of simple shape and small size impair unfolding of contiguous stable domains. SIGNIFICANCE Compartmented ATP-dependent proteases of diverse origin share conserved principles of interaction between translocase/effector and substrate/recipient. ATP-dependent proteases engage, translocate, and unfold substrate proteins. A sequence with only Gly and Ala residues (glycine-alanine repeat; GAr) encoded by the Epstein-Barr virus of humans inhibits eukaryotic proteasome activity. It causes the ATPase translocase to slip on its protein track, stalling unfolding and interrupting degradation. The bacterial protease ClpXP is structurally simpler than the proteasome but has related elements: a regulatory ATPase complex (ClpX) and associated proteolytic chamber (ClpP). In this study, GAr sequences were found to impair ClpXP function much as in proteasomes. Stalling depended on interaction between a GAr and a suitably spaced and positioned folded domain resistant to mechanical unfolding. Persistent unfolding failure results in the interruption of degradation and the production of partial degradation products that include the resistant domain. The capacity of various sequences to cause unfolding failure was investigated. Among those tested, a GAr was most effective, implying that viral selection had optimized processivity failure. More generally, amino acids of simple shape and small size promoted unfolding failure. The ClpX ATPase is a homohexamer. Partial degradation products could exit the complex through transient gaps between the ClpX monomers or, alternatively, by backing out. Production of intermediates by diverse topological forms of the hexamer was shown to be similar, excluding lateral escape. In principle, a GAr could interrupt degradation because 1) the translocase thrusts forward less effectively or because 2) the translocase retains substrate less well when resetting between forward strokes. Kinetic analysis showed that the predominant effect was through the second of these mechanisms.
Collapse
Affiliation(s)
- Priscilla Hiu-Mei Too
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
16
|
Kanada R, Kuwata T, Kenzaki H, Takada S. Structure-based molecular simulations reveal the enhancement of biased Brownian motions in single-headed kinesin. PLoS Comput Biol 2013; 9:e1002907. [PMID: 23459019 PMCID: PMC3572960 DOI: 10.1371/journal.pcbi.1002907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 12/17/2012] [Indexed: 11/17/2022] Open
Abstract
Kinesin is a family of molecular motors that move unidirectionally along microtubules (MT) using ATP hydrolysis free energy. In the family, the conventional two-headed kinesin was experimentally characterized to move unidirectionally through “walking” in a hand-over-hand fashion by coordinated motions of the two heads. Interestingly a single-headed kinesin, a truncated KIF1A, still can generate a biased Brownian movement along MT, as observed by in vitro single molecule experiments. Thus, KIF1A must use a different mechanism from the conventional kinesin to achieve the unidirectional motions. Based on the energy landscape view of proteins, for the first time, we conducted a set of molecular simulations of the truncated KIF1A movements over an ATP hydrolysis cycle and found a mechanism exhibiting and enhancing stochastic forward-biased movements in a similar way to those in experiments. First, simulating stand-alone KIF1A, we did not find any biased movements, while we found that KIF1A with a large friction cargo-analog attached to the C-terminus can generate clearly biased Brownian movements upon an ATP hydrolysis cycle. The linked cargo-analog enhanced the detachment of the KIF1A from MT. Once detached, diffusion of the KIF1A head was restricted around the large cargo which was located in front of the head at the time of detachment, thus generating a forward bias of the diffusion. The cargo plays the role of a diffusional anchor, or cane, in KIF1A “walking.” It is one of the major issues in biophysics how molecular motors such as conventional two-headed kinesin convert the chemical energy released at ATP hydrolysis into mechanical work. While most molecular motors move with more than one catalytic domain working in coordinated fashions, there are some motors that can move with only a single catalytic domain, which provides us a possibly simpler case to understand. A single-headed kinesin, KIF1A, with only one catalytic domain, has been characterized by in vitro single-molecule assay to generate a biased Brownian movement along the microtubule. Here, we conducted a set of structure-based coarse-grained molecular simulations for KIF1A system over an ATP hydrolysis cycle for the first time to our knowledge. Without cargo the simulated stand-alone KIF1A could not generate any directional movement, while a large-friction cargo-analog linked to the C-terminus of KIF1A clearly enhanced the forward-biased Brownian movement of KIF1A significantly. Interestingly, the cargo-analog here is not merely load but an important promoter to enable efficient movements of KIF1A.
Collapse
Affiliation(s)
- Ryo Kanada
- Department of Biophysics Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
17
|
Hwang W, Lang MJ. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Cell Mol Bioeng 2012; 6:65-73. [PMID: 23526741 DOI: 10.1007/s12195-012-0264-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The AAA+ (ATPase Associated with various cellular Activities) machinery represents an extremely successful and widely used design plan for biological motors. Recently found crystal structures are beginning to reveal nucleotide-dependent conformational changes in the canonical hexameric rings of the AAA+ motors. However, the physical mechanism by which ATP binding on one subunit allosterically propagates across the entire ring remains to be found. Here we analyze and compare structural organization of three ring-shaped AAA+ motors, ClpX, HslU, and dynein. By constructing multimers using subunits of identical conformations, we find that individual subunits locally possess helical geometries with varying pitch, radius, chirality, and symmetry number. These results suggest that binding of an ATP to a subunit imposes conformational constraint that must be accommodated by more flexible nucleotide-free subunits to relieve mechanical strain on the ring. Local deformation of the ring contour and subsequent propagation of strains may be a general strategy that AAA+ motors adopt to generate force while achieving functional diversity.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, College Station, TX 77843, U.S.A
| | | |
Collapse
|
18
|
Structural modelling and dynamics of proteins for insights into drug interactions. Adv Drug Deliv Rev 2012; 64:323-43. [PMID: 22155026 DOI: 10.1016/j.addr.2011.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/17/2011] [Accepted: 11/24/2011] [Indexed: 12/27/2022]
Abstract
Proteins are the workhorses of biomolecules and their function is affected by their structure and their structural rearrangements during ligand entry, ligand binding and protein-protein interactions. Hence, the knowledge of protein structure and, importantly, the dynamic behaviour of the structure are critical for understanding how the protein performs its function. The predictions of the structure and the dynamic behaviour can be performed by combinations of structure modelling and molecular dynamics simulations. The simulations also need to be sensitive to the constraints of the environment in which the protein resides. Standard computational methods now exist in this field to support the experimental effort of solving protein structures. This review presents a comprehensive overview of the basis of the calculations and the well-established computational methods used to generate and understand protein structure and function and the study of their dynamic behaviour with the reference to lung-related targets.
Collapse
|
19
|
Takada S. Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 2012; 22:130-7. [PMID: 22365574 DOI: 10.1016/j.sbi.2012.01.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/24/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
Recently, we saw a dramatic increase in the number of researches that rely on coarse-grained (CG) simulations for large biomolecules. Here, first, we briefly describe recently developed and used CG models for proteins and nucleic acids. Balance between structure-based and physico-chemical terms is a key issue. We also discuss the multiscale algorithms used to derive CG parameters. Next, we comment on the dynamics used in CG simulations with an emphasis on the importance of hydrodynamic interactions. We then discuss the pros and cons of CG simulations. Finally, we overview recent exciting applications of CG simulations. Publicly available tools and software for CG simulations are also summarized.
Collapse
Affiliation(s)
- Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo, Kyoto 6068502, Japan.
| |
Collapse
|
20
|
Madsen L, Kriegenburg F, Vala A, Best D, Prag S, Hofmann K, Seeger M, Adams IR, Hartmann-Petersen R. The tissue-specific Rep8/UBXD6 tethers p97 to the endoplasmic reticulum membrane for degradation of misfolded proteins. PLoS One 2011; 6:e25061. [PMID: 21949850 PMCID: PMC3174242 DOI: 10.1371/journal.pone.0025061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022] Open
Abstract
The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation.
Collapse
Affiliation(s)
- Louise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrea Vala
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Diana Best
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland
| | - Søren Prag
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Kay Hofmann
- Bioinformatics Department, Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany
| | - Michael Seeger
- Institut für Biochemie, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ian R. Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland
| | | |
Collapse
|
21
|
Stepwise activity of ClpY (HslU) mutants in the processive degradation of Escherichia coli ClpYQ (HslUV) protease substrates. J Bacteriol 2011; 193:5465-76. [PMID: 21803990 DOI: 10.1128/jb.05128-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease composed of ClpY (HslU), an ATPase with unfolding activity, and ClpQ (HslV), a peptidase. In the ClpYQ proteolytic complex, the hexameric rings of ClpY (HslU) are responsible for protein recognition, unfolding, and translocation into the proteolytic inner chamber of the dodecameric ClpQ (HslV). Each of the three domains, N, I, and C, in ClpY has its own distinct activity. The double loops (amino acids [aa] 137 to 150 and 175 to 209) in domain I of ClpY are necessary for initial recognition/tethering of natural substrates such as SulA, a cell division inhibitor protein. The highly conserved sequence GYVG (aa 90 to 93) pore I site, along with the GESSG pore II site (aa 265 to 269), contribute to the central pore of ClpY in domain N. These two central loops of ClpY are in the center of its hexameric ring in which the energy of ATP hydrolysis allows substrate translocation and then degradation by ClpQ. However, no data have been obtained to determine the effect of the central loops on substrate binding or as part of the processivity of the ClpYQ complex. Thus, we probed the features of ClpY important for substrate engagement and protease processivity via random PCR or site-specific mutagenesis. In yeast two-hybrid analysis and pulldown assays, using isolated ClpY mutants and the pore I or pore II site of ClpY, each was examined for its influence on the adjoining structural regions of the substrates. The pore I site is essential for the translocation of the engaged substrates. Our in vivo study of the ClpY mutants also revealed that an ATP-binding site in domain N, separate from its role in polypeptide (ClpY) oligomerization, is required for complex formation with ClpQ. Additionally, we found that the tyrosine residue at position 408 in ClpY is critical for stabilization of hexamer formation between subunits. Therefore, our studies suggest that stepwise activities of the ClpYQ protease are necessary to facilitate the processive degradation of its natural substrates.
Collapse
|
22
|
Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki KI, Yao XQ, Takada S. CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. J Chem Theory Comput 2011; 7:1979-89. [DOI: 10.1021/ct2001045] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hiroo Kenzaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Nobuyasu Koga
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Naoto Hori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ryo Kanada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Wenfei Li
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Department of Physics, Nanjing University, Nanjing 210093, China
| | - Kei-ichi Okazaki
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Xin-Qiu Yao
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Advanced Center for Computing and Communication, RIKEN, Wako Saitama 351-0198, Japan
| |
Collapse
|
23
|
Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase. Proc Natl Acad Sci U S A 2011; 108:2234-9. [PMID: 21266546 DOI: 10.1073/pnas.1014278108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clp ATPases are ring-shaped AAA+ motors in the degradation pathway that perform critical actions of unfolding and translocating substrate proteins (SPs) through narrow pores to deliver them to peptidase components. These actions are effected by conserved diaphragm-forming loops found in the central channel of the Clp ATPase hexamer. Conformational changes, that take place in the course of repetitive ATP-driven cycles, result in mechanical forces applied by the central channel loops onto the SP. We use coarse-grained simulations to elucidate allostery-driven mechanisms of unfolding and translocation of a tagged four-helix bundle protein by the ClpY ATPase. Unfolding is initiated at the tagged C-terminal region via an obligatory intermediate. The resulting nonnative conformation is competent for translocation, which proceeds on a different time scale than unfolding and involves sharp stepped transitions. Completion of the translocation process requires assistance from the ClpQ peptidase. These mechanisms contrast nonallosteric mechanical unfolding of the SP. In atomic force microscopy experiments, multiple unfolding pathways are available and large mechanical forces are required to unravel the SP relative to those exerted by the central channel loops of ClpY. SP threading through a nonallosteric ClpY nanopore involves simultaneous unfolding and translocation effected by strong pulling forces.
Collapse
|
24
|
Yao XQ, Kenzaki H, Murakami S, Takada S. Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat Commun 2010; 1:117. [PMID: 21081915 PMCID: PMC3065909 DOI: 10.1038/ncomms1116] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/19/2010] [Indexed: 11/09/2022] Open
Abstract
Multidrug resistance is a serious problem in current chemotherapy. The efflux system largely responsible for resistance in Escherichia coli contains the drug transporter, AcrB. The structures of AcrB were solved in 2002 as the symmetric homo-trimer, and then in 2006 as the asymmetric homo-trimer. The latter suggested a functionally rotating mechanism. Here, by molecular simulations of the AcrB porter domain, we uncovered allosteric coupling and the drug export mechanism in the AcrB trimer. Allosteric coupling stabilized the asymmetric structure with one drug molecule bound, which validated the modelling. Drug dissociation caused a conformational change and stabilized the symmetric structure, providing a unified view of the structures reported in 2002 and 2006. A dynamic study suggested that, among the three potential driving processes, only protonation of the drug-bound protomer can drive the functional rotation and simultaneously export the drug.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
25
|
Misic AM, Satyshur KA, Forest KT. P. aeruginosa PilT structures with and without nucleotide reveal a dynamic type IV pilus retraction motor. J Mol Biol 2010; 400:1011-21. [PMID: 20595000 DOI: 10.1016/j.jmb.2010.05.066] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/21/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022]
Abstract
Type IV pili are bacterial extracellular filaments that can be retracted to create force and motility. Retraction is accomplished by the motor protein PilT. Crystal structures of Pseudomonas aeruginosa PilT with and without bound beta,gamma-methyleneadenosine-5'-triphosphate have been solved at 2.6 A and 3.1 A resolution, respectively, revealing an interlocking hexamer formed by the action of a crystallographic 2-fold symmetry operator on three subunits in the asymmetric unit and held together by extensive ionic interactions. The roles of two invariant carboxylates, Asp Box motif Glu163 and Walker B motif Glu204, have been assigned to Mg(2+) binding and catalysis, respectively. The nucleotide ligands in each of the subunits in the asymmetric unit of the beta,gamma-methyleneadenosine-5'-triphosphate-bound PilT are not equally well ordered. Similarly, the three subunits in the asymmetric unit of both structures exhibit differing relative conformations of the two domains. The 12 degrees and 20 degrees domain rotations indicate motions that occur during the ATP-coupled mechanism of the disassembly of pili into membrane-localized pilin monomers. Integrating these observations, we propose a three-state "Ready, Active, Release" model for the action of PilT.
Collapse
Affiliation(s)
- Ana M Misic
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
26
|
Li W, Yoshii H, Hori N, Kameda T, Takada S. Multiscale methods for protein folding simulations. Methods 2010; 52:106-14. [PMID: 20434561 DOI: 10.1016/j.ymeth.2010.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/26/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022] Open
Abstract
Inherently hierarchic nature of proteins makes multiscale computational methods especially useful in the studies of folding and other functional dynamics. With the multiscale strategies, one can achieve improved accuracy and efficiency by coupling the atomistic and the coarse grained simulations. Depending on the problems studied, very different implementation protocols can be used to realize the multiscale idea. Here, we give detailed introductions to the currently used multiscale protocols, together with some recent applications to the protein folding simulations in our group. The advantages and weakness, as well as the application scopes of these multiscale protocols are discussed. The directions for the future developments are also proposed.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|