1
|
T Magalhães B, S Coimbra JT, M Silva R, Ferreira M, S Santos R, Gameiro P, Azevedo NF, Fernandes PA. Crosstalk of Nucleic Acid Mimics with Lipid Membranes: A Multifaceted Computational and Experimental Study. Biochemistry 2024; 63:3381-3394. [PMID: 39571107 DOI: 10.1021/acs.biochem.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nucleic acid mimics (NAMs) have demonstrated high potential as antibacterial drugs. However, very few studies have assessed their possible diffusion across the bacterial envelope. In this work, we studied NAMs' diffusion in lipid bilayer systems that mimic the bacterial outer membrane using molecular dynamics (MD) simulations. Additionally, we examined the interactions of a NAM sequence with lipid membranes and ascertained the partition constants (Kp) through MD and spectroscopic investigations. The NAM sequences were composed of locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) residues, whereas the membrane models were composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) phospholipids. The parametrization protocol followed was validated against literature data and demonstrated the reliability of our approach for simulating NAM sequences. Investigation into the interaction of the sequences with zwitterionic and anionic membranes revealed a preference for hydrogen bond formation with the anionic model over the zwitterionic one. Additionally, potential of mean force (PMF) calculations unveiled a lower free energy barrier for translocation across the zwitterionic bilayer model. Contrarily, the partition constants derived suggested a slightly higher partitioning within the anionic membrane, emphasizing a nuanced interplay of factors. Finally, spectroscopic partition measurements with liposomes presented challenges in quantifying the partition of NAMs due to minimal signal variations. However, a tendency for quenching in anionic vesicles suggested a potential, albeit small, partitioning effect that warrants further investigation. In summary, our study revealed that NAMs will not, in principle, be able to cross an intact bacterial outer membrane by passive diffusion.
Collapse
Affiliation(s)
- Beatriz T Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Raquel M Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Mariana Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Rita S Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Sklenicka J, Tran T, Ramirez MS, Donow HM, Magaña AJ, LaVoi T, Mamun Y, Jimenez V, Chapagain P, Santos R, Pinilla C, Giulianotti MA, Tolmasky ME. Structure-Activity Relationship of Pyrrolidine Pentamine Derivatives as Inhibitors of the Aminoglycoside 6'- N-Acetyltransferase Type Ib. Antibiotics (Basel) 2024; 13:672. [PMID: 39061354 PMCID: PMC11274322 DOI: 10.3390/antibiotics13070672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Resistance to amikacin and other major aminoglycosides is commonly due to enzymatic acetylation by the aminoglycoside 6'-N-acetyltransferase type I enzyme, of which type Ib [AAC(6')-Ib] is the most widespread among Gram-negative pathogens. Finding enzymatic inhibitors could be an effective way to overcome resistance and extend the useful life of amikacin. Small molecules possess multiple properties that make them attractive for drug development. Mixture-based combinatorial libraries and positional scanning strategy have led to the identification of a chemical scaffold, pyrrolidine pentamine, that, when substituted with the appropriate functionalities at five locations (R1-R5), inhibits AAC(6')-Ib-mediated inactivation of amikacin. Structure-activity relationship studies have shown that while truncations to the molecule result in loss of inhibitory activity, modifications of functionalities and stereochemistry have different effects on the inhibitory properties. In this study, we show that alterations at position R1 of the two most active compounds, 2700.001 and 2700.003, reduced inhibition levels, demonstrating the essential nature not only of the presence of an S-phenyl moiety at this location but also the distance to the scaffold. On the other hand, modifications on the R3, R4, and R5 positions had varied effects, demonstrating the potential for optimization. A correlation analysis between molecular docking values (ΔG) and the dose required for two-fold potentiation of the compounds described in this and the previous studies showed a significant correlation between ΔG values and inhibitory activity.
Collapse
Affiliation(s)
- Jan Sklenicka
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Haley M. Donow
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (H.M.D.); (T.L.)
| | - Angel J. Magaña
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Travis LaVoi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (H.M.D.); (T.L.)
| | - Yasir Mamun
- Department of Physics, Florida International University, Miami, FL 33199, USA; (Y.M.); (P.C.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Verónica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA; (Y.M.); (P.C.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Radleigh Santos
- Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Clemencia Pinilla
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (C.P.); (M.A.G.)
| | - Marc A. Giulianotti
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (C.P.); (M.A.G.)
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| |
Collapse
|
3
|
Sklenicka J, Tran T, Ramirez MS, Donow HM, Magaña AJ, LaVoi T, Mamun Y, Chapagain P, Santos R, Pinilla C, Giulianotti MA, Tolmasky ME. Structure-activity relationship of pyrrolidine pentamine derivatives as inhibitors of the aminoglycoside 6'- N -acetyltransferase type Ib. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594018. [PMID: 38798525 PMCID: PMC11118410 DOI: 10.1101/2024.05.14.594018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Resistance to amikacin and other major aminoglycosides is commonly due to enzymatic acetylation by aminoglycoside 6'- N -acetyltransferase type I enzyme, of which type Ib [AAC(6')-Ib] is the most widespread among Gram-negative pathogens. Finding enzymatic inhibitors could be an effective way to overcome resistance and extend the useful life of amikacin. Small molecules possess multiple properties that make them attractive compounds to be developed as drugs. Mixture-based combinatorial libraries and positional scanning strategy led to the identification of a chemical scaffold, pyrrolidine pentamine, that, when substituted with the appropriate functionalities at five locations (R1 - R5), inhibits AAC(6')-Ib-mediated inactivation of amikacin. Structure-activity relationship (SAR) studies showed that while truncations to the molecule result in loss of inhibitory activity, modifications of functionalities and stereochemistry have different effects on the inhibitory properties. In this study, we show that alterations at position R1 of the two most active compounds, 2700.001 and 2700.003 , reduced inhibition levels, demonstrating the essential nature not only of the presence of an S -phenyl moiety at this location but also the distance to the scaffold. On the other hand, modifications on the R3, R4, and R5 positions have varied effects, demonstrating the potential for optimization. A correlation analysis between molecular docking values (ΔG) and the dose required for two-fold potentiation of compounds described in this and the previous studies showed a significant correlation between ΔG values and inhibitory activity. Highlights Amikacin resistance in Gram-negatives is mostly caused by the AAC(6')-Ib enzymeAAC(6')-Ib has been identified in most Gram-negative pathogensInhibitors of AAC(6')-Ib could be used to treat resistant infectionsCombinatorial libraries and positional scanning identified an inhibitorThe lead compound can be optimized by structure activity relationship studies.
Collapse
|
4
|
Magaña AJ, Sklenicka J, Pinilla C, Giulianotti M, Chapagain P, Santos R, Ramirez MS, Tolmasky ME. Restoring susceptibility to aminoglycosides: identifying small molecule inhibitors of enzymatic inactivation. RSC Med Chem 2023; 14:1591-1602. [PMID: 37731693 PMCID: PMC10507813 DOI: 10.1039/d3md00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Growing resistance to antimicrobial medicines is a critical health problem that must be urgently addressed. Adding to the increasing number of patients that succumb to infections, there are other consequences to the rise in resistance like the compromise of several medical procedures and dental work that are heavily dependent on infection prevention. Since their introduction in the clinics, aminoglycoside antibiotics have been a critical component of the armamentarium to treat infections. Still, the increase in resistance and their side effects led to a decline in their utilization. However, numerous current factors, like the urgent need for antimicrobials and their favorable properties, led to renewed interest in these drugs. While efforts to design new classes of aminoglycosides refractory to resistance mechanisms and with fewer toxic effects are starting to yield new promising molecules, extending the useful life of those already in use is essential. For this, numerous research projects are underway to counter resistance from different angles, like inhibition of expression or activity of resistance components. This review focuses on selected examples of one aspect of this quest, the design or identification of small molecule inhibitors of resistance caused by enzymatic modification of the aminoglycoside. These compounds could be developed as aminoglycoside adjuvants to overcome resistant infections.
Collapse
Affiliation(s)
- Angel J Magaña
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Jan Sklenicka
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Marc Giulianotti
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Prem Chapagain
- Department of Physics, Florida International University Miami FL 33199 USA
- Biomolecular Sciences Institute, Florida International University Miami FL 33199 USA
| | - Radleigh Santos
- Department of Mathematics, Nova Southeastern University Fort Lauderdale FL 33314 USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| |
Collapse
|
5
|
Maxwell A, Chaudhari BB, Chaudhari P, Ananthamurthy K, Aranjani J, Moorkoth S, Ghate V, Lewis S. In vitro antibacterial activity and in vivo pharmacokinetics of intravenously administered Amikacin-loaded Liposomes for the management of bacterial septicaemia. Colloids Surf B Biointerfaces 2022; 220:112892. [DOI: 10.1016/j.colsurfb.2022.112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 10/14/2022]
|
6
|
Maxwell A, Mary E, Ghate V, Aranjani J, Lewis S. A Novel high throughput 96-well based Fluorimetric Method to Measure Amikacin in Pharmaceutical Formulations: Development using Response Surface Methodology. LUMINESCENCE 2022; 37:930-943. [PMID: 35322527 DOI: 10.1002/bio.4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
An aminoglycoside antibiotic, amikacin, is used to treat severe and recurring bacterial infections. Due to the absence of a chromophore, however, amikacin must be extensively derivatized before being quantified, both in analytical and bioanalytical samples. In this study, for the first time, we developed a simple and sensitive method for measuring amikacin sulfate by spectrofluorimetry using a 96-well plate reader, based on the design of the experiment's approach. To develop a robust and reproducible spectrofluorimetric method, the influence of essential attributes, namely pH of the buffer, heating temperature, and concentration of reagents, were evaluated by univariate analysis followed by multivariate analysis (central composite design). ICH guidelines were used to validate the optimized method. The developed technique is linear from 1.9 to 10 μg/mL with a regression coefficient of 0.9991. The detection and quantification limits were 0.649 μg/mL and 1.9 μg/mL, respectively. For the developed method, both intra- and inter-day precision (%RSD) were below 5%. Using the method, amikacin concentrations were quantified in prepared amikacin liposomes and commercial formulations of Amicin®. The developed method greatly reduces sample volume and is a rapid, high throughput microplate-based fluorescence approach for the convenient and cost-effective measurement of amikacin in pharmaceutical formulations. In comparison to previously published approaches, the suggested method allowed for quick analysis of a high number of samples in a short amount of time (96 samples in 125 seconds), resulting in an average duration of analysis of 1.3 seconds per sample.
Collapse
Affiliation(s)
- Amala Maxwell
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Elizabeth Mary
- Department of School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jesil Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
7
|
Maxwell A, Ghate V, Aranjani J, Lewis S. Breaking the barriers for the delivery of amikacin: Challenges, strategies, and opportunities. Life Sci 2021; 284:119883. [PMID: 34390724 DOI: 10.1016/j.lfs.2021.119883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Hypodermic delivery of amikacin is a widely adopted treatment modality for severe infections, including bacterial septicemia, meningitis, intra-abdominal infections, burns, postoperative complications, and urinary tract infections in both paediatric and adult populations. In most instances, the course of treatment requires repeated bolus doses of amikacin, prolonged hospitalization, and the presence of a skilled healthcare worker for administration and continuous therapeutic monitoring to manage the severe adverse effects. Amikacin is hydrophilic and exhibits a short half-life, which further challenges the delivery of sufficient systemic concentrations when administered by the oral or transdermal route. In this purview, the exploitation of novel controlled and sustained release drug delivery platforms is warranted. Furthermore, it has been shown that novel delivery systems are capable of increasing the antibacterial activity of amikacin at lower doses when compared to the conventional formulations and also aid in overcoming the development of drug-resistance, which currently is a significant threat to the healthcare system worldwide. The current review presents a comprehensive overview of the developmental history of amikacin, the mechanism of action in virulent strains as well as the occurrence of resistance, and various emerging drug delivery solutions developed both by the academia and the industry. The examples outlined within the review provides significant pieces of evidence on novel amikacin formulations in the field of antimicrobial research paving the path for future therapeutic interventions that will result in improved clinical outcome.
Collapse
Affiliation(s)
- Amala Maxwell
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Mechatronics Lab, Department of Electronic System Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Jesil Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
8
|
Sousa SA, Feliciano JR, Pita T, Soeiro CF, Mendes BL, Alves LG, Leitão JH. Bacterial Nosocomial Infections: Multidrug Resistance as a Trigger for the Development of Novel Antimicrobials. Antibiotics (Basel) 2021; 10:antibiotics10080942. [PMID: 34438992 PMCID: PMC8389044 DOI: 10.3390/antibiotics10080942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Nosocomial bacterial infections are associated with high morbidity and mortality, posing a huge burden to healthcare systems worldwide. The ongoing COVID-19 pandemic, with the raised hospitalization of patients and the increased use of antimicrobial agents, boosted the emergence of difficult-to-treat multidrug-resistant (MDR) bacteria in hospital settings. Therefore, current available antibiotic treatments often have limited or no efficacy against nosocomial bacterial infections, and novel therapeutic approaches need to be considered. In this review, we analyze current antibacterial alternatives under investigation, focusing on metal-based complexes, antimicrobial peptides, and antisense antimicrobial therapeutics. The association of new compounds with older, commercially available antibiotics and the repurposing of existing drugs are also revised in this work.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - Joana R. Feliciano
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago Pita
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Catarina F. Soeiro
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
| | - Beatriz L. Mendes
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Luis G. Alves
- Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, 1049-003 Lisboa, Portugal;
| | - Jorge H. Leitão
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
9
|
Martínez-Guitián M, Vázquez-Ucha JC, Álvarez-Fraga L, Conde-Pérez K, Bou G, Poza M, Beceiro A. Antisense inhibition of lpxB gene expression in Acinetobacter baumannii by peptide-PNA conjugates and synergy with colistin. J Antimicrob Chemother 2021; 75:51-59. [PMID: 31586411 DOI: 10.1093/jac/dkz409] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND LpxB is an enzyme involved in the biosynthesis pathway of lipid A, a component of LPS. OBJECTIVES To evaluate the lpxB gene in Acinetobacter baumannii as a potential therapeutic target and to propose antisense agents such as peptide nucleic acids (PNAs) as a tool to combat bacterial infection, either alone or in combination with known antimicrobial therapies. METHODS RNA-seq analysis of the A. baumannii ATCC 17978 strain in a murine pneumonia model was performed to study the in vivo expression of lpxB. Protein expression was studied in the presence or absence of anti-lpxB (KFF)3K-PNA (pPNA). Time-kill curve analyses and protection assays of infected A549 cells were performed. The chequerboard technique was used to test for synergy between pPNA and colistin. A Galleria mellonella infection model was used to test the in vivo efficacy of pPNA. RESULTS The lpxB gene was overexpressed during pneumonia. Treatment with a specific pPNA inhibited LpxB expression in vitro, decreased survival of the ATCC 17978 strain and increased the survival rate of infected A549 cells. Synergy was observed between pPNA and colistin in colistin-susceptible strains. In vivo assays confirmed that a combination treatment of anti-lpxB pPNA and colistin was more effective than colistin in monotherapy. CONCLUSIONS The lpxB gene is essential for A. baumannii survival. Anti-lpxB pPNA inhibits LpxB expression, causing bacterial death. This pPNA showed synergy with colistin and increased the survival rate in G. mellonella. The data suggest that antisense pPNA molecules blocking the lpxB gene could be used as antibacterial agents.
Collapse
Affiliation(s)
- Marta Martínez-Guitián
- Servicio de Microbiología do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Kelly Conde-Pérez
- Servicio de Microbiología do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
10
|
Silencing Antibiotic Resistance with Antisense Oligonucleotides. Biomedicines 2021; 9:biomedicines9040416. [PMID: 33921367 PMCID: PMC8068983 DOI: 10.3390/biomedicines9040416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
Antisense technologies consist of the utilization of oligonucleotides or oligonucleotide analogs to interfere with undesirable biological processes, commonly through inhibition of expression of selected genes. This field holds a lot of promise for the treatment of a very diverse group of diseases including viral and bacterial infections, genetic disorders, and cancer. To date, drugs approved for utilization in clinics or in clinical trials target diseases other than bacterial infections. Although several groups and companies are working on different strategies, the application of antisense technologies to prokaryotes still lags with respect to those that target other human diseases. In those cases where the focus is on bacterial pathogens, a subset of the research is dedicated to produce antisense compounds that silence or reduce expression of antibiotic resistance genes. Therefore, these compounds will be adjuvants administered with the antibiotic to which they reduce resistance levels. A varied group of oligonucleotide analogs like phosphorothioate or phosphorodiamidate morpholino residues, as well as peptide nucleic acids, locked nucleic acids and bridge nucleic acids, the latter two in gapmer configuration, have been utilized to reduce resistance levels. The major mechanisms of inhibition include eliciting cleavage of the target mRNA by the host’s RNase H or RNase P, and steric hindrance. The different approaches targeting resistance to β-lactams include carbapenems, aminoglycosides, chloramphenicol, macrolides, and fluoroquinolones. The purpose of this short review is to summarize the attempts to develop antisense compounds that inhibit expression of resistance to antibiotics.
Collapse
|
11
|
Danilin NA, Matveev AL, Tikunova NV, Venyaminova AG, Novopashina DS. Conjugates of RNase P-Guiding Oligonucleotides with Oligo(N-Methylpyrrole) as Prospective Antibacterial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Pifer R, Greenberg DE. Antisense antibacterial compounds. Transl Res 2020; 223:89-106. [PMID: 32522669 DOI: 10.1016/j.trsl.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
Extensive antibiotic use combined with poor historical drug stewardship practices have created a medical crisis in which once treatable bacterial infections are now increasingly unmanageable. To combat this, new antibiotics will need to be developed and safeguarded. An emerging class of antibiotics based upon nuclease-stable antisense technologies has proven valuable in preclinical testing against a variety of bacterial pathogens. This review describes the current state of development of antisense-based antibiotics, the mechanisms thus far employed by these compounds, and possible future avenues of research.
Collapse
Affiliation(s)
- Reed Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
13
|
Uddin R, Siraj B, Rafi S, Azam SS, Wadood A. Structure-based Virtual Screening Approach for the Discovery of Potent Inhibitors of Aminoglycoside 6'-N-Acetyltransferase Type Ib [AAC(6')-Ib] against K. pneumoniae Infections. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200108095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Aminoglycoside 6'-N-acetyltransferase type Ib (AAC(6')-Ib) from
Klebsiella pneumoniae is an established drug target and has conferred insensitivity to
aminoglycosides. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes
encoded by genes present in the chromosome, plasmids, and other genetic elements. The AAC(6′)-
Ib is an enzyme of clinical importance found in a wide variety of gram-negative pathogens. The
AAC(6′)-Ib enzyme is of interest not only because of its ubiquity but also because of other
characteristics e.g., it presents significant microheterogeneity at the N-termini and the aac(6′)-Ib
gene is often present in integrons, transposons, plasmids, genomic islands, and other genetic
structures. The majority of the reported potent inhibitors against the target are substrate analogs.
Therefore, there is a need to develop or discover new scaffolds other than substrate analogs as
AAC(6')-Ib inhibitor.
Objective:
The objective of this study is to set optimum parameters for the structure-based virtual
screening by multiple docking and scoring methods. The multiple scoring of each ligand also
incorporates the ‘Induced Fit’ docking effect that helps to build further confidence in the shortlisted
compounds. The method eventually is able to predict the potential inhibitors that bind to the active
site and can potentially inhibit the activity of the Aminoglycoside 6′-N-acetyltransferase type Ib
[AAC(6’)-Ib] from Klebsiella pneumoniae.
Methods:
Using the available three-dimensional structure of enzyme AAC(6')-Ib inhibitor complex,
a structure-based virtual screening was performed with the hope of prioritizing the promising leads.
In order to set up the protocol, 30,000 drug-like molecules were selected from the ChemBridge
library. Multiple docking programs, i.e. UCSF DOCK6 and AutoDock Vina have been applied in
the current study so that a consensus is developed to the predicted binding modes and thus the
docking accuracy. The Amber scores of the Dock6 – a secondary scoring function was also used to
perform the ‘Induced Fit’ effect and correspondingly re-rank the compounds.
Results:
The top 30 ranked compounds of the most frequent scored were selected from the
histogram. The 2D interactions of those 30 compounds were drawn from the Ligplot+ tool. Six of
the compounds were prioritized as potential inhibitors as they are representing the maximum
number of interactions from the rest of the compounds and also possess the drug-likeness as
predicted by the estimated ADMET properties.
Conclusion:
This study provided useful insight that the proposed compounds have the potential to
bind to the aminoglycoside binding site of AAC(6′)-Ib that may eventually inhibit the Klebsiella
pneumoniae. This study has the potential to propose putative new and novel inhibitors against a
resistant drug target of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Bushra Siraj
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sidra Rafi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Sikander Azam
- National Centre for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
14
|
Danilin NA, Koroleva LS, Novopashina DS, Venyaminova AG. RNase P-Guiding Peptide Conjugates of Oligo(2'-O-methylribonucleotides) as Prospective Antibacterial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s106816201906013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ramirez MS, Iriarte A, Reyes-Lamothe R, Sherratt DJ, Tolmasky ME. Small Klebsiella pneumoniae Plasmids: Neglected Contributors to Antibiotic Resistance. Front Microbiol 2019; 10:2182. [PMID: 31616398 PMCID: PMC6764390 DOI: 10.3389/fmicb.2019.02182] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is the causative agent of community- and, more commonly, hospital-acquired infections. Infections caused by this bacterium have recently become more dangerous due to the acquisition of multiresistance to antibiotics and the rise of hypervirulent variants. Plasmids usually carry genes coding for resistance to antibiotics or virulence factors, and the recent sequence of complete K. pneumoniae genomes showed that most strains harbor many of them. Unlike large plasmids, small, usually high copy number plasmids, did not attract much attention. However, these plasmids may include genes coding for specialized functions, such as antibiotic resistance, that can be expressed at high levels due to gene dosage effect. These genes may be part of mobile elements that not only facilitate their dissemination but also participate in plasmid evolution. Furthermore, high copy number plasmids may also play a role in evolution by allowing coexistence of mutated and non-mutated versions of a gene, which helps to circumvent the constraints imposed by trade-offs after certain genes mutate. Most K. pneumoniae plasmids 25-kb or smaller replicate by the ColE1-type mechanism and many of them are mobilizable. The transposon Tn1331 and derivatives were found in a high percentage of these plasmids. Another transposon that was found in representatives of this group is the bla KPC-containing Tn4401. Common resistance determinants found in these plasmids were aac(6')-Ib and genes coding for β-lactamases including carbapenemases.
Collapse
Affiliation(s)
- Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República de Uruguay, Montevideo, Uruguay
| | | | - David J. Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Soler-Bistué A, Zorreguieta A, Tolmasky ME. Bridged Nucleic Acids Reloaded. Molecules 2019; 24:E2297. [PMID: 31234313 PMCID: PMC6630285 DOI: 10.3390/molecules24122297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.
Collapse
Affiliation(s)
- Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, CONICET, Universidad Nacional de San Martín, San Martín 1650, Argentina.
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina.
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| |
Collapse
|
17
|
Magallon J, Chiem K, Tran T, Ramirez MS, Jimenez V, Tolmasky ME. Restoration of susceptibility to amikacin by 8-hydroxyquinoline analogs complexed to zinc. PLoS One 2019; 14:e0217602. [PMID: 31141575 PMCID: PMC6541283 DOI: 10.1371/journal.pone.0217602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
Gram-negative pathogens resistant to amikacin and other aminoglycosides of clinical relevance usually harbor the 6’-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme that catalyzes inactivation of the antibiotic by acetylation using acetyl-CoA as donor substrate. Inhibition of the acetylating reaction could be a way to induce phenotypic conversion to susceptibility in these bacteria. We have previously observed that Zn2+ acts as an inhibitor of the enzymatic acetylation of aminoglycosides by AAC(6')-Ib, and in complex with ionophores it effectively reduced the levels of resistance in cellulo. We compared the activity of 8-hydroxyquinoline, three halogenated derivatives, and 5-[N-Methyl-N-Propargylaminomethyl]-8-Hydroxyquinoline in complex with Zn2+ to inhibit growth of amikacin-resistant Acinetobacter baumannii in the presence of the antibiotic. Two of the compounds, clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) and 5,7-diiodo-8-hydroxyquinoline, showed robust inhibition of growth of the two A. baumannii clinical isolates that produce AAC(6')-Ib. However, none of the combinations had any activity on another amikacin-resistant A. baumannii strain that possesses a different, still unknown mechanism of resistance. Time-kill assays showed that the combination of clioquinol or 5,7-diiodo-8-hydroxyquinoline with Zn2+ and amikacin was bactericidal. Addition of 8-hydroxyquinoline, clioquinol, or 5,7-diiodo-8-hydroxyquinoline, alone or in combination with Zn2+, and amikacin to HEK293 cells did not result in significant toxicity. These results indicate that ionophores in complex with Zn2+ could be developed into potent adjuvants to be used in combination with aminoglycosides to treat Gram-negative pathogens in which resistance is mediated by AAC(6')-Ib and most probably other related aminoglycoside modifying enzymes.
Collapse
Affiliation(s)
- Jesus Magallon
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Kevin Chiem
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Veronica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Goltermann L, Yavari N, Zhang M, Ghosal A, Nielsen PE. PNA Length Restriction of Antibacterial Activity of Peptide-PNA Conjugates in Escherichia coli Through Effects of the Inner Membrane. Front Microbiol 2019; 10:1032. [PMID: 31178830 PMCID: PMC6542938 DOI: 10.3389/fmicb.2019.01032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Peptide Nucleic Acid (PNA)-peptide conjugates targeting essential bacterial genes are showing promise as antisense antimicrobials in drug discovery. Optimization has focused on selection of target genes and exact localization around the ribosome binding site, but surprisingly a length optimum around 10-12 nucleobases has been found. Addressing this observation, we have investigated the relationship between PNA-length, PNA-RNA duplex stability and antimicrobial activity in E. coli in more detail. For PNAs of identical length of ten nucleobases the expected reverse correlation between the thermal stability (Tm) of the PNA-RNA duplex and the MIC for single mismatched PNAs was found. Also the expected direct correlation between the length of the PNA and the PNA-RNA duplex stability was found. Nonetheless, 10-mer PNAs [in a 6-18 mer extension series of (KFF)3K- and (RXR)4 conjugates] were the most active as antisense antimicrobials in both wild type E. coli MG1655 and AS19, suggesting that the size constraint is related to the bacterial uptake of PNA-peptide conjugates. This conclusion was supported by flow cytometry data showing higher bacterial uptake of shorter PNA fluorophore labeled conjugates. Interestingly, the size-limited uptake seems independent on outer membrane integrity (AS19), and thus the results suggest that the inner membrane limits the molecular size for peptide-PNA passage.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meiqin Zhang
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anubrata Ghosal
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Novopashina DS, Nazarov AS, Vorobjeva MA, Kuprushkin MS, Davydova AS, Lomzov AA, Pyshnyi DV, Altman S, Venyaminova AG. Modified Oligonucleotides for Guiding RNA Cleavage Using Bacterial RNase P. Mol Biol 2018. [DOI: 10.1134/s0026893318060134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Santos RS, Figueiredo C, Azevedo NF, Braeckmans K, De Smedt SC. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv Drug Deliv Rev 2018; 136-137:28-48. [PMID: 29248479 DOI: 10.1016/j.addr.2017.12.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
With the dramatic consequences of bacterial resistance to antibiotics, nanomaterials and molecular transporters have started to be investigated as alternative antibacterials or anti-infective carrier systems to improve the internalization of bactericidal drugs. However, the capability of nanomaterials/molecular transporters to overcome the bacterial cell envelope is poorly understood. It is critical to consider the sophisticated architecture of bacterial envelopes and reflect how nanomaterials/molecular transporters can interact with these envelopes, being the major aim of this review. The first part of this manuscript overviews the permeability of bacterial envelopes and how it limits the internalization of common antibiotic and novel oligonucleotide drugs. Subsequently we critically discuss the mechanisms that allow nanomaterials/molecular transporters to overcome the bacterial envelopes, focusing on the most promising ones to this end - siderophores, cyclodextrins, metal nanoparticles, antimicrobial/cell-penetrating peptides and fusogenic liposomes. This review may stimulate drug delivery and microbiology scientists in designing effective nanomaterials/molecular transporters against bacterial infections.
Collapse
|
21
|
Davies-Sala C, Jani S, Zorreguieta A, Tolmasky ME. Identification of the Acinetobacter baumannii Ribonuclease P Catalytic Subunit: Cleavage of a Target mRNA in the Presence of an External Guide Sequence. Front Microbiol 2018; 9:2408. [PMID: 30349524 PMCID: PMC6186949 DOI: 10.3389/fmicb.2018.02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022] Open
Abstract
The bacterial ribonuclease P or RNase P holoenzyme is usually composed of a catalytic RNA subunit, M1, and a cofactor protein, C5. This enzyme was first identified for its role in maturation of tRNAs by endonucleolytic cleavage of the pre-tRNA. The RNase P endonucleolytic activity is characterized by having structural but not sequence substrate requirements. This property led to development of EGS technology, which consists of utilizing a short antisense oligonucleotide that when forming a duplex with a target RNA induces its cleavage by RNase P. This technology is being explored for designing therapies that interfere with expression of genes, in the case of bacterial infections EGS technology could be applied to target essential, virulence, or antibiotic resistant genes. Acinetobacter baumannii is a problematic pathogen that is commonly resistant to multiple antibiotics, and EGS technology could be utilized to design alternative therapies. To better understand the A. baumannii RNase P we first identified and characterized the catalytic subunit. We identified a gene coding for an RNA species, M1Ab, with the expected features of the RNase P M1 subunit. A recombinant clone coding for M1Ab complemented the M1 thermosensitive mutant Escherichia coli BL21(DE3) T7A49, which upon transformation was able to grow at the non-permissive temperature. M1Ab showed in vitro catalytic activity in combination with the C5 protein cofactor from E. coli as well as with that from A. baumannii, which was identified, cloned and partially purified. M1Ab was also able to cleave a target mRNA in the presence of an EGS with efficiency comparable to that of the E. coli M1, suggesting that EGS technology could be a viable option for designing therapeutic alternatives to treat multiresistant A. baumannii infections.
Collapse
Affiliation(s)
- Carol Davies-Sala
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, University of Buenos Aires, Buenos Aires, Argentina
| | - Saumya Jani
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, University of Buenos Aires, Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
22
|
Egorov AM, Ulyashova MM, Rubtsova MY. Bacterial Enzymes and Antibiotic Resistance. Acta Naturae 2018; 10:33-48. [PMID: 30713760 PMCID: PMC6351036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 11/01/2022] Open
Abstract
The resistance of microorganisms to antibiotics has been developing for more than 2 billion years and is widely distributed among various representatives of the microbiological world. Bacterial enzymes play a key role in the emergence of resistance. Classification of these enzymes is based on their participation in various biochemical mechanisms: modification of the enzymes that act as antibiotic targets, enzymatic modification of intracellular targets, enzymatic transformation of antibiotics, and the implementation of cellular metabolism reactions. The main mechanisms of resistance development are associated with the evolution of superfamilies of bacterial enzymes due to the variability of the genes encoding them. The collection of all antibiotic resistance genes is known as the resistome. Tens of thousands of enzymes and their mutants that implement various mechanisms of resistance form a new community that is called "the enzystome." Analysis of the structure and functional characteristics of enzymes, which are the targets for different classes of antibiotics, will allow us to develop new strategies for overcoming the resistance.
Collapse
Affiliation(s)
- A. M. Egorov
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| | - M. M. Ulyashova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| | - M. Yu. Rubtsova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| |
Collapse
|
23
|
Tran T, Chiem K, Jani S, Arivett BA, Lin DL, Lad R, Jimenez V, Farone MB, Debevec G, Santos R, Giulianotti M, Pinilla C, Tolmasky ME. Identification of a small molecule inhibitor of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] using mixture-based combinatorial libraries. Int J Antimicrob Agents 2018; 51:752-761. [PMID: 29410367 DOI: 10.1016/j.ijantimicag.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 11/28/2022]
Abstract
The aminoglycoside, 6'-N-acetyltransferase type Ib [AAC(6')-Ib] is the most widely distributed enzyme among AAC(6')-I-producing Gram-negative pathogens and confers resistance to clinically relevant aminoglycosides, including amikacin. This enzyme is therefore an ideal target for enzymatic inhibitors that could overcome resistance to aminoglycosides. The search for inhibitors was carried out using mixture-based combinatorial libraries, the scaffold ranking approach, and the positional scanning strategy. A library with high inhibitory activity had pyrrolidine pentamine scaffold and was selected for further analysis. This library contained 738,192 compounds with functionalities derived from 26 different amino acids (R1, R2 and R3) and 42 different carboxylic acids (R4) in four R-group functionalities. The most active compounds all contained S-phenyl (R1 and R3) and S-hydromethyl (R2) functionalities at three locations and differed at the R4 position. The compound containing 3-phenylbutyl at R4 (compound 206) was a robust enzymatic inhibitor in vitro, in combination with amikacin it potentiated the inhibition of growth of three resistant bacteria in culture, and it improved survival when used as treatment of Galleria mellonella infected with aac(6')-Ib-harboring Klebsiella pneumoniae and Acinetobacter baumannii strains.
Collapse
Affiliation(s)
- Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Kevin Chiem
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Saumya Jani
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Brock A Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN; Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN
| | - David L Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Rupali Lad
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Verónica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Mary B Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN
| | | | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | - Marc Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | | | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA.
| |
Collapse
|
24
|
Xue XY, Mao XG, Zhou Y, Chen Z, Hu Y, Hou Z, Li MK, Meng JR, Luo XX. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:745-758. [PMID: 29341934 DOI: 10.1016/j.nano.2017.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/12/2017] [Accepted: 12/31/2017] [Indexed: 12/22/2022]
Abstract
Discovery and development of new antibacterial drugs against multidrug resistant bacterial strains have become more and more urgent. Antisense oligonucleotides (ASOs) show immense potential to control the spread of resistant microbes due to its high specificity of action, little risk to human gene expression, and easy design and synthesis to target any possible gene. However, efficient delivery of ASOs to their action sites with enough concentration remains a major obstacle, which greatly hampers their clinical application. In this study, we reviewed current progress on delivery strategies of ASOs into bacteria, focused on various non-virus gene vectors, including cell penetrating peptides, lipid nanoparticles, bolaamphiphile-based nanoparticles, DNA nanostructures and Vitamin B12. The current review provided comprehensive understanding and novel perspective for the future application of ASOs in combating bacterial infections.
Collapse
Affiliation(s)
- Xiao-Yan Xue
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| | - Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ying Zhou
- Department of Pharmacology, Xi'an Medical University, Xi'an, China
| | - Zhou Chen
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yue Hu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Ming-Kai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jing-Ru Meng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Xing Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
25
|
Jani S, Jackson A, Davies-Sala C, Chiem K, Soler-Bistué A, Zorreguieta A, Tolmasky ME. Assessment of External Guide Sequences' (EGS) Efficiency as Inducers of RNase P-Mediated Cleavage of mRNA Target Molecules. Methods Mol Biol 2018; 1737:89-98. [PMID: 29484589 DOI: 10.1007/978-1-4939-7634-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5'-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells.
Collapse
Affiliation(s)
- Saumya Jani
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Alexis Jackson
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
| | - Carol Davies-Sala
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
| | - Kevin Chiem
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Alfonso Soler-Bistué
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA.
| |
Collapse
|
26
|
Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017; 22:molecules22122267. [PMID: 29257114 PMCID: PMC5889950 DOI: 10.3390/molecules22122267] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides are a group of antibiotics used since the 1940s to primarily treat a broad spectrum of bacterial infections. The primary resistance mechanism against these antibiotics is enzymatic modification by aminoglycoside-modifying enzymes that are divided into acetyl-transferases, phosphotransferases, and nucleotidyltransferases. To overcome this problem, new semisynthetic aminoglycosides were developed in the 70s. The most widely used semisynthetic aminoglycoside is amikacin, which is refractory to most aminoglycoside modifying enzymes. Amikacin was synthesized by acylation with the l-(-)-γ-amino-α-hydroxybutyryl side chain at the C-1 amino group of the deoxystreptamine moiety of kanamycin A. The main amikacin resistance mechanism found in the clinics is acetylation by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme coded for by a gene found in integrons, transposons, plasmids, and chromosomes of Gram-negative bacteria. Numerous efforts are focused on finding strategies to neutralize the action of AAC(6')-Ib and extend the useful life of amikacin. Small molecules as well as complexes ionophore-Zn+2 or Cu+2 were found to inhibit the acetylation reaction and induced phenotypic conversion to susceptibility in bacteria harboring the aac(6')-Ib gene. A new semisynthetic aminoglycoside, plazomicin, is in advance stage of development and will contribute to renewed interest in this kind of antibiotics.
Collapse
|
27
|
Stietz MS, Lopez C, Osifo O, Tolmasky ME, Cardona ST. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia. Can J Microbiol 2017; 63:857-863. [PMID: 28817787 DOI: 10.1139/cjm-2017-0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.
Collapse
Affiliation(s)
- Maria S Stietz
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Christina Lopez
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Osasumwen Osifo
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Marcelo E Tolmasky
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Silvia T Cardona
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,c Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
28
|
Braun SD, Dorneanu OS, Vremeră T, Reißig A, Monecke S, Ehricht R. Carbapenemase-producing Enterobacteriaceae: a 2-year surveillance in a hospital in Iaşi, Romania. Future Microbiol 2016; 11:391-401. [DOI: 10.2217/fmb.15.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Limited information is currently available about the prevalence of carbapenemase-producing Enterobacteriaceae (CPE) in Romania. Materials & methods: Routine tests of 1,993 clinical isolates at a hospital in Iaşi yielded 46 isolates that were resistant to carbapenems. All 46 isolates were phenotypically and genotypically analyzed using VITEK-2 and DNA microarray-based assays. Results: Isolates were assigned to Klebsiella pneumoniae and Enterobacter cloacae. For 39 isolates, carbapenem resistance was confirmed and 37 harbored at least one carbapenem resistance gene. Two isolates were probably resistant due to AmpC β-lactamases in combination with a porin loss. The overall concordance between detected phenotype and genotype was 95%. Conclusion: Our data show that carbapenemase-producing isolates with different underlying resistance mechanisms are still rare in Iaşi, but the global rise of CPE warrants intensified surveillance.
Collapse
Affiliation(s)
- Sascha D Braun
- Alere Technologies GmbH, Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | | | - Teodora Vremeră
- University of Medicine & Pharmacy ‘‘Grigore T Popa,’’ Iaşi, Romania
| | - Annett Reißig
- Alere Technologies GmbH, Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Stefan Monecke
- Alere Technologies GmbH, Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Ralf Ehricht
- Alere Technologies GmbH, Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| |
Collapse
|
29
|
Jackson A, Jani S, Sala CD, Soler-Bistué AJC, Zorreguieta A, Tolmasky ME. Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes. Biol Methods Protoc 2016; 1. [PMID: 27857983 PMCID: PMC5108630 DOI: 10.1093/biomethods/bpw001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
External guide sequences (EGSs) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Successful development of EGS technology depends on finding nucleotide analogs that resist degradation by nucleases present in biological fluids and the environment but still elicit RNase P-mediated degradation when forming a duplex with a target mRNA. Previous results suggested that locked nucleic acids (LNA)/DNA chimeric oligomers have these properties. LNA are now considered the first generation of compounds collectively known as bridged nucleic acids (BNAs) – modified ribonucleotides that contain a bridge at the 2ʹ,4ʹ-position of the ribose. LNA and the second-generation BNA, known as BNANC, differ in the chemical nature of the bridge. Chimeric oligomers containing LNA or BNANC and deoxynucleotide monomers in different configurations are nuclease resistant and could be excellent EGS compounds. However, not all configurations may be equally active as EGSs. RNase P cleavage assays comparing LNA/DNA and BNANC/DNA chimeric oligonucleotides that share identical nucleotide sequence but with different configurations were carried out using as target the amikacin resistance aac(6ʹ)-Ib mRNA. LNA/DNA gapmers with 5 and 3/4 LNA residues at the 5ʹ- and 3ʹ-ends, respectively, were the most efficient EGSs while all BNANC/DNA gapmers showed very poor activity. When the most efficient LNA/DNA gapmer was covalently bound to a cell-penetrating peptide, the hybrid compound conserved the EGS activity as determined by RNase P cleavage assays and reduced the levels of resistance to amikacin when added to Acinetobacter baumannii cells in culture, an indication of cellular uptake and biological activity.
Collapse
Affiliation(s)
- Alexis Jackson
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Saumya Jani
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Carol Davies Sala
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA; Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Alfonso J C Soler-Bistué
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA; Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
30
|
RNase P-Mediated Sequence-Specific Cleavage of RNA by Engineered External Guide Sequences. Biomolecules 2015; 5:3029-50. [PMID: 26569326 PMCID: PMC4693268 DOI: 10.3390/biom5043029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
The RNA cleavage activity of RNase P can be employed to decrease the levels of specific RNAs and to study their function or even to eradicate pathogens. Two different technologies have been developed to use RNase P as a tool for RNA knockdown. In one of these, an external guide sequence, which mimics a tRNA precursor, a well-known natural RNase P substrate, is used to target an RNA molecule for cleavage by endogenous RNase P. Alternatively, a guide sequence can be attached to M1 RNA, the (catalytic) RNase P RNA subunit of Escherichia coli. The guide sequence is specific for an RNA target, which is subsequently cleaved by the bacterial M1 RNA moiety. These approaches are applicable in both bacteria and eukaryotes. In this review, we will discuss the two technologies in which RNase P is used to reduce RNA expression levels.
Collapse
|
31
|
Sala CD, Soler-Bistué A, Bonomo R, Zorreguieta A, Tolmasky ME. External guide sequence technology: a path to development of novel antimicrobial therapeutics. Ann N Y Acad Sci 2015; 1354:98-110. [PMID: 25866265 PMCID: PMC4600001 DOI: 10.1111/nyas.12755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/14/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
RNase P is a ribozyme originally identified for its role in maturation of tRNAs by cleavage of precursor tRNAs (pre-tRNAs) at the 5'-end termini. RNase P is a ribonucleoprotein consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. The site of cleavage of a pre-tRNA is identified by its tertiary structure; and any RNA molecule can be cleaved by RNase P as long as the RNA forms a duplex that resembles the regional structure in the pre-tRNA. When the antisense sequence that forms the duplex with the strand that is subsequently cleaved by RNase P is in a separate molecule, it is called an external guide sequence (EGS). These fundamental observations are the basis for EGS technology, which consists of inhibiting gene expression by utilizing an EGS that elicits RNase P-mediated cleavage of a target mRNA molecule. EGS technology has been used to inhibit expression of a wide variety of genes, and may help development of novel treatments of diseases, including multidrug-resistant bacterial and viral infections.
Collapse
Affiliation(s)
- Carol Davies Sala
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| | - Alfonso Soler-Bistué
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| | - Robert Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine,
Cleveland, Ohio
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| |
Collapse
|
32
|
Inhibition of AAC(6')-Ib-mediated resistance to amikacin in Acinetobacter baumannii by an antisense peptide-conjugated 2',4'-bridged nucleic acid-NC-DNA hybrid oligomer. Antimicrob Agents Chemother 2015; 59:5798-803. [PMID: 26169414 DOI: 10.1128/aac.01304-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
Multiresistant Acinetobacter baumannii, a common etiologic agent of severe nosocomial infections in compromised hosts, usually harbors aac(6')-Ib. This gene specifies resistance to amikacin and other aminoglycosides, seriously limiting the effectiveness of these antibiotics. An antisense oligodeoxynucleotide (ODN4) that binds to a duplicated sequence on the aac(6')-Ib mRNA, one of the copies overlapping the initiation codon, efficiently inhibited translation in vitro. An isosequential nuclease-resistant hybrid oligomer composed of 2',4'-bridged nucleic acid-NC (BNA(NC)) residues and deoxynucleotides (BNA(NC)-DNA) conjugated to the permeabilizing peptide (RXR)4XB ("X" and "B" stand for 6-aminohexanoic acid and β-alanine, respectively) (CPPBD4) inhibited translation in vitro at the same levels observed in testing ODN4. Furthermore, CPPBD4 in combination with amikacin inhibited growth of a clinical A. baumannii strain harboring aac(6')-Ib in liquid cultures, and when both compounds were used as combination therapy to treat infected Galleria mellonella organisms, survival was comparable to that seen with uninfected controls.
Collapse
|
33
|
Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl 2014; 8:223-39. [PMID: 25861381 PMCID: PMC4380917 DOI: 10.1111/eva.12235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/12/2014] [Indexed: 12/19/2022] Open
Abstract
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR.
Collapse
Affiliation(s)
- Fernando Baquero
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Val F Lanza
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Rafael Cantón
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III Madrid, Spain
| | - Teresa M Coque
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| |
Collapse
|
34
|
Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 2014; 78:63-76. [PMID: 24548540 DOI: 10.1016/j.addr.2014.02.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 12/29/2022]
Abstract
Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.
Collapse
Affiliation(s)
- Meng-Hua Xiong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Bao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xian-Zhu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan-Hua Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
35
|
Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib by zinc: reversal of amikacin resistance in Acinetobacter baumannii and Escherichia coli by a zinc ionophore. Antimicrob Agents Chemother 2014; 58:4238-41. [PMID: 24820083 DOI: 10.1128/aac.00129-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro activity of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] was inhibited by ZnCl2 with a 50% inhibitory concentration (IC50) of 15 μM. Growth of Acinetobacter baumannii or Escherichia coli harboring aac(6')-Ib in cultures containing 8 μg/ml amikacin was significantly inhibited by the addition of 2 μM Zn(2+) in complex with the ionophore pyrithione (ZnPT).
Collapse
|
36
|
Nakashima N, Miyazaki K. Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci 2014; 15:2773-93. [PMID: 24552876 PMCID: PMC3958881 DOI: 10.3390/ijms15022773] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 12/18/2022] Open
Abstract
Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption), knock-in (insertion), and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence) target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering.
Collapse
Affiliation(s)
- Nobutaka Nakashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| | - Kentaro Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| |
Collapse
|
37
|
Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 2014; 5:1285-309. [PMID: 23859208 DOI: 10.4155/fmc.13.80] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
Collapse
|
38
|
Dinan AM, Loftus BJ. (Non-)translational medicine: targeting bacterial RNA. Front Genet 2013; 4:230. [PMID: 24265632 PMCID: PMC3821060 DOI: 10.3389/fgene.2013.00230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
The rise and spread of antibiotic resistance is among the most severe challenges facing modern medicine. Despite this fact, attempts to develop novel classes of antibiotic have been largely unsuccessful. The traditional mechanisms by which antibiotics work are subject to relatively rapid bacterial resistance via mutation, and hence have a limited period of efficacy. One promising strategy to ameliorate this problem is to shift from the use of chemical compounds targeting protein structures and processes to a new era of RNA-based therapeutics. RNA-mediated regulation (riboregulation) has evolved naturally in bacteria and is therefore a highly efficient means by which gene expression can be manipulated. Here, we describe recent advances toward the development of effective anti-bacterial therapies, which operate through various strategies centered on RNA.
Collapse
Affiliation(s)
- Adam M Dinan
- School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | | |
Collapse
|
39
|
Lin DL, Tran T, Adams C, Alam JY, Herron SR, Tolmasky ME. Inhibitors of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] identified by in silico molecular docking. Bioorg Med Chem Lett 2013; 23:5694-8. [PMID: 24011645 DOI: 10.1016/j.bmcl.2013.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
AAC(6')-Ib is an important aminoglycoside resistance enzyme to target with enzymatic inhibitors. An in silico screening approach was used to identify potential inhibitors from the ChemBridge library. Several compounds were identified, of which two of them, 4-[(2-{[1-(3-methylphenyl)-4,6-dioxo-2-thioxotetrahydro-5(2H)-pyrimidinylidene]methyl}phenoxy)methyl]benzoic acid and 2-{5-[(4,6-dioxo-1,3-diphenyl-2-thioxotetrahydro-5(2H)-pyrimidinylidene)methyl]-2-furyl}benzoic acid, showed micromolar activity in inhibiting acetylation of kanamycin A. These compounds are predicted to bind the aminoglycoside binding site of AAC(6')-Ib and exhibited competitive inhibition against kanamycin A.
Collapse
Affiliation(s)
- David L Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Boulevard, Fullerton, CA 92834-6850, United States.
| | | | | | | | | | | |
Collapse
|
40
|
Ramirez MS, Nikolaidis N, Tolmasky ME. Rise and dissemination of aminoglycoside resistance: the aac(6')-Ib paradigm. Front Microbiol 2013; 4:121. [PMID: 23730301 PMCID: PMC3656343 DOI: 10.3389/fmicb.2013.00121] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 11/21/2022] Open
Abstract
Enzymatic modification is a prevalent mechanism by which bacteria defeat the action of antibiotics. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes encoded by genes present in the chromosome, plasmids, and other genetic elements. The AAC(6′)-Ib (aminoglycoside 6′-N-acetyltransferase type Ib) is an enzyme of clinical importance found in a wide variety of gram-negative pathogens. The AAC(6′)-Ib enzyme is of interest not only because of his ubiquity but also because of other characteristics, it presents significant microheterogeneity at the N-termini and the aac(6′)-Ib gene is often present in integrons, transposons, plasmids, genomic islands, and other genetic structures. Excluding the highly heterogeneous N-termini, there are 45 non-identical AAC(6′)-Ib related entries in the NCBI database, 32 of which have identical name in spite of not having identical amino acid sequence. While some variants conserved similar properties, others show dramatic differences in specificity, including the case of AAC(6′)-Ib-cr that mediates acetylation of ciprofloxacin representing a rare case where a resistance enzyme acquires the ability to utilize an antibiotic of a different class as substrate. Efforts to utilize antisense technologies to turn off expression of the gene or to identify enzymatic inhibitors to induce phenotypic conversion to susceptibility are under way.
Collapse
Affiliation(s)
- María S Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton, CA, USA
| | | | | |
Collapse
|
41
|
Traglia GM, Sala CD, Fuxman Bass JI, Soler-Bistué AJC, Zorreguieta A, Ramírez MS, Tolmasky ME. Internalization of Locked Nucleic Acids/DNA Hybrid Oligomers into Escherichia coli. Biores Open Access 2013; 1:260-3. [PMID: 23515318 PMCID: PMC3559211 DOI: 10.1089/biores.2012.0257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Delivery inside the cells is essential for practical application of antisense technologies. The hybrid locked nucleic acid (LNA)/DNA CAAGTACTGTTCCACCA (LNA residues are underlined) was labeled by conjugation to Alexa Fluor 488 (fLNA/DNA) and tested to determine its ability to penetrate Escherichia coli cells and reach the cytoplasm. Flow cytometry analysis showed that the fLNA/DNA was associated with 14% of cells from a stationary phase culture, while association with a labeled isosequential oligodeoxynucleotide was negligible. Laser scanning confocal microscopy confirmed that the fLNA/DNA was located inside the cytoplasm.
Collapse
Affiliation(s)
- German M Traglia
- Institute of Microbiology and Medical Parasitology, National Scientific and Technical Research Council (CONICET), University of Buenos Aires , Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
42
|
Inhibition of cell division induced by external guide sequences (EGS Technology) targeting ftsZ. PLoS One 2012; 7:e47690. [PMID: 23110089 PMCID: PMC3479136 DOI: 10.1371/journal.pone.0047690] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 09/18/2012] [Indexed: 01/20/2023] Open
Abstract
EGS (external guide sequence) technology is a promising approach to designing new antibiotics. EGSs are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. The ftsZ mRNA secondary structure was modeled and EGSs complementary to two regions with high probability of being suitable targets were designed. In vitro reactions showed that EGSs targeting these regions bound ftsZ mRNA and elicited RNase P-mediated cleavage of ftsZ mRNA. A recombinant plasmid, pEGSb1, coding for an EGS that targets region “b” under the control of the T7 promoter was generated. Upon introduction of this plasmid into Escherichia coli BL21(DE3)(pLysS) the transformant strain formed filaments when expression of the EGS was induced. Concomitantly, E. coli harboring pEGSb1 showed a modest but significant inhibition of growth when synthesis of the EGSb1 was induced. Our results indicate that EGS technology could be a viable strategy to generate new antimicrobials targeting ftsZ.
Collapse
|
43
|
Vong K, Auclair K. Understanding and overcoming aminoglycoside resistance caused by N-6'-acetyltransferase. MEDCHEMCOMM 2012; 3:397-407. [PMID: 28018574 PMCID: PMC5179255 DOI: 10.1039/c2md00253a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides occupy a special niche amongst antibiotics in part because of their broad spectrum of action. Bacterial resistance is however menacing to render these drugs obsolete. A significant amount of work has been devoted to understand and overcome aminoglycoside resistance. This mini-review will discuss aminoglycoside-modifying enzymes (AMEs), with a special emphasis on the efforts to comprehend and block resistance caused by aminoglycoside 6'-N-acetyltransferase (AAC(6')).
Collapse
Affiliation(s)
- Kenward Vong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| |
Collapse
|
44
|
Basic peptide-morpholino oligomer conjugate that is very effective in killing bacteria by gene-specific and nonspecific modes. Proc Natl Acad Sci U S A 2011; 108:16582-7. [PMID: 21949365 DOI: 10.1073/pnas.1112561108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic peptides covalently linked to nucleic acids, or chemically modified nucleic acids, enable the insertion of such a conjugate into bacteria grown in liquid medium and mammalian cells in tissue culture. A unique peptide, derived from human T cells, has been employed in a chemical synthesis to make a conjugate with a morpholino oligonucleotide. This new conjugate is at least 10- to 100-fold more effective than previous peptides used in altering the phenotype of host bacteria if the external guide sequence methodology is employed in these experiments. Bacteria with target genes expressing chloramphenicol resistance, penicillin resistance, or gyrase A function can effectively be reduced in their expression and the host cells killed. Several bacteria are susceptible to this treatment, which has a broad range of potency. The loss in viability of bacteria is not due only to complementarity with a target RNA and the action of RNase P, but also to a non-gene-specific tight binding of the complexed nontargeted RNA to the basic polypeptide-morpholino oligonucleotide.
Collapse
|
45
|
Good L, Stach JEM. Synthetic RNA silencing in bacteria - antimicrobial discovery and resistance breaking. Front Microbiol 2011; 2:185. [PMID: 21941522 PMCID: PMC3170882 DOI: 10.3389/fmicb.2011.00185] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/20/2011] [Indexed: 12/30/2022] Open
Abstract
The increasing incidence and prevalence of antibiotic resistance in bacteria threatens the “antibiotic miracle.” Conventional antimicrobial drug development has failed to replace the armamentarium needed to combat this problem, and novel solutions are urgently required. Here we review both natural and synthetic RNA silencing and its potential to provide new antibacterials through improved target selection, evaluation, and screening. Furthermore, we focus on synthetic RNA silencers as a novel class of antibacterials and review their unique properties.
Collapse
Affiliation(s)
- Liam Good
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London London, UK
| | | |
Collapse
|
46
|
Baquero F, Coque TM, de la Cruz F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother 2011; 55:3649-60. [PMID: 21576439 PMCID: PMC3147629 DOI: 10.1128/aac.00013-11] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, the explosive spread of antibiotic resistance determinants among pathogenic, commensal, and environmental bacteria has reached a global dimension. Classical measures trying to contain or slow locally the progress of antibiotic resistance in patients on the basis of better antibiotic prescribing policies have clearly become insufficient at the global level. Urgent measures are needed to directly confront the processes influencing antibiotic resistance pollution in the microbiosphere. Recent interdisciplinary research indicates that new eco-evo drugs and strategies, which take ecology and evolution into account, have a promising role in resistance prevention, decontamination, and the eventual restoration of antibiotic susceptibility. This minireview summarizes what is known and what should be further investigated to find drugs and strategies aiming to counteract the "four P's," penetration, promiscuity, plasticity, and persistence of rapidly spreading bacterial clones, mobile genetic elements, or resistance genes. The term "drug" is used in this eco-evo perspective as a tool to fight resistance that is able to prevent, cure, or decrease potential damage caused by antibiotic resistance, not necessarily only at the individual level (the patient) but also at the ecological and evolutionary levels. This view offers a wealth of research opportunities for science and technology and also represents a large adaptive challenge for regulatory agencies and public health officers. Eco-evo drugs and interventions constitute a new avenue for research that might influence not only antibiotic resistance but the maintenance of a healthy interaction between humans and microbial systems in a rapidly changing biosphere.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Institute Ramón and Cajal for Health Research (IRYCIS), CIBER Research Network in Epidemiology and Public Health (CIBERESP), Ramón y Cajal University Hospital, Madrid, Spain.
| | | | | |
Collapse
|
47
|
|
48
|
Abstract
Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different -OH or -NH₂ groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltransferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes.
Collapse
Affiliation(s)
- Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California 92834-6850
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California 92834-6850
| |
Collapse
|
49
|
Xiao G, Wesolowski D, Izadjoo M, Altman S. Morpholino oligonucleotides do not participate perfectly in standard Watson-Crick complexes with RNA. RNA (NEW YORK, N.Y.) 2010; 16:2218-25. [PMID: 20817753 PMCID: PMC2957060 DOI: 10.1261/rna.2256610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNase P from E. coli will cleave a RNA at a site designated in a complex with an external guide sequence (EGS). The location of the site is determined by the Watson-Crick complementary sequence that can be formed between the RNA and the EGS. Morpholino oligonucleotides (PMOs) that have the same base sequences as any particular EGS will not direct cleavage by RNase P of the target RNA at the expected site in three mRNAs. Instead, cleavage occurs at a secondary site that does not correspond exactly to the expected Watson-Crick sequence in the PMO. This cleavage in the mRNA for a drug resistance gene, CAT mRNA, is at least second order in the concentration of the PMOs, but the mechanism is not understood yet and might be more complicated than a simple second-order reaction. EGSs and PMOs inhibit the reactions of each other effectively in a competitive fashion. A basic peptide attached to the PMO (PPMO) is more effective because of its binding properties to the mRNA as a substrate. However, a PMO is just as efficient as a PPMO on a mRNA that is mutated so that the canonical W-C site has been altered. The altered mRNA is not recognizable by effective extensive W-C pairing to an EGS or PMO. The complex of a PMO on a mutated mRNA as a substrate shows that the dimensions of the modified oligonucleotide cannot be the same as a naked piece of single-stranded RNA.
Collapse
Affiliation(s)
- Gaoping Xiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
50
|
Abstract
The ability to interfere with gene expression is of crucial importance to unravel the function of genes and is also a promising therapeutic strategy. Here we discuss methodologies for inhibition of target RNAs based on the cleavage activity of the essential enzyme, Ribonuclease P (RNase P). RNase P-mediated cleavage of target RNAs can be directed by external guide sequences (EGSs) or by the use of the catalytic M1 RNA from E. coli linked to a guide sequence (M1GSs). These are not only basic tools for functional genetic studies in prokaryotic and eukaryotic cells but also promising antibacterial, anticancer and antiviral agents.
Collapse
Affiliation(s)
- Eirik Wasmuth Lundblad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | |
Collapse
|