1
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
3
|
Parejo S, Cabrera JJ, Jiménez-Leiva A, Tomás-Gallardo L, Bedmar EJ, Gates AJ, Mesa S. Fine-Tuning Modulation of Oxidation-Mediated Posttranslational Control of Bradyrhizobium diazoefficiens FixK 2 Transcription Factor. Int J Mol Sci 2022; 23:5117. [PMID: 35563511 PMCID: PMC9104804 DOI: 10.3390/ijms23095117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
FixK2 is a CRP/FNR-type transcription factor that plays a central role in a sophisticated regulatory network for the anoxic, microoxic and symbiotic lifestyles of the soybean endosymbiont Bradyrhizobium diazoefficiens. Aside from the balanced expression of the fixK2 gene under microoxic conditions (induced by the two-component regulatory system FixLJ and negatively auto-repressed), FixK2 activity is posttranslationally controlled by proteolysis, and by the oxidation of a singular cysteine residue (C183) near its DNA-binding domain. To simulate the permanent oxidation of FixK2, we replaced C183 for aspartic acid. Purified C183D FixK2 protein showed both low DNA binding and in vitro transcriptional activation from the promoter of the fixNOQP operon, required for respiration under symbiosis. However, in a B. diazoefficiens strain coding for C183D FixK2, expression of a fixNOQP'-'lacZ fusion was similar to that in the wild type, when both strains were grown microoxically. The C183D FixK2 encoding strain also showed a wild-type phenotype in symbiosis with soybeans, and increased fixK2 gene expression levels and FixK2 protein abundance in cells. These two latter observations, together with the global transcriptional profile of the microoxically cultured C183D FixK2 encoding strain, suggest the existence of a finely tuned regulatory strategy to counterbalance the oxidation-mediated inactivation of FixK2 in vivo.
Collapse
Affiliation(s)
- Sergio Parejo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| | - Juan J. Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Pablo de Olavide University, 41013 Seville, Spain;
| | - Eulogio J. Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| | - Andrew J. Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| |
Collapse
|
4
|
Wakamatsu T, Mizobuchi S, Mori F, Futagami T, Terada T, Morono Y. Construction of Aerobic/Anaerobic-Substrate-Induced Gene Expression Procedure for Exploration of Metagenomes From Subseafloor Sediments. Front Microbiol 2022; 12:726024. [PMID: 35095779 PMCID: PMC8793675 DOI: 10.3389/fmicb.2021.726024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Substrate-induced gene expression (SIGEX) is a high-throughput promoter-trap method. It is a function-based metagenomic screening tool that relies on transcriptional activation of a reporter gene green fluorescence protein (gfp) by a metagenomic DNA library upon induction with a substrate. However, its use is limited because of the relatively small size of metagenomic DNA libraries and incompatibility with screening metagenomes from anaerobic environments. In this study, these limitations of SIGEX were addressed by fine-tuning metagenome DNA library construction protocol and by using Evoglow, a green fluorescent protein that forms a chromophore even under anaerobic conditions. Two metagenomic libraries were constructed for subseafloor sediments offshore Shimokita Peninsula (Pacific Ocean) and offshore Joetsu (Japan Sea). The library construction protocol was improved by (a) eliminating short DNA fragments, (b) applying topoisomerase-based high-efficiency ligation, (c) optimizing insert DNA concentration, and (d) column-based DNA enrichment. This led to a successful construction of metagenome DNA libraries of approximately 6 Gbp for both samples. SIGEX screening using five aromatic compounds (benzoate, 3-chlorobenzoate, 3-hydroxybenzoate, phenol, and 2,4-dichlorophenol) under aerobic and anaerobic conditions revealed significant differences in the inducible clone ratios under these conditions. 3-Chlorobenzoate and 2,4-dichlorophenol led to a higher induction ratio than that for the other non-chlorinated aromatic compounds under both aerobic and anaerobic conditions. After the further screening of induced clones, a clone induced by 3-chlorobenzoate only under anaerobic conditions was isolated and characterized. The clone harbors a DNA insert that encodes putative open reading frames of unknown function. Previous aerobic SIGEX attempts succeeded in the isolation of gene fragments from anaerobes. This study demonstrated that some gene fragments require a strict in vivo reducing environment to function and may be potentially missed when screened by aerobic induction. The newly developed anaerobic SIGEX scheme will facilitate functional exploration of metagenomes from the anaerobic biosphere.
Collapse
Affiliation(s)
- Taisuke Wakamatsu
- Agricultural Sciences, Graduate School of Integrated Arts and Sciences, Kochi University, Kōchi, Japan
| | - Saki Mizobuchi
- Agricultural Sciences, Graduate School of Integrated Arts and Sciences, Kochi University, Kōchi, Japan
| | - Fumiaki Mori
- Geomicrobiology Group, Kochi Institute for Core Smaple Research, Japan Agency for Marine-Earth Science and Technology, Kōchi, Japan
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Smaple Research, Japan Agency for Marine-Earth Science and Technology, Kōchi, Japan
- *Correspondence: Yuki Morono,
| |
Collapse
|
5
|
Cabrera JJ, Jiménez-Leiva A, Tomás-Gallardo L, Parejo S, Casado S, Torres MJ, Bedmar EJ, Delgado MJ, Mesa S. Dissection of FixK 2 protein-DNA interaction unveils new insights into Bradyrhizobium diazoefficiens lifestyles control. Environ Microbiol 2021; 23:6194-6209. [PMID: 34227211 DOI: 10.1111/1462-2920.15661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
The FixK2 protein plays a pivotal role in a complex regulatory network, which controls genes for microoxic, denitrifying, and symbiotic nitrogen-fixing lifestyles in Bradyrhizobium diazoefficiens. Among the microoxic-responsive FixK2 -activated genes are the fixNOQP operon, indispensable for respiration in symbiosis, and the nnrR regulatory gene needed for the nitric-oxide dependent induction of the norCBQD genes encoding the denitrifying nitric oxide reductase. FixK2 is a CRP/FNR-type transcription factor, which recognizes a 14 bp-palindrome (FixK2 box) at the regulated promoters through three residues (L195, E196, and R200) within a C-terminal helix-turn-helix motif. Here, we mapped the determinants for discriminatory FixK2 -mediated regulation. While R200 was essential for DNA binding and activity of FixK2 , L195 was involved in protein-DNA complex stability. Mutation at positions 1, 3, or 11 in the genuine FixK2 box at the fixNOQP promoter impaired transcription activation by FixK2 , which was residual when a second mutation affecting the box palindromy was introduced. The substitution of nucleotide 11 within the NnrR box at the norCBQD promoter allowed FixK2 -mediated activation in response to microoxia. Thus, position 11 within the FixK2 /NnrR boxes constitutes a key element that changes FixK2 targets specificity, and consequently, it might modulate B. diazoefficiens lifestyle as nitrogen fixer or as denitrifier.
Collapse
Affiliation(s)
- Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Junta de Andalucía-Pablo de Olavide University, Seville, 41013, Spain
| | - Sergio Parejo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Sara Casado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| |
Collapse
|
6
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
7
|
Mandon K, Nazaret F, Farajzadeh D, Alloing G, Frendo P. Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants (Basel) 2021; 10:antiox10060880. [PMID: 34070926 PMCID: PMC8226930 DOI: 10.3390/antiox10060880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Plants interact with a large number of microorganisms that greatly influence their growth and health. Among the beneficial microorganisms, rhizosphere bacteria known as Plant Growth Promoting Bacteria increase plant fitness by producing compounds such as phytohormones or by carrying out symbioses that enhance nutrient acquisition. Nitrogen-fixing bacteria, either as endophytes or as endosymbionts, specifically improve the growth and development of plants by supplying them with nitrogen, a key macro-element. Survival and proliferation of these bacteria require their adaptation to the rhizosphere and host plant, which are particular ecological environments. This adaptation highly depends on bacteria response to the Reactive Oxygen Species (ROS), associated to abiotic stresses or produced by host plants, which determine the outcome of the plant-bacteria interaction. This paper reviews the different antioxidant defense mechanisms identified in diazotrophic bacteria, focusing on their involvement in coping with the changing conditions encountered during interaction with plant partners.
Collapse
Affiliation(s)
- Karine Mandon
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Fanny Nazaret
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Davoud Farajzadeh
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran;
- Center for International Scientific Studies and Collaboration (CISSC), Ministry of Science, Research and Technology, Tehran 158757788, Iran
| | - Geneviève Alloing
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Pierre Frendo
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
- Correspondence:
| |
Collapse
|
8
|
Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis. PLoS Genet 2021; 17:e1009099. [PMID: 33539353 PMCID: PMC7888657 DOI: 10.1371/journal.pgen.1009099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/17/2021] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizobium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL signals via FxkR to induce expression of the FixK transcription factor, which activates transcription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK pathway was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We confirmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of pea nodules. Quantification of fixNOQP expression in nodules showed this was driven primarily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK pathway effectively primes the O2 response by increasing fnrN expression in early differentiation (zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity. Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effectiveness of the symbioses. Rhizobia are soil bacteria that form a symbiosis with legume plants. In exchange for shelter from the plant, rhizobia provide nitrogen fertilizer, produced by nitrogen fixation. Fixation is catalysed by the nitrogenase enzyme, which is inactivated by oxygen. To prevent this, plants house rhizobia in root nodules, which create a low oxygen environment. However, rhizobia need oxygen, and must adapt to survive the low oxygen concentration in the nodule. Key to this is regulating their genes based on oxygen concentration. We studied one Rhizobium species which uses three different protein sensors of oxygen, each turning on at a different oxygen concentration. As the bacteria get deeper inside the plant nodule and the oxygen concentration drops, each sensor switches on in turn. Our results also show that the first sensor to turn on, hFixL, primes the second sensor, FnrN. This prepares the rhizobia for the core region of the nodule where oxygen concentration is lowest and most nitrogen fixation takes place. If both sensors are removed, the bacteria cannot fix nitrogen. Many rhizobia have several oxygen sensing proteins, so using multiple sensors is likely a common strategy enabling rhizobia to adapt to low oxygen precisely and in stages during symbiosis.
Collapse
|
9
|
Oxidative Stress Produced by Paraquat Reduces Nitrogen Fixation in Soybean-Bradyrhizobium diazoefficiens Symbiosis by Decreasing Nodule Functionality. NITROGEN 2021. [DOI: 10.3390/nitrogen2010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soybean (Glycine max.) is one of the most important legumes cultivated worldwide. Its productivity can be altered by some biotic and abiotic stresses like global warming, soil metal pollution or over-application of herbicides like paraquat (1,1’-dimethyl-4,4’-bipyridinium dichloride). In this study, the effect of oxidative stress produced by paraquat addition (0, 20, 50 and 100 µM) during plant growth on symbiotic nitrogen fixation (SNF) and functionality of Bradyrhizobium diazoefficiens-elicited soybean nodules were evaluated. Results showed that the 50 µM was the threshold that B. diazoefficiens can tolerate under free-living conditions. In symbiosis with soybean, the paraquat addition statistically reduced the shoot and root dry weight of soybean plants, and number and development of the nodules. SNF was negatively affected by paraquat, which reduced total nitrogen content and fixed nitrogen close to 50% when 100 µM was added. These effects were due to the impairment of nodule functionality and the increased oxidative status of the nodules, as revealed by the lower leghaemoglobin content and the higher lipid peroxidation in soybean nodules from paraquat-treated plants.
Collapse
|
10
|
Speck JJ, James EK, Sugawara M, Sadowsky MJ, Gyaneshwar P. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by Bradyrhizobium diazoefficiens (syn. Bradyrhizobium japonicum) USDA110 T. Appl Environ Microbiol 2019; 85:e01552-19. [PMID: 31562172 PMCID: PMC6881790 DOI: 10.1128/aem.01552-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Sulfur (S)-containing molecules play an important role in symbiotic nitrogen fixation and are critical components of nitrogenase and other iron-S proteins. S deficiency inhibits symbiotic nitrogen fixation by rhizobia. However, despite its importance, little is known about the sources of S that rhizobia utilize during symbiosis. We previously showed that Bradyrhizobium diazoefficiens USDA110T can assimilate both inorganic and organic S and that genes involved in organic S utilization are expressed during symbiosis. Here, we show that a B. diazoefficiens USDA110T mutant with a sulfonate monooxygenase (ssuD) insertion is defective in nitrogen fixation. Microscopy analyses revealed that the ΔssuD mutant was defective in root hair infection and that ΔssuD mutant bacteroids showed degradation compared to the wild-type strain. Moreover, the ΔssuD mutant was significantly more sensitive to hydrogen peroxide-mediated oxidative stress than the wild-type strain. Taken together, these results show that the ability of rhizobia to utilize organic S plays an important role in symbiotic nitrogen fixation. Since nodules have been reported to be an important source of reduced S used during symbiosis and nitrogen fixation, further research will be needed to determine the mechanisms involved in the regulation of S assimilation by rhizobia.IMPORTANCE Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show that sulfonate utilization by Bradyrhizobium diazoefficiens is important for symbiotic nitrogen fixation in both soybean and cowpea. The symbiotic defect is probably due to increased sensitivity to oxidative stress from sulfur deficiency in the mutant strain defective for sulfonate utilization. The results of this study can be extended to other rhizobium-legume symbioses, as sulfonate utilization genes are widespread in these bacteria.
Collapse
Affiliation(s)
- Justin J Speck
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Masayuki Sugawara
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Michael J Sadowsky
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Feeley BE, Bhardwaj V, McLaughlin PT, Diggs S, Blaha GM, Higgs PI. An amino-terminal threonine/serine motif is necessary for activity of the Crp/Fnr homolog, MrpC and for Myxococcus xanthus developmental robustness. Mol Microbiol 2019; 112:1531-1551. [PMID: 31449700 DOI: 10.1111/mmi.14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 11/30/2022]
Abstract
The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.
Collapse
Affiliation(s)
- Brooke E Feeley
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Vidhi Bhardwaj
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Hesse, Germany
| | | | - Stephen Diggs
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Gregor M Blaha
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Penelope I Higgs
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
13
|
Fernández N, Cabrera JJ, Varadarajan AR, Lutz S, Ledermann R, Roschitzki B, Eberl L, Bedmar EJ, Fischer HM, Pessi G, Ahrens CH, Mesa S. An Integrated Systems Approach Unveils New Aspects of Microoxia-Mediated Regulation in Bradyrhizobium diazoefficiens. Front Microbiol 2019; 10:924. [PMID: 31134003 PMCID: PMC6515984 DOI: 10.3389/fmicb.2019.00924] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/11/2019] [Indexed: 01/31/2023] Open
Abstract
The adaptation of rhizobia from the free-living state in soil to the endosymbiotic state comprises several physiological changes in order to cope with the extremely low oxygen availability (microoxia) within nodules. To uncover cellular functions required for bacterial adaptation to microoxia directly at the protein level, we applied a systems biology approach on the key rhizobial model and soybean endosymbiont Bradyrhizobium diazoefficiens USDA 110 (formerly B. japonicum USDA 110). As a first step, the complete genome of B. diazoefficiens 110spc4, the model strain used in most prior functional genomics studies, was sequenced revealing a deletion of a ~202 kb fragment harboring 223 genes and several additional differences, compared to strain USDA 110. Importantly, the deletion strain showed no significantly different phenotype during symbiosis with several host plants, reinforcing the value of previous OMICS studies. We next performed shotgun proteomics and detected 2,900 and 2,826 proteins in oxically and microoxically grown cells, respectively, largely expanding our knowledge about the inventory of rhizobial proteins expressed in microoxia. A set of 62 proteins was significantly induced under microoxic conditions, including the two nitrogenase subunits NifDK, the nitrogenase reductase NifH, and several subunits of the high-affinity terminal cbb3 oxidase (FixNOQP) required for bacterial respiration inside nodules. Integration with the previously defined microoxia-induced transcriptome uncovered a set of 639 genes or proteins uniquely expressed in microoxia. Finally, besides providing proteogenomic evidence for novelties, we also identified proteins with a regulation similar to that of FixK2: transcript levels of these protein-coding genes were significantly induced, while the corresponding protein abundance remained unchanged or was down-regulated. This suggested that, apart from fixK2, additional B. diazoefficiens genes might be under microoxia-specific post-transcriptional control. This hypothesis was indeed confirmed for several targets (HemA, HemB, and ClpA) by immunoblot analysis.
Collapse
Affiliation(s)
- Noemí Fernández
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Adithi R Varadarajan
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland.,Department of Health Sciences and Technology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | | | - Bernd Roschitzki
- Functional Genomics Center Zurich, ETH & UZH Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
14
|
Mettert EL, Kiley PJ. Reassessing the Structure and Function Relationship of the O 2 Sensing Transcription Factor FNR. Antioxid Redox Signal 2018; 29:1830-1840. [PMID: 28990402 PMCID: PMC6217745 DOI: 10.1089/ars.2017.7365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE The Escherichia coli regulatory protein fumarate nitrate reduction (FNR) mediates a global transcriptional response upon O2 deprivation. Spanning nearly 40 years of research investigations, our understanding of how FNR senses and responds to O2 has considerably progressed despite a lack of structural information for most of that period. This knowledge has established the paradigm for how facultative anaerobic bacteria sense changes in O2 tension. Recent Advances: Recently, the X-ray crystal structure of Aliivibrio fischeri FNR with its [4Fe-4S] cluster cofactor was solved and has provided valuable new insight into FNR structure and function. These findings have alluded to the conformational changes that may occur to alter FNR activity in response to O2. CRITICAL ISSUES Here, we review the major features of this structure in context of previously acquired data. In doing so, we discuss additional mechanistic aspects of FNR function that warrant further investigation. FUTURE DIRECTIONS To complement the [4Fe-4S]-FNR structure, the structures of apo-FNR and FNR bound to DNA or RNA polymerase are needed. Together, these structures would elevate our understanding of how ligation of its [4Fe-4S] cluster allows FNR to regulate transcription according to the level of environmental O2.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison , Madison, Wisconsin
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
15
|
Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia. High Throughput 2018; 7:ht7020015. [PMID: 29783718 PMCID: PMC6023288 DOI: 10.3390/ht7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023] Open
Abstract
Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).
Collapse
|
16
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Mowery J, Bauchan GR, Elia P. A Proteomic Network for Symbiotic Nitrogen Fixation Efficiency in Bradyrhizobium elkanii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:334-343. [PMID: 29117782 DOI: 10.1094/mpmi-10-17-0243-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rhizobia colonize legumes and reduce N2 to NH3 in root nodules. The current model is that symbiotic rhizobia bacteroids avoid assimilating this NH3. Instead, host legume cells form glutamine from NH3, and the nitrogen is returned to the bacteroid as dicarboxylates, peptides, and amino acids. In soybean cells surrounding bacteroids, glutamine also is converted to ureides. One problem for soybean cultivation is inefficiency in symbiotic N2 fixation, the biochemical basis of which is unknown. Here, the proteomes of bacteroids of Bradyrhizobium elkanii USDA76 isolated from N2 fixation-efficient Peking and -inefficient Williams 82 soybean nodules were analyzed by mass spectrometry. Nearly half of the encoded bacterial proteins were quantified. Efficient bacteroids produced greater amounts of enzymes to form Nod factors and had increased amounts of signaling proteins, transporters, and enzymes needed to generate ATP to power nitrogenase and to acquire resources. Parallel investigation of nodule proteins revealed that Peking had no significantly greater accumulation of enzymes needed to assimilate NH3 than Williams 82. Instead, efficient bacteroids had increased amounts of enzymes to produce amino acids, including glutamine, and to form ureide precursors. These results support a model for efficient symbiotic N2 fixation in soybean where the bacteroid assimilates NH3 for itself.
Collapse
Affiliation(s)
- Bret Cooper
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Kimberly B Campbell
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Hunter S Beard
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | | | - Joseph Mowery
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Gary R Bauchan
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Patrick Elia
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| |
Collapse
|
17
|
Torres MJ, Bueno E, Jiménez-Leiva A, Cabrera JJ, Bedmar EJ, Mesa S, Delgado MJ. FixK 2 Is the Main Transcriptional Activator of Bradyrhizobium diazoefficiens nosRZDYFLX Genes in Response to Low Oxygen. Front Microbiol 2017; 8:1621. [PMID: 28912756 PMCID: PMC5582078 DOI: 10.3389/fmicb.2017.01621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
The powerful greenhouse gas, nitrous oxide (N2O) has a strong potential to drive climate change. Soils are the major source of N2O and microbial nitrification and denitrification the main processes involved. The soybean endosymbiont Bradyrhizobium diazoefficiens is considered a model to study rhizobial denitrification, which depends on the napEDABC, nirK, norCBQD, and nosRZDYFLX genes. In this bacterium, the role of the regulatory cascade FixLJ-FixK2-NnrR in the expression of napEDABC, nirK, and norCBQD genes involved in N2O synthesis has been previously unraveled. However, much remains to be discovered regarding the regulation of the respiratory N2O reductase (N2OR), the key enzyme that mitigates N2O emissions. In this work, we have demonstrated that nosRZDYFLX genes constitute an operon which is transcribed from a major promoter located upstream of the nosR gene. Low oxygen was shown to be the main inducer of expression of nosRZDYFLX genes and N2OR activity, FixK2 being the regulatory protein involved in such control. Further, by using an in vitro transcription assay with purified FixK2 protein and B. diazoefficiens RNA polymerase we were able to show that the nosRZDYFLX genes are direct targets of FixK2.
Collapse
Affiliation(s)
- María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
18
|
Bueno E, Robles EF, Torres MJ, Krell T, Bedmar EJ, Delgado MJ, Mesa S. Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide 2017; 68:137-149. [DOI: 10.1016/j.niox.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023]
|
19
|
Sun MA, Wang Y, Zhang Q, Xia Y, Ge W, Guo D. Prediction of reversible disulfide based on features from local structural signatures. BMC Genomics 2017; 18:279. [PMID: 28376774 PMCID: PMC5379614 DOI: 10.1186/s12864-017-3668-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/28/2017] [Indexed: 11/12/2022] Open
Abstract
Background Disulfide bonds are traditionally considered to play only structural roles. In recent years, increasing evidence suggests that the disulfide proteome is made up of structural disulfides and reversible disulfides. Unlike structural disulfides, reversible disulfides are usually of important functional roles and may serve as redox switches. Interestingly, only specific disulfide bonds are reversible while others are not. However, whether reversible disulfides can be predicted based on structural information remains largely unknown. Methods In this study, two datasets with both types of disulfides were compiled using independent approaches. By comparison of various features extracted from the local structural signatures, we identified several features that differ significantly between reversible and structural disulfides, including disulfide bond length, along with the number, amino acid composition, secondary structure and physical-chemical properties of surrounding amino acids. A SVM-based classifier was developed for predicting reversible disulfides. Results By 10-fold cross-validation, the model achieved accuracy of 0.750, sensitivity of 0.352, specificity of 0.953, MCC of 0.405 and AUC of 0.751 using the RevSS_PDB dataset. The robustness was further validated by using RevSS_RedoxDB as independent testing dataset. This model was applied to proteins with known structures in the PDB database. The results show that one third of the predicted reversible disulfide containing proteins are well-known redox enzymes, while the remaining are non-enzyme proteins. Given that reversible disulfides are frequently reported from functionally important non-enzyme proteins such as transcription factors, the predictions may provide valuable candidates of novel reversible disulfides for further experimental investigation. Conclusions This study provides the first comparative analysis between the reversible and the structural disulfides. Distinct features remarkably different between these two groups of disulfides were identified, and a SVM-based classifier for predicting reversible disulfides was developed accordingly. A web server named RevssPred can be accessed freely from: http://biocomputer.bio.cuhk.edu.hk/RevssPred. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3668-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-An Sun
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| | - Yejun Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Nanhai Ave 3688, Shenzhen, 518060, China
| | - Qing Zhang
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, SAR, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dianjing Guo
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China.
| |
Collapse
|
20
|
Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens. Appl Environ Microbiol 2016; 82:4299-4308. [PMID: 27208130 DOI: 10.1128/aem.00757-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 02/06/2023] Open
Abstract
Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4 Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2 IMPORTANCE: In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer and the network responsible for microoxic metabolism through the interaction between the gene regulators phaR and fixK2 These results contribute to the understanding of the physiological conditions required for polyhydroxybutyrate biosynthesis. The interaction between these two main metabolic pathways is also reflected in the symbiotic phenotypes of soybeans inoculated with phaR mutants, which were more competitive for nodulation and enhanced dry matter production by the plants. Therefore, this knowledge may be applied to the development of superior strains to be used as improved inoculants for soybean crops.
Collapse
|
21
|
Yuan S, Li R, Chen S, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Yang Z, Qiu D, Zhang X, Zhou X. RNA-Seq Analysis of Differential Gene Expression Responding to Different Rhizobium Strains in Soybean (Glycine max) Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:721. [PMID: 27303417 PMCID: PMC4885319 DOI: 10.3389/fpls.2016.00721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 05/25/2023]
Abstract
The root nodule symbiosis (RNS) between legume plants and rhizobia is the most efficient and productive source of nitrogen fixation, and has critical importance in agriculture and mesology. Soybean (Glycine max), one of the most important legume crops in the world, establishes a nitrogen-fixing symbiosis with different types of rhizobia, and the efficiency of symbiotic nitrogen fixation in soybean greatly depends on the symbiotic host-specificity. Although, it has been reported that rhizobia use surface polysaccharides, secretion proteins of the type-three secretion systems and nod factors to modulate host range, the host control of nodulation specificity remains poorly understood. In this report, the soybean roots of two symbiotic systems (Bradyrhizobium japonicum strain 113-2-soybean and Sinorhizobium fredii USDA205-soybean)with notable different nodulation phenotypes and the control were studied at five different post-inoculation time points (0.5, 7-24 h, 5, 16, and 21 day) by RNA-seq (Quantification). The results of qPCR analysis of 11 randomly-selected genes agreed with transcriptional profile data for 136 out of 165 (82.42%) data points and quality assessment showed that the sequencing library is of quality and reliable. Three comparisons (control vs. 113-2, control vs. USDA205 and USDA205 vs. 113-2) were made and the differentially expressed genes (DEGs) between them were analyzed. The number of DEGs at 16 days post-inoculation (dpi) was the highest in the three comparisons, and most of the DEGs in USDA205 vs. 113-2 were found at 16 dpi and 21 dpi. 44 go function terms in USDA205 vs. 113-2 were analyzed to evaluate the potential functions of the DEGs, and 10 important KEGG pathway enrichment terms were analyzed in the three comparisons. Some important genes induced in response to different strains (113-2 and USDA205) were identified and analyzed, and these genes primarily encoded soybean resistance proteins, NF-related proteins, nodulins and immunity defense proteins, as well as proteins involving flavonoids/flavone/flavonol biosynthesis and plant-pathogen interaction. Besides, 189 candidate genes are largely expressed in roots and\or nodules. The DEGs uncovered in this study provides molecular candidates for better understanding the mechanisms of symbiotic host-specificity and explaining the different symbiotic effects between soybean roots inoculated with different strains (113-2 and USDA205).
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Shuilian Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Haifeng Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Limiao Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Qingnan Hao
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhihui Shan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhonglu Yang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Dezhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| |
Collapse
|
22
|
Ribeiro CW, Alloing G, Mandon K, Frendo P. Redox regulation of differentiation in symbiotic nitrogen fixation. Biochim Biophys Acta Gen Subj 2014; 1850:1469-78. [PMID: 25433163 DOI: 10.1016/j.bbagen.2014.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/30/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nitrogen-fixing symbiosis between Rhizobium bacteria and legumes leads to the formation of a new organ, the root nodule. The development of the nodule requires the differentiation of plant root cells to welcome the endosymbiotic bacterial partner. This development includes the formation of an efficient vascular tissue which allows metabolic exchanges between the root and the nodule, the formation of a barrier to oxygen diffusion necessary for the bacterial nitrogenase activity and the enlargement of cells in the infection zone to support the large bacterial population. Inside the plant cell, the bacteria differentiate into bacteroids which are able to reduce atmospheric nitrogen to ammonia needed for plant growth in exchange for carbon sources. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. SCOPE OF THE REVIEW Nodule functioning requires a tight regulation of the development of plant cells and bacteria. The importance of redox control in nodule development and N-fixation is discussed in this review. The involvement of reactive oxygen and nitrogen species and the importance of the antioxidant defense are analyzed. MAJOR CONCLUSIONS Plant differentiation and bacterial differentiation are controlled by reactive oxygen and nitrogen species, enzymes involved in the antioxidant defense and antioxidant compounds. GENERAL SIGNIFICANCE The establishment and functioning of nitrogen-fixing symbiosis involve a redox control important for both the plant-bacteria crosstalk and the consideration of environmental parameters. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Carolina Werner Ribeiro
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Geneviève Alloing
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Karine Mandon
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Pierre Frendo
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
23
|
Frendo P, Matamoros MA, Alloing G, Becana M. Thiol-based redox signaling in the nitrogen-fixing symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:376. [PMID: 24133498 PMCID: PMC3783977 DOI: 10.3389/fpls.2013.00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/03/2013] [Indexed: 05/04/2023]
Abstract
In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N 2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS) so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed us to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, that their spatio-temporally distribution is correlated with the corresponding (homo)glutathione synthetase activities, and that they are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume-rhizobial symbiosis.
Collapse
Affiliation(s)
- Pierre Frendo
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisNice, France
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Unité Mixte de Recherches 1355Nice, France
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Unité Mixte de Recherches 7254Nice, France
- Pierre Frendo and Manuel A. Matamoros have contributed equally to this review.
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Pierre Frendo and Manuel A. Matamoros have contributed equally to this review.
| | - Geneviève Alloing
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisNice, France
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Unité Mixte de Recherches 1355Nice, France
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Unité Mixte de Recherches 7254Nice, France
| | - Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- *Correspondence: Manuel Becana, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain e-mail:
| |
Collapse
|
24
|
Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R. Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 2013; 18:2202-19. [PMID: 23249379 DOI: 10.1089/ars.2012.5136] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE During the Legume-Rhizobium symbiosis, hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) appear to play an important signaling role in the establishment and the functioning of this interaction. Modifications of the levels of these reactive species in both partners impair either the development of the nodules (new root organs formed on the interaction) or their N(2)-fixing activity. RECENT ADVANCES NADPH oxidases (Noxs) have been recently described as major sources of H(2)O(2) production, via superoxide anion dismutation, during symbiosis. Nitrate reductases (NR) and electron transfer chains from both partners were found to significantly contribute to NO production in N(2)-fixing nodules. Both S-sulfenylated and S-nitrosylated proteins have been detected during early interaction and in functioning nodules, linking reactive oxygen species (ROS)/NO production to redox-based protein regulation. NO was also found to play a metabolic role in nodule energy metabolism. CRITICAL ISSUES H(2)O(2) may control the infection process and the subsequent bacterial differentiation into the symbiotic form. NO is required for an optimal establishment of symbiosis and appears to be a key player in nodule senescence. FUTURE DIRECTIONS A challenging question is to define more precisely when and where reactive species are generated and to develop adapted tools to detect their production in vivo. To investigate the role of Noxs and NRs in the production of H(2)O(2) and NO, respectively, the use of mutants under the control of organ-specific promoters will be of crucial interest. The balance between ROS and NO production appears to be a key point to understand the redox regulation of symbiosis.
Collapse
Affiliation(s)
- Alain Puppo
- Institut Sophia Agrobiotech, TGU INRA 1355-CNRS 7254, Université de Nice-Sophia Antipolis, Sophia-Antipolis, France.
| | | | | | | | | |
Collapse
|
25
|
Bonnet M, Kurz M, Mesa S, Briand C, Hennecke H, Grütter MG. The structure of Bradyrhizobium japonicum transcription factor FixK2 unveils sites of DNA binding and oxidation. J Biol Chem 2013; 288:14238-14246. [PMID: 23546876 DOI: 10.1074/jbc.m113.465484] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FixK2 is a regulatory protein that activates a large number of genes for the anoxic and microoxic, endosymbiotic, and nitrogen-fixing life styles of the α-proteobacterium Bradyrhizobium japonicum. FixK2 belongs to the cAMP receptor protein (CRP) superfamily. Although most CRP family members are coregulated by effector molecules, the activity of FixK2 is negatively controlled by oxidation of its single cysteine (Cys-183) located next to the DNA-binding domain and possibly also by proteolysis. Here, we report the three-dimensional x-ray structure of FixK2, a representative of the FixK subgroup of the CRP superfamily. Crystallization succeeded only when (i) an oxidation- and protease-insensitive protein variant (FixK2(C183S)-His6) was used in which Cys-183 was replaced with serine and the C terminus was fused with a hexahistidine tag and (ii) this protein was allowed to form a complex with a 30-mer double-stranded target DNA. The structure of the FixK2-DNA complex was solved at a resolution of 1.77 Å, at which the protein formed a homodimer. The precise protein-DNA contacts were identified, which led to an affirmation of the canonical target sequence, the so-called FixK2 box. The C terminus is surface-exposed, which might explain its sensitivity to specific cleavage and degradation. The oxidation-sensitive Cys-183 is also surface-exposed and in close proximity to DNA. Therefore, we propose a mechanism whereby the oxo acids generated after oxidation of the cysteine thiol cause an electrostatic repulsion, thus preventing specific DNA binding.
Collapse
Affiliation(s)
- Mariette Bonnet
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH), CH-8093 Zürich, Switzerland
| | - Mareike Kurz
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Socorro Mesa
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH), CH-8093 Zürich, Switzerland
| | - Christophe Briand
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH), CH-8093 Zürich, Switzerland
| | - Markus G Grütter
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|
26
|
Abstract
Symbiotic nitrogen fixation by rhizobia in legume root nodules injects approximately 40 million tonnes of nitrogen into agricultural systems each year. In exchange for reduced nitrogen from the bacteria, the plant provides rhizobia with reduced carbon and all the essential nutrients required for bacterial metabolism. Symbiotic nitrogen fixation requires exquisite integration of plant and bacterial metabolism. Central to this integration are transporters of both the plant and the rhizobia, which transfer elements and compounds across various plant membranes and the two bacterial membranes. Here we review current knowledge of legume and rhizobial transport and metabolism as they relate to symbiotic nitrogen fixation. Although all legume-rhizobia symbioses have many metabolic features in common, there are also interesting differences between them, which show that evolution has solved metabolic problems in different ways to achieve effective symbiosis in different systems.
Collapse
Affiliation(s)
- Michael Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | |
Collapse
|
27
|
Bonnet M, Stegmann M, Maglica Ž, Stiegeler E, Weber-Ban E, Hennecke H, Mesa S. FixK2, a key regulator inBradyrhizobium japonicum, is a substrate for the protease ClpAP in vitro. FEBS Lett 2012. [DOI: 10.1016/j.febslet.2012.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Spiro S. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors. Philos Trans R Soc Lond B Biol Sci 2012; 367:1213-25. [PMID: 22451107 DOI: 10.1098/rstb.2011.0309] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N(2)O). N(2)O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N(2)O as a substrate, which is the respiratory N(2)O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N(2)O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N(2)O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
29
|
Serventi F, Youard ZA, Murset V, Huwiler S, Bühler D, Richter M, Luchsinger R, Fischer HM, Brogioli R, Niederer M, Hennecke H. Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum. J Biol Chem 2012; 287:38812-23. [PMID: 23012364 DOI: 10.1074/jbc.m112.406173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microarray analysis of Bradyrhizobium japonicum grown under copper limitation uncovered five genes named pcuABCDE, which are co-transcribed and co-regulated as an operon. The predicted gene products are periplasmic proteins (PcuA, PcuC, and PcuD), a TonB-dependent outer membrane receptor (PcuB), and a cytoplasmic membrane-integral protein (PcuE). Homologs of PcuC and PcuE had been discovered in other bacteria, namely PCu(A)C and YcnJ, where they play a role in cytochrome oxidase biogenesis and copper transport, respectively. Deletion of the pcuABCDE operon led to a pleiotropic phenotype, including defects in the aa(3)-type cytochrome oxidase, symbiotic nitrogen fixation, and anoxic nitrate respiration. Complementation analyses revealed that, under our assay conditions, the tested functions depended only on the pcuC gene and not on pcuA, pcuB, pcuD, or pcuE. The B. japonicum genome harbors a second pcuC-like gene (blr7088), which, however, did not functionally replace the mutated pcuC. The PcuC protein was overexpressed in Escherichia coli, purified to homogeneity, and shown to bind Cu(I) with high affinity in a 1:1 stoichiometry. The replacement of His(79), Met(90), His(113), and Met(115) by alanine perturbed copper binding. This corroborates the previously purported role of this protein as a periplasmic copper chaperone for the formation of the Cu(A) center on the aa(3)-type cytochrome oxidase. In addition, we provide evidence that PcuC and the copper chaperone ScoI are important for the symbiotically essential, Cu(A)-free cbb(3)-type cytochrome oxidase specifically in endosymbiotic bacteroids of soybean root nodules, which could explain the symbiosis-defective phenotype of the pcuC and scoI mutants.
Collapse
Affiliation(s)
- Fabio Serventi
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Terpolilli JJ, Hood GA, Poole PS. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses? Adv Microb Physiol 2012; 60:325-89. [PMID: 22633062 DOI: 10.1016/b978-0-12-398264-3.00005-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biological nitrogen fixation is vital to nutrient cycling in the biosphere and is the major route by which atmospheric dinitrogen (N(2)) is reduced to ammonia. The largest single contribution to biological N(2) fixation is carried out by rhizobia, which include a large group of both alpha and beta-proteobacteria, almost exclusively in association with legumes. Rhizobia must compete to infect roots of legumes and initiate a signaling dialog with host plants that leads to nodule formation. The most common form of infection involves the growth of rhizobia down infection threads which are laid down by the host plant. Legumes form either indeterminate or determinate types of nodules, with these groups differing widely in nodule morphology and often in the developmental program by which rhizobia form N(2) fixing bacteroids. In particular, indeterminate legumes from the inverted repeat-lacking clade (IRLC) (e.g., peas, vetch, alfalfa, medics) produce a cocktail of antimicrobial peptides which cause endoreduplication of the bacterial genome and force rhizobia into a nongrowing state. Bacteroids often become dependent on the plant for provision of key cofactors, such as homocitrate needed for nitrogenase activity or for branched chain amino acids. This has led to the suggestion that bacteroids at least from the IRLC can be considered as ammoniaplasts, where they are effectively facultative plant organelles. A low O(2) tension is critical both to induction of genes needed for N(2) fixation and to the subsequent exchange of nutrient between plants and bacteroids. To achieve high rates of N(2) fixation, the legume host and Rhizobium must be closely matched not only for infection, but for optimum development, nutrient exchange, and N(2) fixation. In this review, we consider the multiple steps of selection and bacteroid development and how these alter the overall efficiency of N(2) fixation.
Collapse
Affiliation(s)
- Jason J Terpolilli
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | |
Collapse
|
31
|
Masloboeva N, Reutimann L, Stiefel P, Follador R, Leimer N, Hennecke H, Mesa S, Fischer HM. Reactive oxygen species-inducible ECF σ factors of Bradyrhizobium japonicum. PLoS One 2012; 7:e43421. [PMID: 22916258 PMCID: PMC3420878 DOI: 10.1371/journal.pone.0043421] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022] Open
Abstract
Extracytoplasmic function (ECF) σ factors control the transcription of genes involved in different cellular functions, such as stress responses, metal homeostasis, virulence-related traits, and cell envelope structure. The genome of Bradyrhizobium japonicum, the nitrogen-fixing soybean endosymbiont, encodes 17 putative ECF σ factors belonging to nine different ECF σ factor families. The genes for two of them, ecfQ (bll1028) and ecfF (blr3038), are highly induced in response to the reactive oxygen species hydrogen peroxide (H2O2) and singlet oxygen (1O2). The ecfF gene is followed by the predicted anti-σ factor gene osrA (blr3039). Mutants lacking EcfQ, EcfF plus OsrA, OsrA alone, or both σ factors plus OsrA were phenotypically characterized. While the symbiotic properties of all mutants were indistinguishable from the wild type, they showed increased sensitivity to singlet oxygen under free-living conditions. Possible target genes of EcfQ and EcfF were determined by microarray analyses, and candidate genes were compared with the H2O2-responsive regulon. These experiments disclosed that the two σ factors control rather small and, for the most part, distinct sets of genes, with about half of the genes representing 13% of the members of H2O2-responsive regulon. To get more insight into transcriptional regulation of both σ factors, the 5′ ends of ecfQ and ecfF mRNA were determined. The presence of conserved sequence motifs in the promoter region of ecfQ and genes encoding EcfQ-like σ factors in related α-proteobacteria suggests regulation via a yet unknown transcription factor. By contrast, we have evidence that ecfF is autoregulated by transcription from an EcfF-dependent consensus promoter, and its product is negatively regulated via protein-protein interaction with OsrA. Conserved cysteine residues 129 and 179 of OsrA are required for normal function of OsrA. Cysteine 179 is essential for release of EcfF from an EcfF-OsrA complex upon H2O2 stress while cysteine 129 is possibly needed for EcfF-OsrA interaction.
Collapse
Affiliation(s)
| | | | | | | | - Nadja Leimer
- ETH, Institute of Microbiology, Zurich, Switzerland
| | | | - Socorro Mesa
- ETH, Institute of Microbiology, Zurich, Switzerland
| | | |
Collapse
|
32
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
33
|
Jeon JM, Lee HI, Donati AJ, So JS, Emerich DW, Chang WS. Whole-genome expression profiling of Bradyrhizobium japonicum in response to hydrogen peroxide. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1472-81. [PMID: 21864047 DOI: 10.1094/mpmi-03-11-0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bradyrhizobium japonicum, a nitrogen-fixing bacterium in soil, establishes a symbiotic relationship with the leguminous soybean plant. Despite a mutualistic association between the two partners, the host plant produces an oxidative burst to protect itself from the invasion of rhizobial cells. We investigated the effects of H(2)O(2)-mediated oxidative stress on B. japonicum gene expression in both prolonged exposure (PE) and fulminant shock (FS) conditions. In total, 439 and 650 genes were differentially expressed for the PE and FS conditions, respectively, at a twofold cut-off with q < 0.05. A number of genes within the transport and binding proteins category were upregulated during PE and a majority of those genes are involved in ABC transporter systems. Many genes encoding ? factors, global stress response proteins, the FixK(2) transcription factor, and its regulatory targets were found to be upregulated in the FS condition. Surprisingly, catalase and peroxidase genes which are typically expressed in other bacteria under oxidative stress were not differentially expressed in either condition. The isocitrate lyase gene (aceA) was induced by fulminant H(2)O(2) shock, as was evident at both the transcriptional and translational levels. Interestingly, there was no significant effect of H(2)O(2) on exopolysaccharide production at the given experimental conditions.
Collapse
Affiliation(s)
- Jeong-Min Jeon
- Department of Biology, University of Texas, Arlington, TX, USA
| | | | | | | | | | | |
Collapse
|
34
|
Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, Gyaneshwar P. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:451-7. [PMID: 21190435 DOI: 10.1094/mpmi-08-10-0184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Strains of Bradyrhizobium spp. form nitrogen-fixing symbioses with many legumes, including soybean. Although inorganic sulfur is preferred by bacteria in laboratory conditions, sulfur in agricultural soil is mainly present as sulfonates and sulfur esters. Here, we show that Bradyrhizobium japonicum and B. elkanii strains were able to utilize sulfate, cysteine, sulfonates, and sulfur-ester compounds as sole sulfur sources for growth. Expression and functional analysis revealed that two sets of gene clusters (bll6449 to bll6455 or bll7007 to bll7011) are important for utilization of sulfonates sulfur source. The bll6451 or bll7010 genes are also expressed in the symbiotic nodules. However, B. japonicum mutants defective in either of the sulfonate utilization operons were not affected for symbiosis with soybean, indicating the functional redundancy or availability of other sulfur sources in planta. In accordance, B. japonicum bacteroids possessed significant sulfatase activity. These results indicate that strains of Bradyrhizobium spp. likely use organosulfur compounds for growth and survival in soils, as well as for legume nodulation and nitrogen fixation.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Department of Soil Water and Climate, University of Minnesota, St. Paul, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Dufour YS, Kiley PJ, Donohue TJ. Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet 2010; 6:e1001027. [PMID: 20661434 PMCID: PMC2908626 DOI: 10.1371/journal.pgen.1001027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022] Open
Abstract
The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across alpha-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual alpha-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 alpha-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the alpha-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks.
Collapse
Affiliation(s)
- Yann S. Dufour
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- BACTER Institute, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
36
|
Reutimann L, Mesa S, Hennecke H. Autoregulation of fixK 2 gene expression in Bradyrhizobium japonicum. Mol Genet Genomics 2010; 284:25-32. [DOI: 10.1007/s00438-010-0547-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/19/2010] [Indexed: 11/27/2022]
|