1
|
Douw A, Perez-Gil J, Schenk G, Vickers CE. Iron-Sulfur Cluster Enzymes of the Methylerythritol Phosphate Pathway: IspG and IspH. Biochemistry 2025. [PMID: 40432238 DOI: 10.1021/acs.biochem.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Iron-sulfur cluster (Fe-S) enzymes catalyze important biological processes in cellular metabolism. They evolved in the preoxic world and are oxygen sensitive; biology has therefore evolved a range of mechanisms to protect them from oxidative damage. The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis has two Fe-S enzymes: IspG and IspH. Both enzymes utilize 3:1 site-differentiated [4Fe-4S] clusters to perform rather unique dehydroxylation reactions. They may play roles in facilitating oxidative stress sensing and signaling. While bacterial IspG and IspH are well characterized, plant IspG and IspH are not. A particularly fascinating aspect of these enzymes is their ability to balance both their biosynthetic catalytic roles and their presumptive signaling roles in metabolism. Here we review current knowledge about the mechanism, structures, and function of IspG and IspH, and we propose future research directions to help answer the many remaining questions about them. We also provide a primer for investigators keen to start working with these enzymes, as they share with the Fe-S family a set of unique handling and experimental challenges.
Collapse
Affiliation(s)
- Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, and School of Environment and Biological Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jordi Perez-Gil
- ARC Centre of Excellence in Synthetic Biology, Australian Genome Foundry, and School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, and School of Environment and Biological Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- BioBuilt Solutions, Brisbane, Queensland4075, Australia
| |
Collapse
|
2
|
Bizzarri L, Steinbrunn D, Quennesson T, Lacour A, Bianchino GI, Bravo P, Chaignon P, Lohse J, Mäser P, Seemann M, Calenbergh SV, Hirsch AKH, Hahne H. Studying Target-Engagement of Anti-Infectives by Solvent-Induced Protein Precipitation and Quantitative Mass Spectrometry. ACS Infect Dis 2024; 10:4087-4102. [PMID: 39566904 DOI: 10.1021/acsinfecdis.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to global health. The rapid emergence of resistance contrasts with the slow pace of antimicrobial development, emphasizing the urgent need for innovative drug discovery approaches. This study addresses a critical bottleneck in early drug development by introducing integral solvent-induced protein precipitation (iSPP) to rapidly assess the target-engagement of lead compounds in extracts of pathogenic microorganisms under close-to-physiological conditions. iSPP measures the change in protein stability against solvent-induced precipitation in the presence of ligands. The iSPP method for bacteria builds upon established SPP procedures and features optimized denaturation gradients and minimized sample input amounts. The effectiveness of the iSPP workflow was initially demonstrated through a multidrug target-engagement study. Using quantitative mass spectrometry (LC-MS/MS), we successfully identified known drug targets of seven different antibiotics in cell extracts of four AMR-related pathogens: the three Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and the Gram-positive bacterium Staphylococcus aureus. The iSPP method was ultimately applied to demonstrate target-engagement of compounds derived from target-based drug discovery. We employed five small molecules targeting three enzymes in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway─a promising focus for anti-infective drug development. The study showcases iSPP adaptability and efficiency in identifying anti-infective drug targets, advancing early-stage drug discovery against AMR.
Collapse
Affiliation(s)
- Lorenzo Bizzarri
- OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
| | - Dominik Steinbrunn
- OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany
- TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Center for Functional Protein Assemblies (CPA), Garching bei München D-85748, Germany
| | - Thibaut Quennesson
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, Gent B-9000, Belgium
| | - Antoine Lacour
- Department of Pharmacy, Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
- Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
| | - Gabriella Ines Bianchino
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg, UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, Strasbourg F-67070, France
| | - Patricia Bravo
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, Allschwil CH-4123, Switzerland
- University of Basel, Petersgraben 1, Basel CH-4001, Switzerland
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg, UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, Strasbourg F-67070, France
| | - Jonas Lohse
- OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, Allschwil CH-4123, Switzerland
- University of Basel, Petersgraben 1, Basel CH-4001, Switzerland
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg, UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, Strasbourg F-67070, France
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, Gent B-9000, Belgium
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
- Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
| | - Hannes Hahne
- OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany
| |
Collapse
|
3
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
4
|
Ghebreamlak S, Stoian SA, Lees NS, Cronin B, Smith F, Ross MO, Telser J, Hoffman BM, Duin EC. The Active-Site [4Fe-4S] Cluster in the Isoprenoid Biosynthesis Enzyme IspH Adopts Unexpected Redox States during Ligand Binding and Catalysis. J Am Chem Soc 2024; 146:3926-3942. [PMID: 38291562 DOI: 10.1021/jacs.3c11674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase, or IspH (formerly known as LytB), catalyzes the terminal step of the bacterial methylerythritol phosphate (MEP) pathway for isoprene synthesis. This step converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into one of two possible isomeric products, either isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). This reaction involves the removal of the C4 hydroxyl group of HMBPP and addition of two electrons. IspH contains a [4Fe-4S] cluster in its active site, and multiple cluster-based paramagnetic species of uncertain redox and ligation states can be detected after incubation with reductant, addition of a ligand, or during catalysis. To characterize the clusters in these species, 57Fe-labeled samples of IspH were prepared and studied by electron paramagnetic resonance (EPR), 57Fe electron-nuclear double resonance (ENDOR), and Mössbauer spectroscopies. Notably, this ENDOR study provides a rarely reported, complete determination of the 57Fe hyperfine tensors for all four Fe ions in a [4Fe-4S] cluster. The resting state of the enzyme (Ox) has a diamagnetic [4Fe-4S]2+ cluster. Reduction generates [4Fe-4S]+ (Red) with both S = 1/2 and S = 3/2 spin ground states. When the reduced enzyme is incubated with substrate, a transient paramagnetic reaction intermediate is detected (Int) which is thought to contain a cluster-bound substrate-derived species. The EPR properties of Int are indicative of a 3+ iron-sulfur cluster oxidation state, and the Mössbauer spectra presented here confirm this. Incubation of reduced enzyme with the product IPP induced yet another paramagnetic [4Fe-4S]+ species (Red+P) with S = 1/2. However, the g-tensor of this state is commonly associated with a 3+ oxidation state, while Mössbauer parameters show features typical for 2+ clusters. Implications of these complicated results are discussed.
Collapse
Affiliation(s)
- Selamawit Ghebreamlak
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Sebastian A Stoian
- Department of Chemistry, University of Idaho, 875 Perimeter Drive, MS 2343 Moscow, Idaho 83844, United States
| | - Nicholas S Lees
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bryan Cronin
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Forrest Smith
- Department of Drug Discovery & Development, Auburn University, 4306 Walker Building, Auburn, Alabama 36849, United States
| | - Matthew O Ross
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 S. Michigan Avenue, Chicago, Illinois 60605, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Sun K, Mehari TG, Fang H, Han J, Huo X, Zhang J, Chen Y, Wang D, Zhuang Z, Ditta A, Khan MK, Zhang J, Wang K, Wang B. Transcriptome, proteome and functional characterization reveals salt stress tolerance mechanisms in upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1092616. [PMID: 36875590 PMCID: PMC9978342 DOI: 10.3389/fpls.2023.1092616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 06/05/2023]
Abstract
Uncovering the underlying mechanism of salt tolerance is important to breed cotton varieties with improved salt tolerance. In this study, transcriptome and proteome sequencing were performed on upland cotton (Gossypium hirsutum L.) variety under salt stress, and integrated analysis was carried out to exploit salt-tolerance genes in cotton. Enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on differentially expressed genes (DEGs) obtained from transcriptome and proteome sequencing. GO enrichment was carried out mainly in the cell membrane, organelle, cellular process, metabolic process, and stress response. The expression of 23,981 genes was changed in physiological and biochemical processes such as cell metabolism. The metabolic pathways obtained by KEGG enrichment included glycerolipid metabolism, sesquiterpene and triterpenoid biosynthesis, flavonoid production, and plant hormone signal transduction. Combined transcriptome and proteome analysis to screen and annotate DEGs yielded 24 candidate genes with significant differential expression. The quantitative real-time polymerase chain reaction (qRT-PCR) validation of the candidate genes showed that two genes (Gh_D11G0978 and Gh_D10G0907) responded significantly to the induction of NaCl, and these two genes were further selected as target genes for gene cloning and functional validation through virus-induced gene silencing (VIGS). The silenced plants exhibited early wilting with a greater degree of salt damage under salt treatment. Moreover, they showed higher levels of reactive oxygen species (ROS) than the control. Therefore, we can infer that these two genes have a pivotal role in the response to salt stress in upland cotton. The findings in this research will facilitate the breeding of salt tolerance cotton varieties that can be grown on saline alkaline lands.
Collapse
Affiliation(s)
- Kangtai Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Xuehan Huo
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongmei Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Zhimin Zhuang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad K.R. Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Brown AC, Suess DLM. Valence Localization in Alkyne and Alkene Adducts of Synthetic [Fe 4S 4] + Clusters. Inorg Chem 2023; 62:1911-1918. [PMID: 35704768 PMCID: PMC9751231 DOI: 10.1021/acs.inorgchem.2c01353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reported herein are alkyne and alkene adducts of synthetic [Fe4S4]+ clusters that model intermediates and inhibitor-bound states in enzymes involved in isoprenoid biosynthesis. Treatment of the N-heterocyclic carbene-ligated cluster [(IMes)3Fe4S4(OEt2)][BArF4] (IMes = 1,3-dimesitylimidazol-2-ylidene; [BArF4]- = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) with phenylacetylene (PhCCH) or cis-cyclooctene (COE) results in displacement of the Et2O ligand to yield the corresponding π complexes, [(IMes)3Fe4S4(PhCCH)][BArF4] and [(IMes)3Fe4S4(COE)][BArF4]. EPR spectroscopic analysis demonstrates that both clusters are doublets with giso > 2 and thus are spectroscopically faithful models of the analogous species characterized in the isoprenoid biosynthetic enzymes IspG and IspH. Structural and Mössbauer spectroscopic analysis reveals that both complexes are best described as [Fe4S4]+ clusters in which the unique Fe site engages in modest back-bonding to the π-acidic ligand. Paramagnetic NMR studies show that, even at room temperature, the alkyne/alkene-bound Fe centers harbor minority spin and therefore adopt an Fe2+ valence. We propose that such valence localization could likewise occur in Fe-S enzymes that interact with π-acidic molecules.
Collapse
|
7
|
Jansing M, Mielenbrink S, Rosenbach H, Metzger S, Span I. Maturation strategy influences expression levels and cofactor occupancy in Fe-S proteins. J Biol Inorg Chem 2023; 28:187-204. [PMID: 36527507 PMCID: PMC9981529 DOI: 10.1007/s00775-022-01972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
Iron-sulfur clusters are ubiquitous cofactors required for fundamental biological processes. Structural and spectroscopic analysis of Fe-S proteins is often limited by low cluster occupancy in recombinantly produced proteins. In this work, we report a systematic comparison of different maturation strategies for three well-established [4Fe-4S] proteins. Aconitase B, HMBPP reductase (IspH), and quinolinate synthase (NadA) were used as model proteins as they have previously been characterized. The protein production strategies include expression of the gene of interest in BL21(DE3) cells, maturation of the apo protein using chemical or semi-enzymatic reconstitution, co-expression with two different plasmids containing the iron-sulfur cluster (isc) or sulfur formation (suf) operon, a cell strain lacking IscR, the transcriptional regulator of the ISC machinery, and an engineered "SufFeScient" derivative of BL21(DE3). Our results show that co-expression of a Fe-S biogenesis pathway influences the protein yield and the cluster content of the proteins. The presence of the Fe-S cluster is contributing to correct folding and structural stability of the proteins. In vivo maturation reduces the formation of Fe-S aggregates, which occur frequently when performing chemical reconstitution. Furthermore, we show that the in vivo strategies can be extended to the radical SAM protein ThnB, which was previously only maturated by chemical reconstitution. Our results shed light on the differences of in vitro and in vivo Fe-S cluster maturation and points out the pitfalls of chemical reconstitution.
Collapse
Affiliation(s)
- Melissa Jansing
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Steffen Mielenbrink
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sabine Metzger
- MS-Platform Biocenter, Cluster of Excellence on Plant Science (CEPLAS), University of Cologne, Zülpicher Strasse 47B, 50674 Cologne, Germany
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany. .,Bioanorganische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058, Erlangen, Germany.
| |
Collapse
|
8
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Huang S, Xue Y, Ma Y, Zhou C. Microbial ( E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate reductase (IspH) and its biotechnological potential: A mini review. Front Bioeng Biotechnol 2022; 10:1057938. [PMID: 36524053 PMCID: PMC9745026 DOI: 10.3389/fbioe.2022.1057938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 05/07/2025] Open
Abstract
(E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) reductase (IspH) is a [4Fe-4S] cluster-containing enzyme, involved in isoprenoid biosynthesis as the final enzyme of the methylerythritol phosphate (MEP) pathway found in many bacteria and malaria parasites. In recent years, many studies have revealed that isoprenoid compounds are an alternative to petroleum-derived fuels. Thus, ecofriendly methods harnessing the methylerythritol phosphate pathway in microbes to synthesize isoprenoid compounds and IspH itself have received notable attention from researchers. In addition to its applications in the field of biosynthesis, IspH is considered to be an attractive drug target for infectious diseases such as malaria and tuberculosis due to its survivability in most pathogenic bacterium and its absence in humans. In this mini-review, we summarize previous reports that have systematically illuminated the fundamental and structural properties, substrate binding and catalysis, proposed catalytic mechanism, and novel catalytic activities of IspH. Potential bioengineering and biotechnological applications of IspH are also discussed.
Collapse
Affiliation(s)
- Shiyong Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Yokoyama K, Li D, Pang H. Resolving the Multidecade-Long Mystery in MoaA Radical SAM Enzyme Reveals New Opportunities to Tackle Human Health Problems. ACS BIO & MED CHEM AU 2022; 2:94-108. [PMID: 35480226 PMCID: PMC9026282 DOI: 10.1021/acsbiomedchemau.1c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 01/31/2023]
Abstract
![]()
MoaA is one of the
most conserved radical S-adenosyl-l-methionine
(SAM) enzymes, and is found in most organisms in
all three kingdoms of life. MoaA contributes to the biosynthesis of
molybdenum cofactor (Moco), a redox enzyme cofactor used in various
enzymes such as purine and sulfur catabolism in humans and anaerobic
respiration in bacteria. Unlike many other cofactors, in most organisms,
Moco cannot be taken up as a nutrient and requires de novo biosynthesis.
Consequently, Moco biosynthesis has been linked to several human health
problems, such as human Moco deficiency disease and bacterial infections.
Despite
the medical and biological significance, the biosynthetic mechanism
of Moco’s characteristic pyranopterin structure remained elusive
for more than two decades. This transformation requires the actions
of the MoaA radical SAM enzyme and another protein, MoaC. Recently,
MoaA and MoaC functions were elucidated as a radical SAM GTP 3′,8-cyclase
and cyclic pyranopterin monophosphate (cPMP) synthase, respectively.
This finding resolved the key mystery in the field and revealed new
opportunities in studying the enzymology and chemical biology of MoaA
and MoaC to elucidate novel mechanisms in enzyme catalysis or to address
unsolved questions in Moco-related human health problems. Here, we
summarize the recent progress in the functional and mechanistic studies
of MoaA and MoaC and discuss the field’s future directions.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Di Li
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Haoran Pang
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
11
|
Lee YJ, Kim JK, Baek SA, Yu JS, You MK, Ha SH. Differential Regulation of an OsIspH1, the Functional 4-Hydroxy-3-Methylbut-2-Enyl Diphosphate Reductase, for Photosynthetic Pigment Biosynthesis in Rice Leaves and Seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:861036. [PMID: 35498655 PMCID: PMC9044040 DOI: 10.3389/fpls.2022.861036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/10/2022] [Indexed: 06/02/2023]
Abstract
The methylerythritol 4-phosphate (MEP) pathway is responsible for providing common precursors for the biosynthesis of diverse plastidial terpenoids, including chlorophylls, carotenoids, and phytohormones, in plants. In rice (Oryza sativa), the last-step genes encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase [HDR/isoprenoid synthesis H (IspH)] have been annotated in two genes (OsIspH1 and OsIspH2) in the rice genome. The spatial transcript levels indicated that OsIspH1 is highly expressed in all tissues at different developmental stages, whereas OsIspH2 is barely expressed due to an early stop in exon 1 caused by splicing error. OsIspH1 localized into plastids and osisph1, a T-DNA inserted knockout mutant, showed an albino phenotype, indicating that OsIspH1 is the only functional gene. To elucidate the role of OsIspH1 in the MEP pathway, we created two single (H145P and K407R) and double (H145P/K407R) mutations and performed complementation tests in two hdr mutants, including Escherichia coli DLYT1 strains and osisph1 rice plants. The results showed that every single mutation retained HDR function, but a double mutation lost it, proposing that the complementary relations of two residues might be important for enzyme activity but not each residue. When overexpressed in rice plants, the double-mutated gene, OsIspH1MUT , reduced chlorophyll and carotenoid biosynthesis in the leaves and seeds. It confirmed the crucial role of OsIspH1 in plastidic terpenoid biosynthesis, revealing organ-specific differential regulation of OsIspH1 in rice plants.
Collapse
Affiliation(s)
- Yeo Jin Lee
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Bio-Resource and Environmental Center, Incheon National University, Incheon, South Korea
| | - Seung-A Baek
- Division of Life Sciences, Bio-Resource and Environmental Center, Incheon National University, Incheon, South Korea
| | - Ji-Su Yu
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Min Kyoung You
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
12
|
Jobelius H, Bianchino GI, Borel F, Chaignon P, Seemann M. The Reductive Dehydroxylation Catalyzed by IspH, a Source of Inspiration for the Development of Novel Anti-Infectives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030708. [PMID: 35163971 PMCID: PMC8837944 DOI: 10.3390/molecules27030708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The non-mevalonate or also called MEP pathway is an essential route for the biosynthesis of isoprenoid precursors in most bacteria and in microorganisms belonging to the Apicomplexa phylum, such as the parasite responsible for malaria. The absence of this pathway in mammalians makes it an interesting target for the discovery of novel anti-infectives. As last enzyme of this pathway, IspH is an oxygen sensitive [4Fe-4S] metalloenzyme that catalyzes 2H+/2e− reductions and a water elimination by involving non-conventional bioinorganic and bioorganometallic intermediates. After a detailed description of the discovery of the [4Fe-4S] cluster of IspH, this review focuses on the IspH mechanism discussing the results that have been obtained in the last decades using an approach combining chemistry, enzymology, crystallography, spectroscopies, and docking calculations. Considering the interesting druggability of this enzyme, a section about the inhibitors of IspH discovered up to now is reported as well. The presented results constitute a useful and rational help to inaugurate the design and development of new potential chemotherapeutics against pathogenic organisms.
Collapse
Affiliation(s)
- Hannah Jobelius
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, rue Blaise Pascal, 67070 Strasbourg, France; (H.J.); (G.I.B.); (P.C.)
| | - Gabriella Ines Bianchino
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, rue Blaise Pascal, 67070 Strasbourg, France; (H.J.); (G.I.B.); (P.C.)
| | - Franck Borel
- Institut de Biologie Structurale, Université Grenoble Alpes/CEA/CNRS, 38000 Grenoble, France;
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, rue Blaise Pascal, 67070 Strasbourg, France; (H.J.); (G.I.B.); (P.C.)
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, rue Blaise Pascal, 67070 Strasbourg, France; (H.J.); (G.I.B.); (P.C.)
- Correspondence:
| |
Collapse
|
13
|
Henkel S, Frohnecke N, Maus D, McConville MJ, Laue M, Blume M, Seeber F. Toxoplasma gondii apicoplast-resident ferredoxin is an essential electron transfer protein for the MEP isoprenoid-biosynthetic pathway. J Biol Chem 2021; 298:101468. [PMID: 34896149 PMCID: PMC8717598 DOI: 10.1016/j.jbc.2021.101468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-pyrophosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.
Collapse
Affiliation(s)
- Stephanie Henkel
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Nora Frohnecke
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Deborah Maus
- Metabolism of Microbial Pathogens (NG2), Robert Koch Institute, Berlin, Germany
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Martin Blume
- Metabolism of Microbial Pathogens (NG2), Robert Koch Institute, Berlin, Germany; Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Frank Seeber
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
14
|
Hirscher NA, Arnett CH, Oyala PH, Agapie T. Characterization of Cr-Hydrocarbyl Species via Pulse EPR in the Study of Ethylene Tetramerization Catalysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathanael A. Hirscher
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Charles H. Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Chaignon P, Petit BE, Vincent B, Allouche L, Seemann M. Methylerythritol Phosphate Pathway: Enzymatic Evidence for a Rotation in the LytB/IspH-Catalyzed Reaction. Chemistry 2020; 26:1032-1036. [PMID: 31756006 DOI: 10.1002/chem.201904676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 11/10/2022]
Abstract
IspH/LytB, an oxygen-sensitive [4Fe-4S] enzyme, catalyzes the last step of the methylerythritol phosphate (MEP) pathway, a target for the development of new antimicrobial agents. This metalloenzyme converts (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Here, the synthesis of (S)-[4-2 H1 ]HMBPP and (R)-[4-2 H1 ]HMBPP is reported together with a detailed NMR analysis of the products formed after their respective incubation with E. coli IspH/LytB in the presence of the biological reduction system used by E. coli to reduce the [4Fe-4S] center. (S)-[4-2 H1 ]HMBPP was converted into [4-2 H1 ]DMAPP and (E)-[4-2 H1 ]IPP, whereas (R)-[4-2 H1 ]HMBPP yielded [4-2 H1 ]DMAPP and (Z)-[4-2 H1 ]IPP, hence providing the direct enzymatic evidence that the mechanism catalyzed by IspH/LytB involves a rotation of the CH2 OH group of the substrate to display it away from the [4Fe-4S].
Collapse
Affiliation(s)
- Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg, CNRS, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Benoît Eric Petit
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg, CNRS, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Bruno Vincent
- Service de R.M.N., Fédération de Chimie Le Bel FR2010, Université de Strasbourg, CNRS, 1, rue Blaise Pascal, 67008, Strasbourg, France
| | - Lionel Allouche
- Service de R.M.N., Fédération de Chimie Le Bel FR2010, Université de Strasbourg, CNRS, 1, rue Blaise Pascal, 67008, Strasbourg, France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg, CNRS, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
16
|
Affiliation(s)
- Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; Rheinische Friedrich Wilhelms University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
17
|
Cheng Q, Tong Y, Wang Z, Su P, Gao W, Huang L. Molecular cloning and functional identification of a cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase from Tripterygium wilfordii. Acta Pharm Sin B 2017; 7:208-214. [PMID: 28303228 PMCID: PMC5343154 DOI: 10.1016/j.apsb.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/20/2016] [Accepted: 12/12/2016] [Indexed: 01/27/2023] Open
Abstract
The 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the last step key enzyme of the methylerythritol phosphate (MEP) pathway, synthesizing isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which is important for regulation of isoprenoid biosynthesis. Here the full-length cDNA of HDR, designated TwHDR (GenBank Accession No. KJ933412.1), was isolated from Tripterygium wilfordii for the first time. TwHDR has an open reading frame (ORF) of 1386 bp encoding 461 amino acids. TwHDR exhibits high homology with HDRs of other plants, with an N-terminal conserved domain and three conserved cysteine residues. TwHDR cDNA was cloned into an expression vector and transformed into an Escherichia coli hdr mutant. Since loss-of-function E.coli hdr mutant is lethal, the result showed that transformation of TwHDR cDNA rescued the E.coli hdr mutant. This complementation assay suggests that the TwHDR cDNA encodes a functional HDR enzyme. The expression of TwHDR was induced by methyl-jasmonate (MJ) in T. wilfordii suspension cells. The expression of TwHDR reached the highest level after 1 h of MJ treatment. These results indicate that we have identified a functional TwHDR enzyme, which may play a pivotal role in the biosynthesis of diterpenoid triptolide in T. wilfordii.
Collapse
Affiliation(s)
- Qiqing Cheng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yuru Tong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zihao Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ping Su
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Corresponding author. Tel.: +86 10 83911671; Fex: +86 10 83911627 (Wei Gao).
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding author. Tel.: +86 10 83911671; Fex: +86 10 83911627 (Wei Gao).
| |
Collapse
|
18
|
Dong M, Horitani M, Dzikovski B, Pandelia ME, Krebs C, Freed JH, Hoffman BM, Lin H. Organometallic Complex Formed by an Unconventional Radical S-Adenosylmethionine Enzyme. J Am Chem Soc 2016; 138:9755-8. [PMID: 27465315 DOI: 10.1021/jacs.6b04155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pyrococcus horikoshii Dph2 (PhDph2) is an unusual radical S-adenosylmethionine (SAM) enzyme involved in the first step of diphthamide biosynthesis. It catalyzes the reaction by cleaving SAM to generate a 3-amino-3-carboxypropyl (ACP) radical. To probe the reaction mechanism, we synthesized a SAM analogue (SAMCA), in which the ACP group of SAM is replaced with a 3-carboxyallyl group. SAMCA is cleaved by PhDph2, yielding a paramagnetic (S = 1/2) species, which is assigned to a complex formed between the reaction product, α-sulfinyl-3-butenoic acid, and the [4Fe-4S] cluster. Electron-nuclear double resonance (ENDOR) measurements with (13)C and (2)H isotopically labeled SAMCA support a π-complex between the C═C double bond of α-sulfinyl-3-butenoic acid and the unique iron of the [4Fe-4S] cluster. This is the first example of a radical SAM-related [4Fe-4S](+) cluster forming an organometallic complex with an alkene, shedding additional light on the mechanism of PhDph2 and expanding our current notions for the reactivity of [4Fe-4S] clusters in radical SAM enzymes.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Masaki Horitani
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02453, United States
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States.,Howard Hughes Medical Institute, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Abstract
IspH, (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate reductase, is an essential enzyme in isoprenoid biosynthesis and an important drug/herbicide target. Using X-ray crystallographic, bioinformatics, mutagenesis/kinetics/stability, and electron paramagnetic resonance (EPR) results, we show that organisms from different environments ultilize one of four main IspH classes. The classes are based on the arrangement of the aromatic residues near the 4Fe-4S cluster and the presence or absence of N- and C-terminal extensions. Class A enzymes are found primarily in anaerobic and microaerophilic bacteria. Class B enzymes are found in aerobic bacteria. Class C enzymes are found in cyanobacteria and plants. Class D enzymes are found in apicomplexan parasites. Using mutagenesis, we show that the cluster-associated aromatic groups in class A and class B IspHs enhance cluster oxidative stability. Y198A, F302A, and a C-terminal truncation mutant of the class B (Escherichia coli) IspH have catalytic activity lower than that of the wild-type protein when using methyl viologen as the electron donor, but higher activity with dithionite as the electron donor, due to ready access of the small reductant to the cluster, consistent with their increased oxygen and H2O2 sensitivity. F302A has the largest effect on the reaction rates, and EPR studies indicate this residue affects Fe-S cluster structure. Similar effects on cluster stability are seen with class A (F14A and Y98A) mutants; however, effects on ET rates are smaller, and there are no differences between the EPR spectra of mutant and wild-type proteins. Overall, the results are of general interest because they show, for the first time, that there are multiple IspH classes that have evolved to allow organisms to survive in diverse oxidative-stress environments.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Eric Oldfield
- Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Ge D, Xue Y, Ma Y. Two unexpected promiscuous activities of the iron-sulfur protein IspH in production of isoprene and isoamylene. Microb Cell Fact 2016; 15:79. [PMID: 27169371 PMCID: PMC4864966 DOI: 10.1186/s12934-016-0476-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/27/2016] [Indexed: 12/02/2022] Open
Abstract
Background Bacillus species, possessing the methylerythritol phosphate (MEP) pathway for the synthesis of isoprenoid feedstock, are the highest producers of isoprene among bacteria; however, the enzyme responsible for isoprene synthesis has not been identified. The iron–sulfur protein IspH is the final enzyme of the MEP pathway and catalyses the reductive dehydration of (E)-4-hydroxy-3-methyl-2-butenyl diphosphate (HMBPP) to form isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP). In this study, we demonstrated two unexpected promiscuous activities of IspH from alkaliphilic Bacillus sp. N16-5, which can produce high levels of isoprene. Results Bacillus sp. N16-5 IspH could catalyse the formation of isoprene from HMBPP and the conversion of DMAPP into a mixture of 2-methyl-2-butene and 3-methyl-1-butene. Both reactions require an electron transfer system, such as that used for HMBPP dehydration. Isoprene and isoamylene synthesis in Bacillus sp. N16-5 was investigated and the reaction system was reconstituted in vitro, including IspH, ferredoxin and ferredoxin-NADP+-reductase proteins and NADPH. The roles of specific IspH protein residues were also investigated by site-directed mutagenesis experiments; two variants (H131N and E133Q) were found to have lost the HMBPP reductase activity but could still catalyse the formation of isoprene. Overexpression of IspH H131N in Bacillus sp. N16-5 resulted in a twofold enhancement of isoprene production, and the yield of isoprene from the strain expressing E133Q was increased 300 % compared with the wild-type strain. Conclusions IspH from Bacillus sp. N16-5 is a promiscuous enzyme that can catalyse formation of isoprene and isoamylene. This enzyme, especially the H131N and E133Q variants, could be used for the production of isoprene from HMBPP. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0476-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deyong Ge
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,College of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
21
|
Guan Z, Xue D, Abdallah II, Dijkshoorn L, Setroikromo R, Lv G, Quax WJ. Metabolic engineering of Bacillus subtilis for terpenoid production. Appl Microbiol Biotechnol 2015; 99:9395-406. [PMID: 26373726 PMCID: PMC4628092 DOI: 10.1007/s00253-015-6950-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 11/04/2022]
Abstract
Terpenoids are the largest group of small-molecule natural products, with more than 60,000 compounds made from isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). As the most diverse group of small-molecule natural products, terpenoids play an important role in the pharmaceutical, food, and cosmetic industries. For decades, Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) were extensively studied to biosynthesize terpenoids, because they are both fully amenable to genetic modifications and have vast molecular resources. On the other hand, our literature survey (20 years) revealed that terpenoids are naturally more widespread in Bacillales. In the mid-1990s, an inherent methylerythritol phosphate (MEP) pathway was discovered in Bacillus subtilis (B. subtilis). Since B. subtilis is a generally recognized as safe (GRAS) organism and has long been used for the industrial production of proteins, attempts to biosynthesize terpenoids in this bacterium have aroused much interest in the scientific community. This review discusses metabolic engineering of B. subtilis for terpenoid production, and encountered challenges will be discussed. We will summarize some major advances and outline future directions for exploiting the potential of B. subtilis as a desired "cell factory" to produce terpenoids.
Collapse
Affiliation(s)
- Zheng Guan
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Building 3215, room 917, 9713 AV, Groningen, The Netherlands
- Institute of Materia Medica, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dan Xue
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Building 3215, room 917, 9713 AV, Groningen, The Netherlands
| | - Ingy I Abdallah
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Building 3215, room 917, 9713 AV, Groningen, The Netherlands
| | - Linda Dijkshoorn
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Building 3215, room 917, 9713 AV, Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Building 3215, room 917, 9713 AV, Groningen, The Netherlands
| | - Guiyuan Lv
- Institute of Materia Medica, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wim J Quax
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Building 3215, room 917, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
22
|
Abdel-Azeim S, Jedidi A, Eppinger J, Cavallo L. Mechanistic insights into the reductive dehydroxylation pathway for the biosynthesis of isoprenoids promoted by the IspH enzyme. Chem Sci 2015; 6:5643-5651. [PMID: 28757951 PMCID: PMC5511988 DOI: 10.1039/c5sc01693b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022] Open
Abstract
Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), promoted by the IspH enzyme. Our results support the viability of the bio-organometallic pathway through rotation of the OH group of HMBPP away from the [Fe4S4] cluster at the core of the catalytic site, to become engaged in a H-bond with Glu126. This rotation is synchronous with π-coordination of the C2[double bond, length as m-dash]C3 double bond of HMBPP to the apical Fe atom of the [Fe4S4] cluster. Dehydroxylation of HMBPP is triggered by a proton transfer from Glu126 to the OH group of HMBPP. The reaction pathway is completed by competitive proton transfer from the terminal phosphate group to the C2 or C4 atom of HMBPP.
Collapse
Affiliation(s)
- Safwat Abdel-Azeim
- King Abdullah University of Science and Technology , KAUST Catalysis Research Center , Physical Sciences and Engineering Division , Thuwal 23955-6900 , Saudi Arabia .
| | - Abdesslem Jedidi
- King Abdullah University of Science and Technology , KAUST Catalysis Research Center , Physical Sciences and Engineering Division , Thuwal 23955-6900 , Saudi Arabia .
| | - Jorg Eppinger
- King Abdullah University of Science and Technology , KAUST Catalysis Research Center , Physical Sciences and Engineering Division , Thuwal 23955-6900 , Saudi Arabia .
| | - Luigi Cavallo
- King Abdullah University of Science and Technology , KAUST Catalysis Research Center , Physical Sciences and Engineering Division , Thuwal 23955-6900 , Saudi Arabia .
| |
Collapse
|
23
|
Rao G, O'Dowd B, Li J, Wang K, Oldfield E. IspH-RPS1 and IspH-UbiA: "Rosetta Stone" Proteins. Chem Sci 2015; 6:6813-6822. [PMID: 26865948 PMCID: PMC4746011 DOI: 10.1039/c5sc02600h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IspH forms fusion hybrids with RPS1 as well as UbiA, examples of Rosetta stone proteins.
The protein IspH, (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMPPP) reductase, is an essential 4Fe–4S cluster-containing protein in the methylerythritol phosphate pathway for isoprenoid biosynthesis. Using a sequence similarity network we found that there are >400 IspH proteins that are about twice as large as most of the IspHs studied to date since their IspH domains are fused to either the ribosomal protein S1 (RPS1), or to a UbiA (4-hydroxybenzoate octaprenyltransferase)-like protein. Many of the IspH–RPS1 proteins are present in anaerobes found in the human gut and some, such as Clostridium botulinum, C. tetani and Fusobacterium nucleatum, are pathogens. The IspH–UbiAs are all found in sulfate-reducing anaerobes. The IspH domains in IspH–RPS1 are fused to 4 and in a few cases 6 tandem repeats in RPS1 that, in most organisms, bind to mRNA or form part of the bacterial ribosome. Mutants in which the four RPS1 domains were sequentially eliminated had similar IspH activity as wild-type protein, indicating they are not essential for IspH catalysis. Overall, the results are of interest since they represent the first isolation of a catalytically active IspH–RPS1, as well as the identification of IspH–UbiA hybrids, two “Rosetta stone” proteins that are likely to be functionally related—IspH producing the isoprenoids required for a UbiA-like prenyltransferase; the IspH–RPS1 hybrids, perhaps, being involved in the stringent response or as Fe/O2 sensors.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Bing O'Dowd
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Jikun Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Ke Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|
24
|
Brown AC, Kokoczka R, Parish T. LytB1 and LytB2 of Mycobacterium tuberculosis Are Not Genetically Redundant. PLoS One 2015; 10:e0135638. [PMID: 26309039 PMCID: PMC4550268 DOI: 10.1371/journal.pone.0135638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/23/2015] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis synthesises isoprenoid precursors via the MEP/DOXP pathway and at least five enzymes in the pathway (Dxs1, Dxr/IspC, IspD, IspF, and GcpE/IspG) are required for growth in vitro. We investigated the role of LytB (IspH) in M. tuberculosis; M. tuberculosis is unusual in that it has two homologs–LytB1 and LytB2. We were unable to delete the lytB2 gene unless we provided an additional copy elsewhere, demonstrating that this is the essential homolog. We expressed lytB1 from the lytB2 promoter and confirmed that this could not complement for loss of function of lytB2, despite LytB1 possessing all the previously described conserved critical residues. Interestingly the sole LytB homolog of Mycobacterium smegmatis was able to compensate for loss of LytB2 in M. tuberculosis. We tested translational fusions of LytB1 and LytB2 for functionality in M. tuberculosis, but only a fusion with 90% N-terminal LytB2 and 10% C-terminal LytB1 was functional. In order to identify the key difference between the two proteins, site directed mutagenesis was used to change LytB2 residues into their counterparts in LytB1. None of these amino acid substitutions was essential for function and all lytB2 mutant alleles were functional. In contrast, mutation of the key residues for [Fe4S4] cluster formation, as well as a catalytic residue in LytB1 did not result in functional complementation. Thus, although LytB1 and LytB2 are not genetically redundant, this is not dependent on small amino acid changes, but is likely to be a result of major overall structural differences.
Collapse
Affiliation(s)
- Amanda Claire Brown
- Queen Mary University of London, London, E1 2AD, United Kingdom
- Barts & the London School of Medicine and Dentistry, London, E1 2AD, United Kingdom
| | - Rachel Kokoczka
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, 98102, United States of America
| | - Tanya Parish
- Queen Mary University of London, London, E1 2AD, United Kingdom
- Barts & the London School of Medicine and Dentistry, London, E1 2AD, United Kingdom
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, 98102, United States of America
- * E-mail:
| |
Collapse
|
25
|
Blachly PG, Sandala GM, Giammona DA, Bashford D, McCammon JA, Noodleman L. Broken-Symmetry DFT Computations for the Reaction Pathway of IspH, an Iron-Sulfur Enzyme in Pathogenic Bacteria. Inorg Chem 2015; 54:6439-61. [PMID: 26098647 PMCID: PMC4568833 DOI: 10.1021/acs.inorgchem.5b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently discovered methylerythritol phosphate (MEP) pathway provides new targets for the development of antibacterial and antimalarial drugs. In the final step of the MEP pathway, the [4Fe-4S] IspH protein catalyzes the 2e(-)/2H(+) reductive dehydroxylation of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) to afford the isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Recent experiments have attempted to elucidate the IspH catalytic mechanism to drive inhibitor development. Two competing mechanisms have recently emerged, differentiated by their proposed HMBPP binding modes upon 1e(-) reduction of the [4Fe-4S] cluster: (1) a Birch reduction mechanism, in which HMBPP remains bound to the [4Fe-4S] cluster through its terminal C4-OH group (ROH-bound) until the -OH is cleaved as water; and (2) an organometallic mechanism, in which the C4-OH group rotates away from the [4Fe-4S] cluster, allowing the HMBPP olefin group to form a metallacycle complex with the apical iron (η(2)-bound). We perform broken-symmetry density functional theory computations to assess the energies and reduction potentials associated with the ROH- and η(2)-bound states implicated by these competing mechanisms. Reduction potentials obtained for ROH-bound states are more negative (-1.4 to -1.0 V) than what is typically expected of [4Fe-4S] ferredoxin proteins. Instead, we find that η(2)-bound states are lower in energy than ROH-bound states when the [4Fe-4S] cluster is 1e(-) reduced. Furthermore, η(2)-bound states can already be generated in the oxidized state, yielding reduction potentials of ca. -700 mV when electron addition occurs after rotation of the HMBPP C4-OH group. We demonstrate that such η(2)-bound states are kinetically accessible both when the IspH [4Fe-4S] cluster is oxidized and 1e(-) reduced. The energetically preferred pathway gives 1e(-) reduction of the cluster after substrate conformational change, generating the 1e(-) reduced intermediate proposed in the organometallic mechanism.
Collapse
Affiliation(s)
| | - Gregory M Sandala
- ‡Department of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Debra Ann Giammona
- §Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Donald Bashford
- §Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | | | - Louis Noodleman
- #Department of Integrative Structural and Computational Biology, CB213, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
N-Terminal Region of GbIspH1, Ginkgo biloba IspH Type 1, May Be Involved in the pH-Dependent Regulation of Enzyme Activity. Bioinorg Chem Appl 2015; 2015:241479. [PMID: 25892986 PMCID: PMC4393896 DOI: 10.1155/2015/241479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/28/2015] [Indexed: 11/18/2022] Open
Abstract
GbIspH1, IspH type 1 in Ginkgo biloba chloroplast, is the Fe/S enzyme catalyzing the reductive dehydroxylation of HMBPP to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) at the final step of methylerythritol phosphate pathway in chloroplast. Compared to the bacterial IspH, plant IspH, including GbIspH1, has an additional polypeptide chain at the N-terminus. Here, biochemical function of the N-terminal region of GbIspH1 was investigated with the N-terminal truncated GbIspH1 (GbIspH1-truncated). Both wild type GbIspH1 (GbIspH1-full) and GbIspH1-truncated were catalytically active and produced IPP and DMAPP in a ratio of 15 : 1. Kinetic parameters of KM (17.3 ± 1.9 and 14.9 ± 2.3 µM) and kcat (369 ± 10 and 347 ± 12 min−1) at pH 8.0 were obtained for GbIspH1-full and GbIspH1-truncated, respectively. Interestingly, GbIspH1-full and GbIspH1-truncated showed significantly different pH-dependent activities, and the maximum enzyme activities were obtained at pH 8.0 and 7.5, respectively. However, catalytic activation energies (Ea) of GbIspH1-full and GbIspH1-truncated were almost the same with 36.5 ± 1.6 and 35.0 ± 1.9 kJ/mol, respectively. It was suggested that the N-terminal region of GbIspH1 is involved in the pH-dependent regulation of enzyme activity during photosynthesis.
Collapse
|
27
|
Cutsail GE, Telser J, Hoffman BM. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1370-94. [PMID: 25686535 DOI: 10.1016/j.bbamcr.2015.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- George E Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
28
|
Hsieh WY, Hsieh MH. The amino-terminal conserved domain of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase is critical for its function in oxygen-evolving photosynthetic organisms. PLANT SIGNALING & BEHAVIOR 2015; 10:e988072. [PMID: 25723575 PMCID: PMC4622703 DOI: 10.4161/15592324.2014.988072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 05/22/2023]
Abstract
4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), also known as isoprenoid synthesis H (IspH) or lysis-tolerant B (LytB), catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and dimethylallyl diphosphate. The structure and reaction mechanism of IspH have been actively investigated in Escherichia coli but little is known in plants. Compared with the bacterial IspH, cyanobacterial and plant HDRs all contain an extra N-terminal conserved domain (NCD) that is essential for their function. Tyr72 in the NCD and several plant-specific residues around the central active site are critical for Arabidopsis HDR function. These results suggest that the structure and reaction mechanism of HDR/IspH may be different between plants and bacteria. The E. coli IspH is an iron-sulfur protein that is sensitive to oxygen. It is possible that the cyanobacterial HDR may independently evolve from the common ancestor of prokaryotes to obtain the NCD, which may protect the enzyme from high concentration of oxygen during photosynthesis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
- Correspondence to: Ming-Hsiun Hsieh;
| |
Collapse
|
29
|
Masini T, Hirsch AKH. Development of Inhibitors of the 2C-Methyl-d-erythritol 4-Phosphate (MEP) Pathway Enzymes as Potential Anti-Infective Agents. J Med Chem 2014; 57:9740-63. [DOI: 10.1021/jm5010978] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh
7, NL-9747
AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh
7, NL-9747
AG Groningen, The Netherlands
| |
Collapse
|
30
|
Blachly PG, Sandala GM, Giammona D, Liu T, Bashford D, McCammon JA, Noodleman L. Use of Broken-Symmetry Density Functional Theory To Characterize the IspH Oxidized State: Implications for IspH Mechanism and Inhibition. J Chem Theory Comput 2014; 10:3871-3884. [PMID: 25221444 PMCID: PMC4159220 DOI: 10.1021/ct5005214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 12/31/2022]
Abstract
With current therapies becoming less efficacious due to increased drug resistance, new inhibitors of both bacterial and malarial targets are desperately needed. The recently discovered methylerythritol phosphate (MEP) pathway for isoprenoid synthesis provides novel targets for the development of such drugs. Particular attention has focused on the IspH protein, the final enzyme in the MEP pathway, which uses its [4Fe-4S] cluster to catalyze the formation of the isoprenoid precursors IPP and DMAPP from HMBPP. IspH catalysis is achieved via a 2e-/2H+ reductive dehydroxylation of HMBPP; the mechanism by which catalysis is achieved, however, is highly controversial. The work presented herein provides the first step in assessing different routes to catalysis by using computational methods. By performing broken-symmetry density functional theory (BS-DFT) calculations that employ both the conductor-like screening solvation model (DFT/COSMO) and a finite-difference Poisson-Boltzmann self-consistent reaction field methodology (DFT/SCRF), we evaluate geometries, energies, and Mössbauer signatures of the different protonation states that may exist in the oxidized state of the IspH catalytic cycle. From DFT/SCRF computations performed on the oxidized state, we find a state where the substrate, HMBPP, coordinates the apical iron in the [4Fe-4S] cluster as an alcohol group (ROH) to be one of two, isoenergetic, lowest-energy states. In this state, the HMBPP pyrophosphate moiety and an adjacent glutamate residue (E126) are both fully deprotonated, making the active site highly anionic. Our findings that this low-energy state also matches the experimental geometry of the active site and that its computed isomer shifts agree with experiment validate the use of the DFT/SCRF method to assess relative energies along the IspH reaction pathway. Additional studies of IspH catalytic intermediates are currently being pursued.
Collapse
Affiliation(s)
- Patrick G. Blachly
- Department
of Chemistry and Biochemistry, University
of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, United States
| | - Gregory M. Sandala
- Department
of Chemistry and Biochemistry, Mount Allison
University, 63C York
Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Debra
Ann Giammona
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262
Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Tiqing Liu
- Skaggs School of Pharmacy and Pharmaceutical
Sciences, Howard Hughes Medical
Institute, and Department of Pharmacology, University
of California San Diego, La Jolla, California 92093-0365, United States
| | - Donald Bashford
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262
Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - J. Andrew McCammon
- Department
of Chemistry and Biochemistry, University
of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, United States
- Skaggs School of Pharmacy and Pharmaceutical
Sciences, Howard Hughes Medical
Institute, and Department of Pharmacology, University
of California San Diego, La Jolla, California 92093-0365, United States
| | - Louis Noodleman
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, TPC15, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Hsieh WY, Sung TY, Wang HT, Hsieh MH. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE. PLANT PHYSIOLOGY 2014; 166:57-69. [PMID: 25037211 PMCID: PMC4149731 DOI: 10.1104/pp.114.243642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Ying Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
32
|
Bhuyan R, Nandy SK, Seal A. Anin silicostructural insights intoPlasmodiumLytB protein and its inhibition. J Biomol Struct Dyn 2014; 33:1198-210. [DOI: 10.1080/07391102.2014.938248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Span I, Wang K, Eisenreich W, Bacher A, Zhang Y, Oldfield E, Groll M. Insights into the binding of pyridines to the iron-sulfur enzyme IspH. J Am Chem Soc 2014; 136:7926-32. [PMID: 24813236 PMCID: PMC4063180 DOI: 10.1021/ja501127j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 11/29/2022]
Abstract
(E)-1-Hydroxy-2-methylbut-2-enyl 4-diphosphate reductase (IspH) is a [Fe4S4] cluster-containing enzyme involved in isoprenoid biosynthesis in many bacteria as well as in malaria parasites and is an important drug target. Several inhibitors including amino and thiol substrate analogues, as well as acetylene and pyridine diphosphates, have been reported. Here, we investigate the mode of binding of four pyridine diphosphates to Escherichia coli IspH by using X-ray crystallography. In three cases, one of the iron atoms in the cluster is absent, but in the structure with (pyridin-3-yl)methyl diphosphate, the most potent pyridine-analogue inhibitor reported previously, the fourth iron of the [Fe4S4] cluster is present and interacts with the pyridine ring of the ligand. Based on the results of quantum chemical calculations together with the crystallographic results we propose a side-on η(2) coordination of the nitrogen and the carbon in the 2-position of the pyridine ring to the unique fourth iron in the cluster, which is in the reduced state. The X-ray structure enables excellent predictions using density functional theory of the (14)N hyperfine coupling and quadrupole coupling constants reported previously using HYSCORE spectroscopy, as well as providing a further example of the ability of such [Fe4S4]-containing proteins to form organometallic complexes.
Collapse
Affiliation(s)
- Ingrid Span
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ke Wang
- Department
of Chemistry, 600 South
Mathews Avenue, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wolfgang Eisenreich
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Adelbert Bacher
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Yong Zhang
- Department
of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Eric Oldfield
- Department
of Chemistry, 600 South
Mathews Avenue, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael Groll
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
34
|
Wang W, Oldfield E. Biometallorganische Chemie mit IspG und IspH: Struktur, Funktion und Hemmung der an der Isoprenoid-Biosynthese beteiligten [Fe 4S 4]-Proteine. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201306712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Wang W, Oldfield E. Bioorganometallic chemistry with IspG and IspH: structure, function, and inhibition of the [Fe(4)S(4)] proteins involved in isoprenoid biosynthesis. Angew Chem Int Ed Engl 2014; 53:4294-310. [PMID: 24481599 DOI: 10.1002/anie.201306712] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/12/2022]
Abstract
Enzymes of the methylerythritol phosphate pathway of isoprenoid biosynthesis are attractive anti-infective drug targets. The last two enzymes of this pathway, IspG and IspH, are [Fe4 S4 ] proteins that are not produced by humans and catalyze 2 H(+) / 2 e(-) reductions with novel mechanisms. In this Review, we summarize recent advances in structural, mechanistic, and inhibitory studies of these two enzymes. In particular, mechanistic proposals involving bioorganometallic intermediates are presented, and compared with other mechanistic possibilities. In addition, inhibitors based on substrate analogues as well as developed by rational design and compound-library screening, are discussed. The results presented support bioorganometallic catalytic mechanisms for IspG and IspH, and open up new routes to anti-infective drug design targeting [Fe4 S4 ] clusters in proteins.
Collapse
Affiliation(s)
- Weixue Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)
| | | |
Collapse
|
36
|
Affiliation(s)
| | - Salim Al-Babili
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Eleanore T. Wurtzel
- The Graduate School and University Center, The City University of New York, New York, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, USA
| |
Collapse
|
37
|
Guerra F, Wang K, Li J, Wang W, Liu YL, Amin S, Oldfield E. Inhibition of the 4Fe-4S Proteins IspG and IspH: an EPR, ENDOR and HYSCORE Investigation. Chem Sci 2014; 5:1642-1649. [PMID: 24999381 DOI: 10.1039/c3sc53301h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IspG and IspH are proteins that are involved in isoprenoid biosynthesis in most bacteria as well as in malaria parasites and are important drug targets. They contain cubane-type 4Fe-4S clusters that are involved in unusual 2H+/2e- reductions. Here, we report the results of electron paramagnetic resonance spectroscopic investigations of the binding of amino- and thiolo-HMBPP (HMBPP=E-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate) IspH substrate-analog inhibitors to both proteins, as well as the binding of HMBPP and an acetylene diphosphate inhibitor, to IspG. The results show that amino-HMBPP binds to reduced IspH by Fe-C π-bonding with the olefinic carbons interacting with the unique 4th Fe in the 4Fe-4S cluster, quite different to the direct Fe-N ligation seen with the oxidized protein. No such π-complex is observed when amino-HMBPP binds to reduced IspG. No EPR signal is observed with IspH in the presence of dithionite and thiolo-HMBPP, suggesting that the 4Fe-4S cluster is not reduced, consistent with the presence of a 420 nm feature in the absorption spectrum (characteristic of an oxidized cluster). However, with IspG, the EPR spectrum in the presence of dithionite and thiolo-HMBPP is very similar to that seen with HMBPP. The binding of HMBPP to IspG was studied using hyperfine sublevel correlation spectroscopy with 17O and 13C labeled samples: the results rule out direct Fe-O bonding and indicate π-bonding. Finally, the binding to IspG of a potent acetylene diphosphate inhibitor was studied by using electron-nuclear double resonance spectroscopy with 13C labeled ligands: the large hyperfine couplings indicate strong Fe-C π-bonding with the acetylenic group. These results illustrate a remarkable diversity in binding behavior for HMBPP-analog inhibitors, opening up new routes to inhibitor design of interest in the context of anti-bacterial and anti-malarial drug discovery, as well as "cubane-type" metallo-biochemistry, in general.
Collapse
Affiliation(s)
- Francisco Guerra
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, IL 61801
| | - Ke Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Jikun Li
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, IL 61801
| | - Weixue Wang
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, IL 61801
| | - Yi-Liang Liu
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, IL 61801
| | - Shivani Amin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Eric Oldfield
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, IL 61801 ; Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
38
|
Utilizing a dynamical description of IspH to aid in the development of novel antimicrobial drugs. PLoS Comput Biol 2013; 9:e1003395. [PMID: 24367248 PMCID: PMC3868525 DOI: 10.1371/journal.pcbi.1003395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/30/2013] [Indexed: 02/05/2023] Open
Abstract
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. Drug resistance has recently entered into media conversations through the lens of MRSA (methicillin-resistant Staphylococcus aureus) infections, but conventional therapies are also failing to address resistance in cases of malaria and other bacterial infections, such as tuberculosis. To address these problems, we must develop new antibacterial and antimalarial medications. Our research focuses on understanding the structure and dynamics of IspH, an enzyme whose function is necessary for the survival of most bacteria and malaria-causing protozoans. Using computer simulations, we track how the structure of IspH changes in the presence and absence of its natural substrate. By inspecting the pockets that form in the normal motions of IspH, we propose a couple new routes by which new molecules may be developed to disrupt the function of IspH. It is our hope that these structural studies may be precursors to the development of novel therapies that may add to our current arsenal against bacterial and malarial infections.
Collapse
|
39
|
Zhao L, Chang WC, Xiao Y, Liu HW, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 2013; 82:497-530. [PMID: 23746261 DOI: 10.1146/annurev-biochem-052010-100934] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isoprenoids are a class of natural products with more than 55,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate and its isomer dimethylallyl diphosphate. Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway [the methylerythritol phosphate (MEP) pathway] and a modified mevalonic acid (MVA) pathway. In this review, we summarize mechanistic insights on the MEP pathway enzymes. Because many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both MVA and MEP pathway-based synthetic biology are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations.
Collapse
Affiliation(s)
- Lishan Zhao
- Amyris, Inc., Emeryville, California 94608, USA.
| | | | | | | | | |
Collapse
|
40
|
Chang WC, Song H, Liu HW, Liu P. Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 2013; 17:571-9. [PMID: 23891475 PMCID: PMC4068245 DOI: 10.1016/j.cbpa.2013.06.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 11/20/2022]
Abstract
Isoprenoids are one of the largest classes of natural products and all of them are constructed from two precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). For decades, the mevalonic acid (MVA) pathway was proposed to be the only IPP and DMAPP biosynthetic pathway. This review summarizes the newly discovered IPP and DMAPP production pathways since late 1990s, their distribution among different kingdoms, and their roles in secondary metabolite production. These new IPP and DMAPP production pathways include the methylerythritol phosphate (MEP) pathway, a modified MVA pathway, and the 5-methylthioadenosine shunt pathway. Relative to the studies on the MVA pathway, information on the MEP pathway regulation is limited and the mechanistic details of several of its novel transformations remain to be addressed. Current status on both MEP pathway regulation and mechanistic issues is also presented.
Collapse
Affiliation(s)
- Wei-chen Chang
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Heng Song
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
41
|
Li J, Wang K, Smirnova TI, Khade RL, Zhang Y, Oldfield E. Isoprenoid Biosynthesis: Ferraoxetane or Allyl Anion Mechanism for IspH Catalysis? Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Li J, Wang K, Smirnova TI, Khade RL, Zhang Y, Oldfield E. Isoprenoid biosynthesis: ferraoxetane or allyl anion mechanism for IspH catalysis? Angew Chem Int Ed Engl 2013; 52:6522-5. [PMID: 23649534 PMCID: PMC3821072 DOI: 10.1002/anie.201302343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jikun Li
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, IL 61801 (USA)
| | - Ke Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA), Fax: (+1)217-244-0997
| | - Tatyana I. Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695 (USA)
| | - Rahul L. Khade
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken NJ 07030 (USA)
| | - Yong Zhang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken NJ 07030 (USA)
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA), Fax: (+1)217-244-0997
| |
Collapse
|
43
|
Span I, Wang K, Wang W, Jauch J, Eisenreich W, Bacher A, Oldfield E, Groll M. Structures of fluoro, amino, and thiol inhibitors bound to the [Fe4S4] protein IspH. Angew Chem Int Ed Engl 2013; 52:2118-21. [PMID: 23307751 PMCID: PMC3734547 DOI: 10.1002/anie.201208469] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Ingrid Span
- Center for Integrated Protein Science Munich, Chemie Department, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Janthawornpong K, Krasutsky S, Chaignon P, Rohmer M, Poulter CD, Seemann M. Inhibition of IspH, a [4Fe-4S]2+ enzyme involved in the biosynthesis of isoprenoids via the methylerythritol phosphate pathway. J Am Chem Soc 2013; 135:1816-22. [PMID: 23316732 DOI: 10.1021/ja309557s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The MEP pathway, which is absent in animals but present in most pathogenic bacteria, in the parasite responsible for malaria and in plant plastids, is a target for the development of antimicrobial drugs. IspH, an oxygen-sensitive [4Fe-4S] enzyme, catalyzes the last step of this pathway and converts (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A crucial step in the mechanism of this enzyme is the binding of the C4 hydroxyl of HMBPP to the unique fourth iron site in the [4Fe-4S](2+) moiety. Here, we report the synthesis and the kinetic investigations of two new extremely potent inhibitors of E. coli IspH where the OH group of HMBPP is replaced by an amino and a thiol group. (E)-4-Mercapto-3-methylbut-2-en-1-yl diphosphate is a reversible tight-binding inhibitor of IspH with K(i) = 20 ± 2 nM. A detailed kinetic analysis revealed that (E)-4-amino-3-methylbut-2-en-1-yl diphosphate is a reversible slow-binding inhibitor of IspH with K(i) = 54 ± 19 nM. The slow binding behavior of this inhibitor is best described by a one-step mechanism with the slow step consisting of the formation of the enzyme-inhibitor (EI) complex.
Collapse
Affiliation(s)
- Karnjapan Janthawornpong
- Université de Strasbourg, CNRS UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
45
|
Span I, Wang K, Wang W, Jauch J, Eisenreich W, Bacher A, Oldfield E, Groll M. Fluor-, Amino- und Thiolinhibitoren im Komplex mit dem [Fe4
S4
]-Protein IspH. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Antibiotics for Emerging Pathogens. Infect Dis (Lond) 2013. [DOI: 10.1007/978-1-4614-5719-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
47
|
Kung Y, Runguphan W, Keasling JD. From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 2012; 1:498-513. [PMID: 23656227 DOI: 10.1021/sb300074k] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers.
Collapse
Affiliation(s)
- Yan Kung
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Weerawat Runguphan
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Departments of Chemical and Biomolecular Engineering and Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Wang W, Wang K, Span I, Jauch J, Bacher A, Groll M, Oldfield E. Are free radicals involved in IspH catalysis? An EPR and crystallographic investigation. J Am Chem Soc 2012; 134:11225-34. [PMID: 22687151 DOI: 10.1021/ja303445z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [4Fe-4S] protein IspH in the methylerythritol phosphate isoprenoid biosynthesis pathway is an important anti-infective drug target, but its mechanism of action is still the subject of debate. Here, by using electron paramagnetic resonance (EPR) spectroscopy and (2)H, (17)O, and (57)Fe isotopic labeling, we have characterized and assigned two key reaction intermediates in IspH catalysis. The results are consistent with the bioorganometallic mechanism proposed earlier, and the mechanism is proposed to have similarities to that of ferredoxin, thioredoxin reductase, in that one electron is transferred to the [4Fe-4S](2+) cluster, which then performs a formal two-electron reduction of its substrate, generating an oxidized high potential iron-sulfur protein (HiPIP)-like intermediate. The two paramagnetic reaction intermediates observed correspond to the two intermediates proposed in the bioorganometallic mechanism: the early π-complex in which the substrate's 3-CH(2)OH group has rotated away from the reduced iron-sulfur cluster, and the next, η(3)-allyl complex formed after dehydroxylation. No free radical intermediates are observed, and the two paramagnetic intermediates observed do not fit in a Birch reduction-like or ferraoxetane mechanism. Additionally, we show by using EPR spectroscopy and X-ray crystallography that two substrate analogues (4 and 5) follow the same reaction mechanism.
Collapse
Affiliation(s)
- Weixue Wang
- Center for Biophysics and Computational Biology, 607 South Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Xu W, Lees NS, Hall D, Welideniya D, Hoffman BM, Duin EC. A closer look at the spectroscopic properties of possible reaction intermediates in wild-type and mutant (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase. Biochemistry 2012; 51:4835-49. [PMID: 22646150 DOI: 10.1021/bi3001215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB) catalyzes the terminal step of the MEP/DOXP pathway where it converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into the two products, isopentenyl diphosphate and dimethylallyl diphosphate. The reaction involves the reductive elimination of the C4 hydroxyl group, using a total of two electrons. Here we show that the active form of IspH contains a [4Fe-4S] cluster and not the [3Fe-4S] form. Our studies show that the cluster is the direct electron source for the reaction and that a reaction intermediate is bound directly to the cluster. This active form has been trapped in a state, dubbed FeS(A), that was detected by electron paramagnetic resonance (EPR) spectroscopy when one-electron-reduced IspH was incubated with HMBPP. In addition, three mutants of IspH have been prepared and studied, His42, His124, and Glu126 (Aquifex aeolicus numbering), with particular attention paid to the effects on the cluster properties and possible reaction intermediates. None of the mutants significantly affected the properties of the [4Fe-4S](+) cluster, but different effects were observed when one-electron-reduced forms were incubated with HMBPP. Replacing His42 led to an increased K(M) value and a much lower catalytic efficiency, confirming the role of this residue in substrate binding. Replacing the His124 also resulted in a lower catalytic efficiency. In this case, however, the enzyme showed the loss of the [4Fe-4S](+) EPR signal upon addition of HMBPP without the subsequent formation of the FeS(A) signal. Instead, a radical-type signal was observed in some of the samples, indicating that this residue plays a role in the correct positioning of the substrate. The incorrect orientation in the mutant leads to the formation of substrate-based radicals instead of the cluster-bound intermediate complex FeS(A). Replacing the Glu126 also resulted in a lower catalytic efficiency, with yet a third type of EPR signal being detected upon incubation with HMBPP. (31)P and (2)H ENDOR measurements of the FeS(A) species incubated with regular and (2)H-C4-labeled HMBPP reveal that the substrate binds to the enzyme in the proximity of the active-site cluster with C4 adjacent to the site of linkage between the FeS cluster and HMBPP. Comparison of the spectroscopic properties of this intermediate to those of intermediates detected in (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase and ferredoxin:thioredoxin reductase suggests that HMBPP binds to the FeS cluster via its hydroxyl group instead of a side-on binding as previously proposed for the species detected in the inactive Glu126 variant. Consequences for the IspH reaction mechanism are discussed.
Collapse
Affiliation(s)
- Weiya Xu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | | | |
Collapse
|
50
|
Li H, Dai SB, Gao WY. Preparation of Isotope Labeled/Unlabeled Key Intermediates in 2-Methyl-D-erythritol 4-Phosphate Terpenoid Biosynthetic Pathway. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201100396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|