1
|
Liu Y, Zhangding Z, Liu X, Hu J. Chromatin-centric insights into DNA replication. Trends Genet 2025; 41:412-424. [PMID: 39765445 DOI: 10.1016/j.tig.2024.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 05/08/2025]
Abstract
DNA replication ensures the precise transmission of genetic information from parent to daughter cells. In eukaryotes, this process involves the replication of every base pair within a highly complex chromatin environment, encompassing multiple levels of chromatin structure and various chromatin metabolic processes. Recent evidence has demonstrated that DNA replication is strictly regulated in both temporal and spatial dimensions by factors such as 3D genome structure and transcription, which is crucial for maintaining genomic stability in each cell cycle. In this review, we discuss the diverse mechanisms that govern eukaryotic DNA replication, emphasizing the roles of chromatin architecture and transcriptional activity within the mammalian chromatin landscape. These insights provide a foundation for future investigations in this field.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuhao Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
2
|
Lam WH, Yu D, Zhang Q, Lin Y, Li N, Li J, Wu Y, Zhang Y, Gao N, Tye BK, Zhai Y, Dang S. DNA bending mediated by ORC is essential for replication licensing in budding yeast. Proc Natl Acad Sci U S A 2025; 122:e2502277122. [PMID: 40184174 PMCID: PMC12002289 DOI: 10.1073/pnas.2502277122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
In eukaryotes, the origin recognition complex (ORC) promotes the assembly of minichromosome maintenance 2 to 7 complexes into a head-to-head double hexamer at origin DNA in a process known as replication licensing. In this study, we present a series of cryoelectron microscopy structures of yeast ORC mutants in complex with origin DNA. We show that Orc6, the smallest subunit of ORC, utilizes its transcription factor II B-B domain to orchestrate the sequential binding of ORC to origin DNA. In addition, Orc6 plays the role of a scaffold by stabilizing the basic patch (BP) of Orc5 for ORC to capture and bend origin DNA. Importantly, disrupting DNA bending through mutating three key residues in Orc5-BP impairs ORC's ability to promote replication initiation at two points during the pre-RC assembly process. This study dissects the multifaceted role of Orc6 in orchestrating ORC's activities on DNA and underscores the vital role of DNA bending by ORC in replication licensing.
Collapse
Grants
- 32425014 MOST | National Natural Science Foundation of China (NSFC)
- GRF17119022 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF17109623 Research Grants Council, University Grants Committee (ç"究資助局)
- C6036-21GF Research Grants Council, University Grants Committee (ç"究資助局)
- C7035-23GF Research Grants Council, University Grants Committee (ç"究資助局)
- CRS_HKU705/23 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16103321 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16102822 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16100233 Research Grants Council, University Grants Committee (ç"究資助局)
- C6001-21E Research Grants Council, University Grants Committee (ç"究資助局)
- C6012-22G Research Grants Council, University Grants Committee (ç"究資助局)
- Research Grants Council, University Grants Committee (ç”究資助局)
Collapse
Affiliation(s)
- Wai Hei Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiongdan Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuhan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing100084, China
| | - Jian Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yue Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yingyi Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing100084, China
| | - Bik Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Yuanliang Zhai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
3
|
Palm G, Costa A. How similar are the molecular mechanisms of yeast and metazoan genome replication initiation? Biochem Soc Trans 2025; 53:BST20220917. [PMID: 40052964 DOI: 10.1042/bst20220917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 05/13/2025]
Abstract
DNA replication start sites are licensed for replication when two hexameric ring-shaped motors of the replicative helicase are loaded as an inactive double hexamer around duplex DNA. Activation requires untwisting of the double helix and ejection of one DNA strand from the central channel of each helicase ring. The process of replication initiation is best understood in yeast, thanks to reconstitution with purified yeast proteins, which allowed systematic structural analysis of the replication initiation process. Orthologs of most yeast replication factors have been identified in higher eukaryotes; however, reconstitution of metazoan replication initiation is still in its infancy, with double hexamer loading but not activation having been achieved. Nonetheless, artificial intelligence-driven structure prediction and cryo-EM studies on native complexes, combined with cell-based and cell-free approaches, are starting to provide insights into metazoan replication initiation mechanisms. Here, we describe the emerging picture.
Collapse
Affiliation(s)
- Giacomo Palm
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| |
Collapse
|
4
|
Yang MJ, Lee H, Kang D, Park CJ. Biophysical investigation of the molecular interaction between minichromosome maintenance protein 6 and Bloom syndrome helicase. FEBS J 2025. [PMID: 40007132 DOI: 10.1111/febs.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The minichromosome maintenance protein (MCM) complex and Bloom syndrome helicase (BLM) are crucial components in DNA replication and cell division. MCM, a hexameric helicase that unwinds double-stranded DNA, serves as an important diagnostic and prognostic biomarker for cancer cells and a target for anticancer drug development. BLM, associated with G-quadruplex structures, is another key helicase in maintaining genomic stability. In this study, we investigate the interaction between MCM6 and BLM at the atomic level, as their expression levels are highly correlated in various cancer types, with elevated levels indicating poor prognosis. To elucidate the molecular basis of MCM6/BLM interaction, we employed fluorescence polarization anisotropy analysis, NMR chemical shifts perturbation analysis (CSP), and paramagnetic relaxation enhancement (PRE) experiments. MCM6 binding domain (MBD) C and D exhibit similar binding affinities to MCM6 winged-helix domain (WHD). However, significant CSPs with MBD-D and PRE experiments suggested that MBD-D is closer to MCM6 WHD than MBD-C. Despite both proteins containing numerous negatively charged residues, hydrophobic interactions govern the association between MCM6 WHD and BLM MBD-D. This biophysical characterization of the MCM6/BLM interaction provides new insights into their functional relationship and challenges existing models. Our findings reveal that MCM6 binds BLM at a different site than its other known partner chromatin licensing and DNA replication factor. Understanding these protein-protein interactions at the molecular level may contribute to the development of novel anticancer therapies targeting the MCM6/BLM interaction.
Collapse
Affiliation(s)
- Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Haeun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Donguk Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
5
|
Ahmed SM, Laha S, Ifthikar MA, Das R, Das SP. MCM10: A potential biomarker for cervical cancer and precancerous lesions. Gene 2025; 936:149103. [PMID: 39551114 DOI: 10.1016/j.gene.2024.149103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cervical cancer remains a significant health burden worldwide, emphasizing the need for early detection and intervention. DNA replication is perturbed in cancer cells, and the minichromosome maintenance protein 10 plays an important role in origin firing. By analyzing the MCM10 mRNA expression in healthy controls, precancerous lesions, and cervical cancer using qRT-PCR, we can infer if it can be considered a biomarker. We collected cervical smear samples from patients and performed MCM10 expression analysis to set up thresholds for risk stratification. We also investigated the HPV status among the patient samples with precancerous lesions and cervical cancer and found 70 % of them to be positive. Our results demonstrated a significant upregulation of MCM10 mRNA expression in tumor samples (n = 40, 7.83 ± 1.2) and precancerous lesions (n = 54, 5.69 ± 1.4) compared to normal (n = 50, 4.27 ± 0.80) with a R2 value of 0.59, confirming its role in the progression and development of cervical cancer. In conclusion, this study emphasizes the potential role of MCM10 as a biomarker. Our study would improve early detection rates, and we propose MCM10-based community screening for risk stratification, prevention, and prognosis.
Collapse
Affiliation(s)
- Sumayyah Mq Ahmed
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Suparna Laha
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Mariam Anjum Ifthikar
- Zulekha Yenepoya Institute of Oncology, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Ranajit Das
- Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
6
|
Butryn A, Greiwe JF, Costa A. Unidirectional MCM translocation away from ORC drives origin licensing. Nat Commun 2025; 16:782. [PMID: 39824870 PMCID: PMC11748629 DOI: 10.1038/s41467-025-56143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown. Here, we used cryo-EM to characterise helicase loading with ATPase-dead Arginine Finger variants of the six MCM subunits. We report the structure of two MCM complexes with different DNA grips, stalled as they mature to loaded MCM. The Mcm2 Arginine Finger-variant stabilises DNA binding by Mcm2 away from ORC/Cdc6. The Arginine Finger-variant of the neighbouring Mcm5 subunit stabilises DNA engagement by Mcm5 downstream of the Mcm2 binding site. Cdc6 and Orc1 progressively disengage from ORC as MCM translocates along DNA. We observe that duplex DNA translocation by MCM involves a set of leading-strand contacts by the pre-sensor 1 ATPase hairpins and lagging-strand contacts by the helix-2-insert hairpins. Mutating any of the MCM residues involved impairs high-salt resistant DNA binding in vitro and double-hexamer formation assessed by electron microscopy. Thus, ATPase-powered duplex DNA translocation away from ORC underlies MCM loading.
Collapse
Affiliation(s)
- Agata Butryn
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park Milton Rd, Milton, Cambridge, CB4 0QA, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
7
|
Wells JN, Edwardes LV, Leber V, Allyjaun S, Peach M, Tomkins J, Kefala-Stavridi A, Faull SV, Aramayo R, Pestana CM, Ranjha L, Speck C. Reconstitution of human DNA licensing and the structural and functional analysis of key intermediates. Nat Commun 2025; 16:478. [PMID: 39779677 PMCID: PMC11711466 DOI: 10.1038/s41467-024-55772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins. We showed that the in vitro reaction is specific and results in the assembly of high-salt resistant hMCM2-7 double-hexamers. With ATPγS, an hORC1-5-hCDC6-hCDT1-hMCM2-7 (hOCCM) assembles independent of hORC6, but hORC6 enhances double-hexamer formation. We determined the hOCCM structure, which showed that hORC-hCDC6 recruits hMCM2-7 via five hMCM winged-helix domains. The structure highlights how hORC1 activates the hCDC6 ATPase and uncovered an unexpected role for hCDC6 ATPase in complex disassembly. We identified that hCDC6 binding to hORC1-5 stabilises hORC2-DNA interactions and supports hMCM3-dependent recruitment of hMCM2-7. Finally, the structure allowed us to locate cancer-associated mutations at the hCDC6-hMCM3 interface, which showed specific helicase loading defects.
Collapse
Affiliation(s)
- Jennifer N Wells
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Lucy V Edwardes
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Vera Leber
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Shenaz Allyjaun
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Matthew Peach
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Joshua Tomkins
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Antonia Kefala-Stavridi
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Sarah V Faull
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Ricardo Aramayo
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Carolina M Pestana
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Lepakshi Ranjha
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences (LMS), London, UK.
| |
Collapse
|
8
|
Faull SV, Barbon M, Mossler A, Yuan Z, Bai L, Reuter LM, Riera A, Winkler C, Magdalou I, Peach M, Li H, Speck C. MCM2-7 ring closure involves the Mcm5 C-terminus and triggers Mcm4 ATP hydrolysis. Nat Commun 2025; 16:14. [PMID: 39747125 PMCID: PMC11695723 DOI: 10.1038/s41467-024-55479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled. A cryo-EM structure of an ORC-Cdc6-Cdt1-MCM2-7 intermediate shows a remodelled, fully-closed Mcm2/Mcm5 interface. The Mcm5 C-terminus (C5) contacts Orc3 and specifically recognises this closed ring. Interestingly, we found that normal helicase loading triggers Mcm4 ATP-hydrolysis, which in turn leads to reorganisation of the MCM2-7 complex and Cdt1 release. However, defective MCM2-7 ring closure, due to mutations at the Mcm2/Mcm5 interface, leads to MCM2-7 ring splitting and complex disassembly. As such we identify Mcm4 as the key ATPase in regulating pre-RC formation. Crucially, a stable Mcm2/Mcm5 interface is essential for productive ATP-hydrolysis-dependent remodelling of the helicase.
Collapse
Affiliation(s)
- Sarah V Faull
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Audrey Mossler
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Zuanning Yuan
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Lin Bai
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Christian Winkler
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Indiana Magdalou
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Matthew Peach
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK
| | - Huilin Li
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| |
Collapse
|
9
|
Rashid F, Berger JM. How bacteria initiate DNA replication comes into focus. Bioessays 2025; 47:e2400151. [PMID: 39390825 DOI: 10.1002/bies.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
The ability to initiate DNA replication is a critical step in the proliferation of all organisms. In bacteria, this process is mediated by an ATP-dependent replication initiator protein, DnaA, which recognizes and melts replication origin (oriC) elements. Despite decades of biochemical and structural work, a mechanistic understanding of how DnaA recognizes and unwinds oriC has remained enigmatic. A recent study by Pelliciari et al. provides important new structural insights into how DnaA from Bacillus subtilis recognizes and processes its cognate oriC, showing how DnaA uses sequence features encoded in the origin to engage melted DNA. Comparison of the DnaA-oriC structure with archaeal/eukaryl replication origin complexes based on Orc-family proteins reveals a high degree of similarity in origin engagement by initiators from di domains of life, despite fundamental differences in origin melting mechanisms. These findings provide valuable insights into bacterial replication initiation and highlight the intriguing evolutionary history of this fundamental biological process.
Collapse
Affiliation(s)
- Fahad Rashid
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
11
|
Weissmann F, Greiwe JF, Pühringer T, Eastwood EL, Couves EC, Miller TCR, Diffley JFX, Costa A. MCM double hexamer loading visualized with human proteins. Nature 2024; 636:499-508. [PMID: 39604733 PMCID: PMC11634765 DOI: 10.1038/s41586-024-08263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Eukaryotic DNA replication begins with the loading of the MCM replicative DNA helicase as a head-to-head double hexamer at origins of DNA replication1-3. Our current understanding of how the double hexamer is assembled by the origin recognition complex (ORC), CDC6 and CDT1 comes mostly from budding yeast. Here we characterize human double hexamer (hDH) loading using biochemical reconstitution and cryo-electron microscopy with purified proteins. We show that the human double hexamer engages DNA differently from the yeast double hexamer (yDH), and generates approximately five base pairs of underwound DNA at the interface between hexamers, as seen in hDH isolated from cells4. We identify several differences from the yeast double hexamer in the order of factor recruitment and dependencies during hDH assembly. Unlike in yeast5-8, the ORC6 subunit of the ORC is not essential for initial MCM recruitment or hDH loading, but contributes to an alternative hDH assembly pathway that requires an intrinsically disordered region in ORC1, which may work through a MCM-ORC intermediate. Our work presents a detailed view of how double hexamers are assembled in an organism that uses sequence-independent replication origins, provides further evidence for diversity in eukaryotic double hexamer assembly mechanisms9, and represents a first step towards reconstitution of DNA replication initiation with purified human proteins.
Collapse
Affiliation(s)
- Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Pühringer
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Evelyn L Eastwood
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Emma C Couves
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas C R Miller
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple mechanisms for licensing human replication origins. Nature 2024; 636:488-498. [PMID: 39604729 PMCID: PMC11910750 DOI: 10.1038/s41586-024-08237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Loading of replicative helicases is obligatory for the assembly of DNA replication machineries. The eukaryotic MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head double hexamer to license replication origins. Although extensively studied in budding yeast1-4, the mechanisms of origin licensing in multicellular eukaryotes remain poorly defined. Here we use biochemical reconstitution and electron microscopy to reconstruct the human MCM loading pathway. We find that unlike in yeast, the ORC6 subunit of the ORC is not essential for-but enhances-human MCM loading. Electron microscopy analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of ORC6, including a DNA-loaded, closed-ring MCM single hexamer intermediate that can mature into a head-to-head double hexamer through multiple mechanisms. ORC6 and ORC3 facilitate the recruitment of the ORC to the dimerization interface of the first hexamer into MCM-ORC (MO) complexes that are distinct from the yeast MO complex5,6 and may orient the ORC for second MCM hexamer loading. Additionally, MCM double hexamer formation can proceed through dimerization of independently loaded MCM single hexamers, promoted by a propensity of human MCM2-7 hexamers to self-dimerize. This flexibility in human MCM loading may provide resilience against cellular replication stress, and the reconstitution system will enable studies addressing outstanding questions regarding DNA replication initiation and replication-coupled events in the future.
Collapse
Affiliation(s)
- Ran Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Olivia Hunker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Needham JM, Perritt SE, Thompson SR. Single-cell analysis reveals host S phase drives large T antigen expression during BK polyomavirus infection. PLoS Pathog 2024; 20:e1012663. [PMID: 39636788 PMCID: PMC11620372 DOI: 10.1371/journal.ppat.1012663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
BK polyomavirus (BKPyV) is a major cause of kidney transplant failure, for which there are no antivirals. The current model is that BKPyV expresses TAg (large T antigen) early during infection, promoting cells to enter S phase where the viral DNA can access the host replication machinery. Here, we performed a single-cell analysis of viral TAg expression throughout the cell cycle to reveal that robust TAg expression required replication of the host DNA first. By using inhibitors that only affect host and not viral replication, we show that both TAg expression and viral production rely on an initial S phase. BKPyV is known to promote cellular re-replication, where the cell re-enters S phase from G2 phase (without passing through mitosis or G1 phase) to prolong S phase for viral replication. Thus, BKPyV infection results in cells with greater than 4N DNA content. We found that these subsequent rounds of replication of the host DNA relied on canonical host cell cycle machinery and regulators despite BKPyV infection. Together, these findings suggest a model for polyomavirus replication, where robust viral TAg expression depends on an initial host S phase and that BKPyV primarily replicates during host re-replication. Having a better understanding of the molecular events that are required for BKPyV production will help identify effective therapeutic targets against BKPyV.
Collapse
Affiliation(s)
- Jason M. Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama United States of America
| | - Sarah E. Perritt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama United States of America
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama United States of America
| |
Collapse
|
14
|
Wu Y, Zhang Q, Lin Y, Lam WH, Zhai Y. Replication licensing regulated by a short linear motif within an intrinsically disordered region of origin recognition complex. Nat Commun 2024; 15:8039. [PMID: 39271725 PMCID: PMC11399261 DOI: 10.1038/s41467-024-52408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
In eukaryotes, the origin recognition complex (ORC) faciliates the assembly of pre-replicative complex (pre-RC) at origin DNA for replication licensing. Here we show that the N-terminal intrinsically disordered region (IDR) of the yeast Orc2 subunit is crucial for this process. Removing a segment (residues 176-200) from Orc2-IDR or mutating a key isoleucine (194) significantly inhibits replication initiation across the genome. These Orc2-IDR mutants are capable of assembling the ORC-Cdc6-Cdt1-Mcm2-7 intermediate, which exhibits impaired ATP hydrolysis and fails to be convered into the subsequent Mcm2-7-ORC complex and pre-RC. These defects can be partially rescued by the Orc2-IDR peptide. Moreover, the phosphorylation of this Orc2-IDR region by S cyclin-dependent kinase blocks its binding to Mcm2-7 complex, causing a defective pre-RC assembly. Our findings provide important insights into the multifaceted roles of ORC in supporting origin licensing during the G1 phase and its regulation to restrict origin firing within the S phase.
Collapse
Affiliation(s)
- Yue Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Qiongdan Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuhan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wai Hei Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Bejarano Franco M, Boujataoui S, Hadji M, Hammer L, Ulrich HD, Reuter LM. Analysis of cell cycle stage, replicated DNA, and chromatin-associated proteins using high-throughput flow cytometry. Biol Chem 2024:hsz-2024-0058. [PMID: 39241223 DOI: 10.1515/hsz-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024]
Abstract
Flow cytometry is a versatile tool used for cell sorting, DNA content imaging, and determining various cellular characteristics. With the possibility of high-throughput analyses, it combines convenient labelling techniques to serve rapid, quantitative, and qualitative workflows. The ease of sample preparation and the broad range of applications render flow cytometry a preferred approach for many scientific questions. Yet, we lack practical adaptations to fully harness the quantitative and high-throughput capabilities of most cytometers for many organisms. Here, we present simple and advanced protocols for the analysis of total DNA content, de novo DNA synthesis, and protein association to chromatin in budding yeast and human cells. Upon optimization of experimental conditions and choice of fluorescent dyes, up to four parameters can be measured simultaneously and quantitatively for each cell of a population in a multi-well plate format. Reducing sample numbers, plastic waste, costs per well, and hands-on time without compromising signal quality or single-cell accuracy are the main advantages of the presented protocols. In proof-of-principle experiments, we show that DNA content increase in S-phase correlates with de novo DNA synthesis and can be predicted by the presence of the replicative helicase MCM2-7 on genomic DNA.
Collapse
Affiliation(s)
| | - Safia Boujataoui
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Majd Hadji
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Louis Hammer
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - L Maximilian Reuter
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
16
|
Polo Rivera C, Deegan TD, Labib KPM. CMG helicase disassembly is essential and driven by two pathways in budding yeast. EMBO J 2024; 43:3818-3845. [PMID: 39039287 PMCID: PMC11405719 DOI: 10.1038/s44318-024-00161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
The CMG helicase is the stable core of the eukaryotic replisome and is ubiquitylated and disassembled during DNA replication termination. Fungi and animals use different enzymes to ubiquitylate the Mcm7 subunit of CMG, suggesting that CMG ubiquitylation arose repeatedly during eukaryotic evolution. Until now, it was unclear whether cells also have ubiquitin-independent pathways for helicase disassembly and whether CMG disassembly is essential for cell viability. Using reconstituted assays with budding yeast CMG, we generated the mcm7-10R allele that compromises ubiquitylation by SCFDia2. mcm7-10R delays helicase disassembly in vivo, driving genome instability in the next cell cycle. These data indicate that defective CMG ubiquitylation explains the major phenotypes of cells lacking Dia2. Notably, the viability of mcm7-10R and dia2∆ is dependent upon the related Rrm3 and Pif1 DNA helicases that have orthologues in all eukaryotes. We show that Rrm3 acts during S-phase to disassemble old CMG complexes from the previous cell cycle. These findings indicate that CMG disassembly is essential in yeast cells and suggest that Pif1-family helicases might have mediated CMG disassembly in ancestral eukaryotes.
Collapse
Affiliation(s)
- Cristian Polo Rivera
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Karim P M Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
17
|
Reuter LM, Khadayate SP, Mossler A, Liebl K, Faull SV, Karimi MM, Speck C. MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nat Commun 2024; 15:7306. [PMID: 39181881 PMCID: PMC11344781 DOI: 10.1038/s41467-024-51538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Origin recognition complex (ORC)-dependent loading of the replicative helicase MCM2-7 onto replication origins in G1-phase forms the basis of replication fork establishment in S-phase. However, how ORC and MCM2-7 facilitate genome-wide DNA licensing is not fully understood. Mapping the molecular footprints of budding yeast ORC and MCM2-7 genome-wide, we discovered that MCM2-7 loading is associated with ORC release from origins and redistribution to non-origin sites. Our bioinformatic analysis revealed that origins are compact units, where a single MCM2-7 double hexamer blocks repetitive loading through steric ORC binding site occlusion. Analyses of A-elements and an improved B2-element consensus motif uncovered that DNA shape, DNA flexibility, and the correct, face-to-face spacing of the two DNA elements are hallmarks of ORC-binding and efficient helicase loading sites. Thus, our work identified fundamental principles for MCM2-7 helicase loading that explain how origin licensing is realised across the genome.
Collapse
Affiliation(s)
- L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz, Germany.
| | | | - Audrey Mossler
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Sarah V Faull
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.
| |
Collapse
|
18
|
Henrikus SS, Gross MH, Willhoft O, Pühringer T, Lewis JS, McClure AW, Greiwe JF, Palm G, Nans A, Diffley JFX, Costa A. Unwinding of a eukaryotic origin of replication visualized by cryo-EM. Nat Struct Mol Biol 2024; 31:1265-1276. [PMID: 38760633 PMCID: PMC11327109 DOI: 10.1038/s41594-024-01280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 05/19/2024]
Abstract
To prevent detrimental chromosome re-replication, DNA loading of a double hexamer of the minichromosome maintenance (MCM) replicative helicase is temporally separated from DNA unwinding. Upon S-phase transition in yeast, DNA unwinding is achieved in two steps: limited opening of the double helix and topological separation of the two DNA strands. First, Cdc45, GINS and Polε engage MCM to assemble a double CMGE with two partially separated hexamers that nucleate DNA melting. In the second step, triggered by Mcm10, two CMGEs separate completely, eject the lagging-strand template and cross paths. To understand Mcm10 during helicase activation, we used biochemical reconstitution with cryogenic electron microscopy. We found that Mcm10 splits the double CMGE by engaging the N-terminal homo-dimerization face of MCM. To eject the lagging strand, DNA unwinding is started from the N-terminal side of MCM while the hexamer channel becomes too narrow to harbor duplex DNA.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Marta H Gross
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
| | - Oliver Willhoft
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Thomas Pühringer
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Jacob S Lewis
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Allison W McClure
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Giacomo Palm
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
19
|
Jia J, Yu C. The Role of the MCM2-7 Helicase Subunit MCM2 in Epigenetic Inheritance. BIOLOGY 2024; 13:572. [PMID: 39194510 DOI: 10.3390/biology13080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
Recycling histone proteins from parental chromatin, a process known as parental histone transfer, is an important component in chromosome replication and is essential for epigenetic inheritance. We review recent advances in our understanding of the recycling mechanism of parental histone H3-H4 tetramers (parH3:H4tet), emphasizing the pivotal role of the DNA replisome. In particular, we highlight the function of the MCM2-7 helicase subunit Mcm2 as a histone H3-H4 tetramer chaperone. Disruption of this histone chaperone's functions affects mouse embryonic stem cell differentiation and can lead to embryonic lethality in mice, underscoring the crucial role of the replisome in maintaining epigenomic stability.
Collapse
Affiliation(s)
- Jing Jia
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Chuanhe Yu
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
20
|
Terui R, Berger SE, Sambel LA, Song D, Chistol G. Single-molecule imaging reveals the mechanism of bidirectional replication initiation in metazoa. Cell 2024; 187:3992-4009.e25. [PMID: 38866019 PMCID: PMC11283366 DOI: 10.1016/j.cell.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG helicases (Cdc45⋅Mcm2-7⋅GINS) at each origin. This requires several replication firing factors (including TopBP1, RecQL4, and DONSON) whose exact roles are still under debate. How two helicases are correctly assembled and activated at each origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered that replication initiation is surprisingly dynamic. First, TopBP1 transiently binds to the origin and dissociates before the start of DNA synthesis. Second, two Cdc45 are recruited together, even though Cdc45 alone cannot dimerize. Next, two copies of DONSON and two GINS simultaneously arrive at the origin, completing the assembly of two CMG helicases. Finally, RecQL4 is recruited to the CMG⋅DONSON⋅DONSON⋅CMG complex and promotes DONSON dissociation and CMG activation via its ATPase activity.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Scott E Berger
- Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Larissa A Sambel
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dan Song
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Gheorghe Chistol
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA; BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Stillman B. Establishing a biochemical understanding of the initiation of chromosome replication in bacteria. Proc Natl Acad Sci U S A 2024; 121:e2400667121. [PMID: 38758693 PMCID: PMC11161774 DOI: 10.1073/pnas.2400667121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.
Collapse
Affiliation(s)
- Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
22
|
Adiji OA, McConnell BS, Parker MW. The origin recognition complex requires chromatin tethering by a hypervariable intrinsically disordered region that is functionally conserved from sponge to man. Nucleic Acids Res 2024; 52:4344-4360. [PMID: 38381902 PMCID: PMC11077064 DOI: 10.1093/nar/gkae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
The first step toward eukaryotic genome duplication is loading of the replicative helicase onto chromatin. This 'licensing' step initiates with the recruitment of the origin recognition complex (ORC) to chromatin, which is thought to occur via ORC's ATP-dependent DNA binding and encirclement activity. However, we have previously shown that ATP binding is dispensable for the chromatin recruitment of fly ORC, raising the question of how metazoan ORC binds chromosomes. We show here that the intrinsically disordered region (IDR) of fly Orc1 is both necessary and sufficient for recruitment of ORC to chromosomes in vivo and demonstrate that this is regulated by IDR phosphorylation. Consistently, we find that the IDR confers the ORC holocomplex with ATP-independent DNA binding activity in vitro. Using phylogenetic analysis, we make the surprising observation that metazoan Orc1 IDRs have diverged so markedly that they are unrecognizable as orthologs and yet we find that these compositionally homologous sequences are functionally conserved. Altogether, these data suggest that chromatin is recalcitrant to ORC's ATP-dependent DNA binding activity, necessitating IDR-dependent chromatin tethering, which we propose poises ORC to opportunistically encircle nucleosome-free regions as they become available.
Collapse
Affiliation(s)
- Olubu A Adiji
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Brendan S McConnell
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
23
|
Rankin BD, Rankin S. The MCM2-7 Complex: Roles beyond DNA Unwinding. BIOLOGY 2024; 13:258. [PMID: 38666870 PMCID: PMC11048021 DOI: 10.3390/biology13040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The MCM2-7 complex is a hexameric protein complex that serves as a DNA helicase. It unwinds the DNA double helix during DNA replication, thereby providing the single-stranded replication template. In recent years, it has become clear that the MCM2-7 complex has additional functions that extend well beyond its role in DNA replication. Through physical and functional interactions with different pathways, it impacts other nuclear events and activities, including folding of the genome, histone inheritance, chromosome segregation, DNA damage sensing and repair, and gene transcription. Collectively, the diverse roles of the MCM2-7 complex suggest it plays a critical role in maintaining genome integrity by integrating the regulation of DNA replication with other pathways in the nucleus.
Collapse
Affiliation(s)
- Brooke D. Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
24
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple pathways for licensing human replication origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588796. [PMID: 38645015 PMCID: PMC11030351 DOI: 10.1101/2024.04.10.588796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.
Collapse
Affiliation(s)
| | | | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
25
|
Bhat SY. Drug targeting of aminopeptidases: importance of deploying a right metal cofactor. Biophys Rev 2024; 16:249-256. [PMID: 38737204 PMCID: PMC11078913 DOI: 10.1007/s12551-024-01192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/05/2022] [Indexed: 05/14/2024] Open
Abstract
Aminopeptidases are metal co-factor-dependent hydrolases releasing N-terminal amino acid residues from peptides. Many of these enzymes, particularly the M24 methionine aminopeptidases (MetAPs), are considered valid drug targets in the fight against many parasitic and non-parasitic diseases. Targeting MetAPs has shown promising results against the malarial parasite, Plasmodium, which is regarded as potential anti-cancer targets. While targeting these essential enzymes represents a potentially promising approach, many challenges are often ignored by scientists when designing drugs or inhibitory scaffolds against the MetAPs. One such aspect is the metal co-factor, with inadequate attention paid to its role in catalysis, folding and remodeling of the catalytic site, and its role in inhibitor binding or potency. Knowing that a metal co-factor is essential for aminopeptidase enzyme activity and active site remodeling, it is intriguing that most computational biologists often ignore the metal ion while screening millions of potential inhibitors to find hits. Ironically, a similar trend is followed by biologists who avoid metal promiscuity of these enzymes while screening inhibitor libraries in vitro which may lead to false positives. This review highlights the importance of considering a physiologically relevant metal co-factor during the drug discovery processes targeting metal-dependent aminopeptidases. Graphical abstract
Collapse
|
26
|
Jones RM, Reynolds-Winczura A, Gambus A. A Decade of Discovery-Eukaryotic Replisome Disassembly at Replication Termination. BIOLOGY 2024; 13:233. [PMID: 38666845 PMCID: PMC11048390 DOI: 10.3390/biology13040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The eukaryotic replicative helicase (CMG complex) is assembled during DNA replication initiation in a highly regulated manner, which is described in depth by other manuscripts in this Issue. During DNA replication, the replicative helicase moves through the chromatin, unwinding DNA and facilitating nascent DNA synthesis by polymerases. Once the duplication of a replicon is complete, the CMG helicase and the remaining components of the replisome need to be removed from the chromatin. Research carried out over the last ten years has produced a breakthrough in our understanding, revealing that replication termination, and more specifically replisome disassembly, is indeed a highly regulated process. This review brings together our current understanding of these processes and highlights elements of the mechanism that are conserved or have undergone divergence throughout evolution. Finally, we discuss events beyond the classic termination of DNA replication in S-phase and go over the known mechanisms of replicative helicase removal from chromatin in these particular situations.
Collapse
Affiliation(s)
- Rebecca M. Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
- School of Biosciences, Aston University, Birmingham B4 7ET, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
| |
Collapse
|
27
|
Terui R, Berger S, Sambel L, Song D, Chistol G. Single-Molecule Imaging Reveals the Mechanism of Bidirectional Replication Initiation in Metazoa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587265. [PMID: 38585807 PMCID: PMC10996697 DOI: 10.1101/2024.03.28.587265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG (Cdc45•Mcm2-7•GINS) helicases at each origin. This requires several firing factors (including TopBP1, RecQL4, DONSON) whose exact roles remain unclear. How two helicases are correctly assembled and activated at every single origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered a surprisingly dynamic picture of initiation. Firing factors transiently bind origins but do not travel with replisomes. Two Cdc45 simultaneously arrive at each origin and two GINS are recruited together, even though neither protein can dimerize. The synchronized delivery of two GINS is mediated by DONSON, which acts as a dimerization scaffold. We show that RecQL4 promotes DONSON dissociation and facilitates helicase activation. The high fidelity of bidirectional origin firing can be explained by a Hopfield-style kinetic proofreading mechanism.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
| | - Scott Berger
- Biophysics Program, Stanford School of Medicine, Stanford CA94305
| | - Larissa Sambel
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
| | - Dan Song
- Current Address: Eikon Therapeutics Inc
| | - Gheorghe Chistol
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
- Biophysics Program, Stanford School of Medicine, Stanford CA94305
- Cancer Biology Program, Stanford School of Medicine, Stanford CA94305
- Stanford Cancer Institute, Stanford School of Medicine, Stanford CA94305
- BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford CA94305
| |
Collapse
|
28
|
Kahm YJ, Kim IG, Kim RK. Regulation of cancer stem cells by CXCL1, a chemokine whose secretion is controlled by MCM2. BMC Cancer 2024; 24:319. [PMID: 38454443 PMCID: PMC10921750 DOI: 10.1186/s12885-024-12085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7. METHODS MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2. RESULTS There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2. CONCLUSIONS MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.
Collapse
Affiliation(s)
- Yeon-Jee Kahm
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, 34057, Daejeon, Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-Gu, 34113, Daejeon, Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, 34057, Daejeon, Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-Gu, 34113, Daejeon, Korea
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, 34057, Daejeon, Korea.
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-Gu, 34113, Daejeon, Korea.
| |
Collapse
|
29
|
Oram MK, Baxley RM, Simon EM, Lin K, Chang YC, Wang L, Myers CL, Bielinsky AK. RNF4 prevents genomic instability caused by chronic DNA under-replication. DNA Repair (Amst) 2024; 135:103646. [PMID: 38340377 PMCID: PMC10948022 DOI: 10.1016/j.dnarep.2024.103646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Eukaryotic genome stability is maintained by a complex and diverse set of molecular processes. One class of enzymes that promotes proper DNA repair, replication and cell cycle progression comprises small ubiquitin-like modifier (SUMO)-targeted E3 ligases, or STUbLs. Previously, we reported a role for the budding yeast STUbL synthetically lethal with sgs1 (Slx) 5/8 in preventing G2/M-phase arrest in a minichromosome maintenance protein 10 (Mcm10)-deficient model of replication stress. Here, we extend these studies to human cells, examining the requirement for the human STUbL RING finger protein 4 (RNF4) in MCM10 mutant cancer cells. We find that MCM10 and RNF4 independently promote origin firing but regulate DNA synthesis epistatically and, unlike in yeast, the negative genetic interaction between RNF4 and MCM10 causes cells to accumulate in G1-phase. When MCM10 is deficient, RNF4 prevents excessive DNA under-replication at hard-to-replicate regions that results in large DNA copy number alterations and severely reduced viability. Overall, our findings highlight that STUbLs participate in species-specific mechanisms to maintain genome stability, and that human RNF4 is required for origin activation in the presence of chronic replication stress.
Collapse
Affiliation(s)
- Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily M Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Day M, Tetik B, Parlak M, Almeida-Hernández Y, Räschle M, Kaschani F, Siegert H, Marko A, Sanchez-Garcia E, Kaiser M, Barker IA, Pearl LH, Oliver AW, Boos D. TopBP1 utilises a bipartite GINS binding mode to support genome replication. Nat Commun 2024; 15:1797. [PMID: 38413589 PMCID: PMC10899662 DOI: 10.1038/s41467-024-45946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polε) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polε subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.
Collapse
Affiliation(s)
- Matthew Day
- School of Biological and Behavioural Sciences, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK.
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| | - Bilal Tetik
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Milena Parlak
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Yasser Almeida-Hernández
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technical University Dortmund, Emil-Figge Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Markus Räschle
- Molecular Genetics, Technical University Kaiserslautern, Paul-Ehrlich Straße 24, 67663, Kaiserslautern, Germany
| | - Farnusch Kaschani
- Analytics Core Facility Essen, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
- Chemical Biology, Center of Medical Biotechnology, University Duisburg-Essen, Fakultät Biologie, Essen, Germany
| | - Heike Siegert
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Anika Marko
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technical University Dortmund, Emil-Figge Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
| | - Markus Kaiser
- Analytics Core Facility Essen, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany
- Chemical Biology, Center of Medical Biotechnology, University Duisburg-Essen, Fakultät Biologie, Essen, Germany
| | - Isabel A Barker
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW1E 6BT, UK.
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| | - Dominik Boos
- Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstraße 2-5, 45141, Essen, Germany.
| |
Collapse
|
31
|
Yadav AK, Polasek-Sedlackova H. Quantity and quality of minichromosome maintenance protein complexes couple replication licensing to genome integrity. Commun Biol 2024; 7:167. [PMID: 38336851 PMCID: PMC10858283 DOI: 10.1038/s42003-024-05855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Accurate and complete replication of genetic information is a fundamental process of every cell division. The replication licensing is the first essential step that lays the foundation for error-free genome duplication. During licensing, minichromosome maintenance protein complexes, the molecular motors of DNA replication, are loaded to genomic sites called replication origins. The correct quantity and functioning of licensed origins are necessary to prevent genome instability associated with severe diseases, including cancer. Here, we delve into recent discoveries that shed light on the novel functions of licensed origins, the pathways necessary for their proper maintenance, and their implications for cancer therapies.
Collapse
Affiliation(s)
- Anoop Kumar Yadav
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Polasek-Sedlackova
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
32
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Cvetkovic MA, Passaretti P, Butryn A, Reynolds-Winczura A, Kingsley G, Skagia A, Fernandez-Cuesta C, Poovathumkadavil D, George R, Chauhan AS, Jhujh SS, Stewart GS, Gambus A, Costa A. The structural mechanism of dimeric DONSON in replicative helicase activation. Mol Cell 2023; 83:4017-4031.e9. [PMID: 37820732 PMCID: PMC7616792 DOI: 10.1016/j.molcel.2023.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.
Collapse
Affiliation(s)
- Milos A Cvetkovic
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Agata Butryn
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Georgia Kingsley
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Aggeliki Skagia
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Cyntia Fernandez-Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Divyasree Poovathumkadavil
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Anoop S Chauhan
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
34
|
Zhang Z, Sun W, Wen L, Liu Y, Guo X, Liu Y, Yao C, Xue Q, Sun Z, Wang Z, Zhang Y. Dynamic gene regulatory networks improving spike fertility through regulation of floret primordia fate in wheat. PLANT, CELL & ENVIRONMENT 2023; 46:3628-3643. [PMID: 37485926 DOI: 10.1111/pce.14672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The developmental process of spike is critical for spike fertility through affecting floret primordia fate in wheat; however, the genetic regulation of this dynamic and complex developmental process remains unclear. Here, we conducted a high temporal-resolution analysis of spike transcriptomes and monitored the number and morphology of floret primordia within spike. The development of all floret primordia in a spike was clearly separated into three distinct phases: differentiation, pre-dimorphism and dimorphism. Notably, we identified that floret primordia with meiosis ability at the pre-dimorphism phase usually develop into fertile floret primordia in the next dimorphism phase. Compared to control, increasing plant space treatment achieved the maximum increasement range (i.e., 50%) in number of fertile florets by accelerating spike development. The process of spike fertility improvement was directed by a continuous and dynamic regulatory network involved in transcription factor and genes interaction. This was based on the coordination of genes related to heat shock protein and jasmonic acid biosynthesis during differentiation phase, and genes related to lignin, anthocyanin and chlorophyll biosynthesis during dimorphism phase. The multi-dimensional association with high temporal-resolution approach reported here allows rapid identification of genetic resource for future breeding studies to realise the maximum spike fertility potential in more cereal crops.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wan Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liangyun Wen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yaqun Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaolei Guo
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chunsheng Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, Texas, USA
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, China
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, China
| |
Collapse
|
35
|
Pike AM, Friend CM, Bell SP. Distinct RPA functions promote eukaryotic DNA replication initiation and elongation. Nucleic Acids Res 2023; 51:10506-10518. [PMID: 37739410 PMCID: PMC10602884 DOI: 10.1093/nar/gkad765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Replication protein A (RPA) binds single-stranded DNA (ssDNA) and serves critical functions in eukaryotic DNA replication, the DNA damage response, and DNA repair. During DNA replication, RPA is required for extended origin DNA unwinding and DNA synthesis. To determine the requirements for RPA during these processes, we tested ssDNA-binding proteins (SSBs) from different domains of life in reconstituted Saccharomyces cerevisiae origin unwinding and DNA replication reactions. Interestingly, Escherichia coli SSB, but not T4 bacteriophage Gp32, fully substitutes for RPA in promoting origin DNA unwinding. Using RPA mutants, we demonstrated that specific ssDNA-binding properties of RPA are required for origin unwinding but that its protein-interaction domains are dispensable. In contrast, we found that each of these auxiliary RPA domains have distinct functions at the eukaryotic replication fork. The Rfa1 OB-F domain negatively regulates lagging-strand synthesis, while the Rfa2 winged-helix domain stimulates nascent strand initiation. Together, our findings reveal a requirement for specific modes of ssDNA binding in the transition to extensive origin DNA unwinding and identify RPA domains that differentially impact replication fork function.
Collapse
Affiliation(s)
- Alexandra M Pike
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | - Caitlin M Friend
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Sánchez H, Liu Z, van Veen E, van Laar T, Diffley JFX, Dekker NH. A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint. Nat Commun 2023; 14:6735. [PMID: 37872142 PMCID: PMC10593741 DOI: 10.1038/s41467-023-42524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Chromatin replication involves the assembly and activity of the replisome within the nucleosomal landscape. At the core of the replisome is the Mcm2-7 complex (MCM), which is loaded onto DNA after binding to the Origin Recognition Complex (ORC). In yeast, ORC is a dynamic protein that diffuses rapidly along DNA, unless halted by origin recognition sequences. However, less is known about the dynamics of ORC proteins in the presence of nucleosomes and attendant consequences for MCM loading. To address this, we harnessed an in vitro single-molecule approach to interrogate a chromatinized origin of replication. We find that ORC binds the origin of replication with similar efficiency independently of whether the origin is chromatinized, despite ORC mobility being reduced by the presence of nucleosomes. Recruitment of MCM also proceeds efficiently on a chromatinized origin, but subsequent movement of MCM away from the origin is severely constrained. These findings suggest that chromatinized origins in yeast are essential for the local retention of MCM, which may facilitate subsequent assembly of the replisome.
Collapse
Affiliation(s)
- Humberto Sánchez
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Zhaowei Liu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Edo van Veen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, United Kingdom
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
37
|
Xia Y, Sonneville R, Jenkyn-Bedford M, Ji L, Alabert C, Hong Y, Yeeles JT, Labib KP. DNSN-1 recruits GINS for CMG helicase assembly during DNA replication initiation in Caenorhabditis elegans. Science 2023; 381:eadi4932. [PMID: 37590372 PMCID: PMC7615117 DOI: 10.1126/science.adi4932] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Assembly of the CMG (CDC-45-MCM-2-7-GINS) helicase is the key regulated step during eukaryotic DNA replication initiation. Until now, it was unclear whether metazoa require additional factors that are not present in yeast. In this work, we show that Caenorhabditis elegans DNSN-1, the ortholog of human DONSON, functions during helicase assembly in a complex with MUS-101/TOPBP1. DNSN-1 is required to recruit the GINS complex to chromatin, and a cryo-electron microscopy structure indicates that DNSN-1 positions GINS on the MCM-2-7 helicase motor (comprising the six MCM-2 to MCM-7 proteins), by direct binding of DNSN-1 to GINS and MCM-3, using interfaces that we show are important for initiation and essential for viability. These findings identify DNSN-1 as a missing link in our understanding of DNA replication initiation, suggesting that initiation defects underlie the human disease syndrome that results from DONSON mutations.
Collapse
Affiliation(s)
- Yisui Xia
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Remi Sonneville
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | | | - Liqin Ji
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Constance Alabert
- Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Ye Hong
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, U.K
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Joseph T.P. Yeeles
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, U.K
| | - Karim P.M. Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
38
|
Xu Z, Feng J, Yu D, Huo Y, Ma X, Lam WH, Liu Z, Li XD, Ishibashi T, Dang S, Zhai Y. Synergism between CMG helicase and leading strand DNA polymerase at replication fork. Nat Commun 2023; 14:5849. [PMID: 37730685 PMCID: PMC10511561 DOI: 10.1038/s41467-023-41506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
The replisome that replicates the eukaryotic genome consists of at least three engines: the Cdc45-MCM-GINS (CMG) helicase that separates duplex DNA at the replication fork and two DNA polymerases, one on each strand, that replicate the unwound DNA. Here, we determined a series of cryo-electron microscopy structures of a yeast replisome comprising CMG, leading-strand polymerase Polε and three accessory factors on a forked DNA. In these structures, Polε engages or disengages with the motor domains of the CMG by occupying two alternative positions, which closely correlate with the rotational movement of the single-stranded DNA around the MCM pore. During this process, the polymerase remains stably coupled to the helicase using Psf1 as a hinge. This synergism is modulated by a concerted rearrangement of ATPase sites to drive DNA translocation. The Polε-MCM coupling is not only required for CMG formation to initiate DNA replication but also facilitates the leading-strand DNA synthesis mediated by Polε. Our study elucidates a mechanism intrinsic to the replisome that coordinates the activities of CMG and Polε to negotiate any roadblocks, DNA damage, and epigenetic marks encountered during translocation along replication forks.
Collapse
Affiliation(s)
- Zhichun Xu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jianrong Feng
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Yunjing Huo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiaohui Ma
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Wai Hei Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Toyotaka Ishibashi
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- HKUST-Shenzhen Research Institute, 518057, Nanshan, Shenzhen, China.
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Amasino AL, Gupta S, Friedman LJ, Gelles J, Bell SP. Regulation of replication origin licensing by ORC phosphorylation reveals a two-step mechanism for Mcm2-7 ring closing. Proc Natl Acad Sci U S A 2023; 120:e2221484120. [PMID: 37428921 PMCID: PMC10629557 DOI: 10.1073/pnas.2221484120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/03/2023] [Indexed: 07/12/2023] Open
Abstract
Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is prevented outside of G1 by cyclin-dependent kinase (CDK) phosphorylation of three helicase-loading proteins: Cdc6, the Mcm2-7 helicase, and the origin recognition complex (ORC). CDK inhibition of Cdc6 and Mcm2-7 is well understood. Here we use single-molecule assays for multiple events during origin licensing to determine how CDK phosphorylation of ORC suppresses helicase loading. We find that phosphorylated ORC recruits a first Mcm2-7 to origins but prevents second Mcm2-7 recruitment. The phosphorylation of the Orc6, but not of the Orc2 subunit, increases the fraction of first Mcm2-7 recruitment events that are unsuccessful due to the rapid and simultaneous release of the helicase and its associated Cdt1 helicase-loading protein. Real-time monitoring of first Mcm2-7 ring closing reveals that either Orc2 or Orc6 phosphorylation prevents Mcm2-7 from stably encircling origin DNA. Consequently, we assessed formation of the MO complex, an intermediate that requires the closed-ring form of Mcm2-7. We found that ORC phosphorylation fully inhibits MO complex formation and we provide evidence that this event is required for stable closing of the first Mcm2-7. Our studies show that multiple steps of helicase loading are impacted by ORC phosphorylation and reveal that closing of the first Mcm2-7 ring is a two-step process started by Cdt1 release and completed by MO complex formation.
Collapse
Affiliation(s)
- Audra L. Amasino
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shalini Gupta
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA02454
| | - Stephen P. Bell
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
40
|
Zhang A, Friedman LJ, Gelles J, Bell SP. Changing protein-DNA interactions promote ORC binding site exchange during replication origin licensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545300. [PMID: 37398123 PMCID: PMC10312730 DOI: 10.1101/2023.06.16.545300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
During origin licensing, the eukaryotic replicative helicase Mcm2-7 forms head-to-head double hexamers to prime origins for bidirectional replication. Recent single-molecule and structural studies revealed that one molecule of the helicase loader ORC can sequentially load two Mcm2-7 hexamers to ensure proper head-to-head helicase alignment. To perform this task, ORC must release from its initial high-affinity DNA binding site and "flip" to bind a weaker, inverted DNA site. However, the mechanism of this binding-site switch remains unclear. In this study, we used single-molecule Förster resonance energy transfer (sm-FRET) to study the changing interactions between DNA and ORC or Mcm2-7. We found that the loss of DNA bending that occurs during DNA deposition into the Mcm2-7 central channel increases the rate of ORC dissociation from DNA. Further studies revealed temporally-controlled DNA sliding of helicase-loading intermediates, and that the first sliding complex includes ORC, Mcm2-7, and Cdt1. We demonstrate that sequential events of DNA unbending, Cdc6 release, and sliding lead to a stepwise decrease in ORC stability on DNA, facilitating ORC dissociation from its strong binding site during site switching. In addition, the controlled sliding we observed provides insight into how ORC accesses secondary DNA binding sites at different locations relative to the initial binding site. Our study highlights the importance of dynamic protein-DNA interactions in the loading of two oppositely-oriented Mcm2-7 helicases to ensure bidirectional DNA replication. Significance Statement Bidirectional DNA replication, in which two replication forks travel in opposite directions from each origin of replication, is required for complete genome duplication. To prepare for this event, two copies of the Mcm2-7 replicative helicase are loaded at each origin in opposite orientations. Using single-molecule assays, we studied the sequence of changing protein-DNA interactions involved in this process. These stepwise changes gradually reduce the DNA-binding strength of ORC, the primary DNA binding protein involved in this event. This reduced affinity promotes ORC dissociation and rebinding in the opposite orientation on the DNA, facilitating the sequential assembly of two Mcm2-7 molecules in opposite orientations. Our findings identify a coordinated series of events that drive proper DNA replication initiation.
Collapse
Affiliation(s)
- Annie Zhang
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J. Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Hatoyama Y, Kanemaki MT. The assembly of the MCM2-7 hetero-hexamer and its significance in DNA replication. Biochem Soc Trans 2023:233028. [PMID: 37145026 DOI: 10.1042/bst20221465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
The mini-chromosome maintenance proteins 2-7 (MCM2-7) hexamer is a protein complex that is key for eukaryotic DNA replication, which occurs only once per cell cycle. To achieve DNA replication, eukaryotic cells developed multiple mechanisms that control the timing of the loading of the hexamer onto chromatin and its activation as the replicative helicase. MCM2-7 is highly abundant in proliferating cells, which confers resistance to replication stress. Thus, the presence of an excess of MCM2-7 is important for maintaining genome integrity. However, the mechanism via which high MCM2-7 levels are achieved, other than the transcriptional upregulation of the MCM genes in the G1 phase, remained unknown. Recently, we and others reported that the MCM-binding protein (MCMBP) plays a role in the maintenance of high MCM2-7 levels and hypothesized that MCMBP functions as a chaperone in the assembly of the MCM2-7 hexamer. In this review, we discuss the roles of MCMBP in the control of MCM proteins and propose a model of the assembly of the MCM2-7 hexamer. Furthermore, we discuss a potential mechanism of the licensing checkpoint, which arrests the cells in the G1 phase when the levels of chromatin-bound MCM2-7 are reduced, and the possibility of targeting MCMBP as a chemotherapy for cancer.
Collapse
Affiliation(s)
- Yuki Hatoyama
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Arbona JM, Kabalane H, Barbier J, Goldar A, Hyrien O, Audit B. Neural network and kinetic modelling of human genome replication reveal replication origin locations and strengths. PLoS Comput Biol 2023; 19:e1011138. [PMID: 37253070 PMCID: PMC10256156 DOI: 10.1371/journal.pcbi.1011138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/09/2023] [Accepted: 04/30/2023] [Indexed: 06/01/2023] Open
Abstract
In human and other metazoans, the determinants of replication origin location and strength are still elusive. Origins are licensed in G1 phase and fired in S phase of the cell cycle, respectively. It is debated which of these two temporally separate steps determines origin efficiency. Experiments can independently profile mean replication timing (MRT) and replication fork directionality (RFD) genome-wide. Such profiles contain information on multiple origins' properties and on fork speed. Due to possible origin inactivation by passive replication, however, observed and intrinsic origin efficiencies can markedly differ. Thus, there is a need for methods to infer intrinsic from observed origin efficiency, which is context-dependent. Here, we show that MRT and RFD data are highly consistent with each other but contain information at different spatial scales. Using neural networks, we infer an origin licensing landscape that, when inserted in an appropriate simulation framework, jointly predicts MRT and RFD data with unprecedented precision and underlies the importance of dispersive origin firing. We furthermore uncover an analytical formula that predicts intrinsic from observed origin efficiency combined with MRT data. Comparison of inferred intrinsic origin efficiencies with experimental profiles of licensed origins (ORC, MCM) and actual initiation events (Bubble-seq, SNS-seq, OK-seq, ORM) show that intrinsic origin efficiency is not solely determined by licensing efficiency. Thus, human replication origin efficiency is set at both the origin licensing and firing steps.
Collapse
Affiliation(s)
- Jean-Michel Arbona
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, France
| | - Hadi Kabalane
- ENS de Lyon, CNRS, Laboratoire de Physique, Lyon, France
| | - Jeremy Barbier
- ENS de Lyon, CNRS, Laboratoire de Physique, Lyon, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benjamin Audit
- ENS de Lyon, CNRS, Laboratoire de Physique, Lyon, France
| |
Collapse
|
43
|
Chacin E, Reusswig KU, Furtmeier J, Bansal P, Karl LA, Pfander B, Straub T, Korber P, Kurat CF. Establishment and function of chromatin organization at replication origins. Nature 2023; 616:836-842. [PMID: 37020028 DOI: 10.1038/s41586-023-05926-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase-the minichromosome maintenance (MCM) complex-at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2-4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication.
Collapse
Affiliation(s)
- Erika Chacin
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Karl-Uwe Reusswig
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica Furtmeier
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Priyanka Bansal
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Leonhard A Karl
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Genome Stability in Aging and Disease, CECAD, University of Cologne, Medical Faculty, Cologne, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, BMC, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Philipp Korber
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Christoph F Kurat
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany.
| |
Collapse
|
44
|
Amin A, Wu R, Khan MA, Cheung MH, Liang Y, Liu C, Zhu G, Yu ZL, Liang C. An essential Noc3p dimerization cycle mediates ORC double-hexamer formation in replication licensing. Life Sci Alliance 2023; 6:e202201594. [PMID: 36599624 PMCID: PMC9813392 DOI: 10.26508/lsa.202201594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.
Collapse
Affiliation(s)
- Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanting Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| |
Collapse
|
45
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
46
|
Amann SJ, Keihsler D, Bodrug T, Brown NG, Haselbach D. Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. Structure 2023; 31:4-19. [PMID: 36584678 PMCID: PMC9825670 DOI: 10.1016/j.str.2022.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 11/25/2022] [Indexed: 12/30/2022]
Abstract
Molecular machines, such as polymerases, ribosomes, or proteasomes, fulfill complex tasks requiring the thermal energy of their environment. They achieve this by restricting random motion along a path of possible conformational changes. These changes are often directed through engagement with different cofactors, which can best be compared to a Brownian ratchet. Many molecular machines undergo three major steps throughout their functional cycles, including initialization, repetitive processing, and termination. Several of these major states have been elucidated by cryogenic electron microscopy (cryo-EM). However, the individual steps for these machines are unique and multistep processes themselves, and their coordination in time is still elusive. To measure these short-lived intermediate events by cryo-EM, the total reaction time needs to be shortened to enrich for the respective pre-equilibrium states. This approach is termed time-resolved cryo-EM (trEM). In this review, we sum up the methodological development of trEM and its application to a range of biological questions.
Collapse
Affiliation(s)
- Sascha Josef Amann
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Demian Keihsler
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Tatyana Bodrug
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David Haselbach
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Institute for Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| |
Collapse
|
47
|
Amasino A, Gupta S, Friedman LJ, Gelles J, Bell SP. Regulation of replication origin licensing by ORC phosphorylation reveals a two-step mechanism for Mcm2-7 ring closing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522488. [PMID: 36711604 PMCID: PMC9881882 DOI: 10.1101/2023.01.02.522488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is prevented outside of G1 by cyclin-dependent kinase (CDK) phosphorylation of three helicase-loading proteins: Cdc6, the Mcm2-7 helicase, and the origin recognition complex (ORC). CDK inhibition of Cdc6 and Mcm2-7 are well understood. Here we use single-molecule assays for multiple events during origin licensing to determine how CDK phosphorylation of ORC suppresses helicase loading. We find that phosphorylated ORC recruits a first Mcm2-7 to origins but prevents second Mcm2-7 recruitment. Phosphorylation of the Orc6, but not of the Orc2 subunit, increases the fraction of first Mcm2-7 recruitment events that are unsuccessful due to the rapid and simultaneous release of the helicase and its associated Cdt1 helicase-loading protein. Real-time monitoring of first Mcm2-7 ring closing reveals that either Orc2 or Orc6 phosphorylation prevents Mcm2-7 from stably encircling origin DNA. Consequently, we assessed formation of the MO complex, an intermediate that requires the closed-ring form of Mcm2-7. We found that ORC phosphorylation fully inhibits MO-complex formation and provide evidence that this event is required for stable closing of the first Mcm2-7. Our studies show that multiple steps of helicase loading are impacted by ORC phosphorylation and reveal that closing of the first Mcm2-7 ring is a two-step process started by Cdt1 release and completed by MO-complex formation. Significance Statement Each time a eukaryotic cell divides (by mitosis) it must duplicate its chromosomal DNA exactly once to ensure that one full copy is passed to each resulting cell. Both under-replication or over-replication result in genome instability and disease or cell death. A key mechanism to prevent over-replication is the temporal separation of loading of the replicative DNA helicase at origins of replication and activation of these same helicases during the cell division cycle. Here we define the mechanism by which phosphorylation of the primary DNA binding protein involved in these events inhibits helicase loading. Our studies identify multiple steps of inhibition and provide new insights into the mechanism of helicase loading in the uninhibited condition.
Collapse
Affiliation(s)
- Audra Amasino
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shalini Gupta
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J. Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA,Co-corresponding authors: Stephen P. Bell, , Phone: 617-253-2054, Jeff Gelles, , Phone: 781-736-2377
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Co-corresponding authors: Stephen P. Bell, , Phone: 617-253-2054, Jeff Gelles, , Phone: 781-736-2377
| |
Collapse
|
48
|
SV40 T-antigen uses a DNA shearing mechanism to initiate origin unwinding. Proc Natl Acad Sci U S A 2022; 119:e2216240119. [PMID: 36442086 PMCID: PMC9894130 DOI: 10.1073/pnas.2216240119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Duplication of DNA genomes requires unwinding of the double-strand (ds) DNA so that each single strand (ss) can be copied by a DNA polymerase. The genomes of eukaryotic cells are unwound by two ring-shaped hexameric helicases that initially encircle dsDNA but transition to ssDNA for function as replicative helicases. How the duplex is initially unwound, and the role of the two helicases in this process, is poorly understood. We recently described an initiation mechanism for eukaryotes in which the two helicases are directed inward toward one another and shear the duplex open by pulling on opposite strands of the duplex while encircling dsDNA [L. D. Langston, M. E. O'Donnell, eLife 8, e46515 (2019)]. Two head-to-head T-Antigen helicases are long known to be loaded at the SV40 origin. We show here that T-Antigen tracks head (N-tier) first on ssDNA, opposite the direction proposed for decades. We also find that SV40 T-Antigen tracks directionally while encircling dsDNA and mainly tracks on one strand of the duplex in the same orientation as during ssDNA translocation. Further, two inward directed T-Antigen helicases on dsDNA are able to melt a 150-bp duplex. These findings explain the "rabbit ear" DNA loops observed at the SV40 origin by electron microscopy and reconfigure how the DNA loops emerge from the double hexamer relative to earlier models. Thus, the mechanism of DNA shearing by two opposing helicases is conserved in a eukaryotic viral helicase and may be widely used to initiate origin unwinding of dsDNA genomes.
Collapse
|
49
|
Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes. Nat Commun 2022; 13:6090. [PMID: 36241664 PMCID: PMC9568601 DOI: 10.1038/s41467-022-33887-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Genome duplication is safeguarded by constantly adjusting the activity of the replicative CMG (CDC45-MCM2-7-GINS) helicase. However, minichromosome maintenance proteins (MCMs)-the structural core of the CMG helicase-have never been visualized at sites of DNA synthesis inside a cell (the so-called MCM paradox). Here, we solve this conundrum by showing that anti-MCM antibodies primarily detect inactive MCMs. Upon conversion of inactive MCMs to CMGs, factors that are required for replisome activity bind to the MCM scaffold and block MCM antibody binding sites. Tagging of endogenous MCMs by CRISPR-Cas9 bypasses this steric hindrance and enables MCM visualization at active replisomes. Thus, by defining conditions for detecting the structural core of the replicative CMG helicase, our results explain the MCM paradox, provide visual proof that MCMs are an integral part of active replisomes in vivo, and enable the investigation of replication dynamics in living cells exposed to a constantly changing environment.
Collapse
|
50
|
Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu S. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Nat Commun 2022; 13:4947. [PMID: 35999198 PMCID: PMC9399094 DOI: 10.1038/s41467-022-32657-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
The numerous enzymes and cofactors involved in eukaryotic DNA replication are conserved from yeast to human, and the budding yeast Saccharomyces cerevisiae (S.c.) has been a useful model organism for these studies. However, there is a gap in our knowledge of why replication origins in higher eukaryotes do not use a consensus DNA sequence as found in S.c. Using in vitro reconstitution and single-molecule visualization, we show here that S.c. origin recognition complex (ORC) stably binds nucleosomes and that ORC-nucleosome complexes have the intrinsic ability to load the replicative helicase MCM double hexamers onto adjacent nucleosome-free DNA regardless of sequence. Furthermore, we find that Xenopus laevis nucleosomes can substitute for yeast ones in engaging with ORC. Combined with re-analyses of genome-wide ORC binding data, our results lead us to propose that the yeast origin recognition machinery contains the cryptic capacity to bind nucleosomes near a nucleosome-free region and license origins, and that this nucleosome-directed origin licensing paradigm generalizes to all eukaryotes.
Collapse
Affiliation(s)
- Sai Li
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Syros Pharmaceuticals, Cambridge, MA, USA
| | - Olga Yurieva
- Laboratory of DNA Replication, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Lu Bai
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, USA
| | - Michael E O'Donnell
- Laboratory of DNA Replication, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|