1
|
Gu R, Lambertsen Larsen K, Wang A, Tan J. Approaching Dynamic Behaviors of Life through Systems Chemistry. Chemistry 2025; 31:e202403083. [PMID: 39485372 DOI: 10.1002/chem.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024]
Abstract
The intricate interplay of metabolic reactions and molecular assembly in living systems enables spatiotemporally organization and gives rise to diverse dynamic behaviors that characterize life. Over the last decades, research efforts have increasingly focused on replicating the remarkable properties and characteristics of living systems, driving the rapid growth of systems chemistry. This young discipline which generally studies interacting molecular networks and emergent system-level properties, behaviors, and functions, offers new concepts and tools to tackle the complexity of life. In this review paper, we have explored seminal research and recent advancements in recreating dynamic behaviors of life with systems chemistry. We believe that the recreation of the dynamic behaviors of life through systems chemistry would set the initial steps to obtain synthetic life de novo.
Collapse
Affiliation(s)
- Ruirui Gu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Kim Lambertsen Larsen
- Department of Chemistry and Bioscience, Section of Chemistry Science and Engineering, Aalborg University, Fredrik Bajers Vej 7H, Aalborg Ø, Denmark
| | - Ali Wang
- Department of Chemistry, Section of Biological Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| | - Junjun Tan
- Department of Chemistry, Section of Biological Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| |
Collapse
|
2
|
Wu Q, Xu W, Shang J, Li J, Liu X, Wang F, Li J. Autocatalytic DNA circuitries. Chem Soc Rev 2024; 53:10878-10899. [PMID: 39400237 DOI: 10.1039/d4cs00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Autocatalysis, a self-sustained replication process where at least one of the products functions as a catalyst, plays a pivotal role in life's evolution, from genome duplication to the emergence of autocatalytic subnetworks in cell division and metabolism. Leveraging their programmability, controllability, and rich functionalities, DNA molecules have become a cornerstone for engineering autocatalytic circuits, driving diverse technological applications. In this tutorial review, we offer a comprehensive survey of recent advances in engineering autocatalytic DNA circuits and their practical implementations. We delve into the fundamental principles underlying the construction of these circuits, highlighting their reliance on DNAzyme biocatalysis, enzymatic catalysis, and dynamic hybridization assembly. The discussed autocatalytic DNA circuitry techniques have revolutionized ultrasensitive sensing of biologically significant molecules, encompassing genomic DNAs, RNAs, viruses, and proteins. Furthermore, the amplicons produced by these circuits serve as building blocks for higher-order DNA nanostructures, facilitating biomimetic behaviors such as high-performance intracellular bioimaging and precise algorithmic assembly. We summarize these applications and extensively address the current challenges, potential solutions, and future trajectories of autocatalytic DNA circuits. This review promises novel insights into the advancement and practical utilization of autocatalytic DNA circuits across bioanalysis, biomedicine, and biomimetics.
Collapse
Affiliation(s)
- Qiong Wu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jiajing Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
3
|
Sakref Y, Rivoire O. Design principles, growth laws, and competition of minimal autocatalysts. Commun Chem 2024; 7:239. [PMID: 39433950 PMCID: PMC11494078 DOI: 10.1038/s42004-024-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/23/2024] [Indexed: 10/23/2024] Open
Abstract
The difficulty of designing simple autocatalysts that grow exponentially in the absence of enzymes, external drives or ingenious internal mechanisms severely constrains scenarios for the emergence of evolution by natural selection in chemical and physical systems. Here, we systematically analyze these difficulties in the simplest and most generic autocatalyst: a dimeric molecule that duplicates by templated ligation. We show that despite its simplicity, such an autocatalyst can achieve exponential growth autonomously. We also show, however, that it is possible to design as simple sub-exponential autocatalysts that have an advantage over exponential autocatalysts when competing for a common resource. We reach these conclusions by developing a theoretical framework based on kinetic barrier diagrams. Besides challenging commonly accepted assumptions in the field of the origin of life, our results provide a blueprint for the experimental realization of elementary autocatalysts exhibiting a form of natural selection, whether on a molecular or colloidal scale.
Collapse
Affiliation(s)
- Yann Sakref
- Gulliver, CNRS, ESPCI, Université PSL, Paris, France
| | | |
Collapse
|
4
|
Ohata J. Friedel-Crafts reactions for biomolecular chemistry. Org Biomol Chem 2024; 22:3544-3558. [PMID: 38624091 DOI: 10.1039/d4ob00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.
Collapse
Affiliation(s)
- Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
5
|
Markovitch O, Wu J, Otto S. Binding of Precursors to Replicator Assemblies Can Improve Replication Fidelity and Mediate Error Correction. Angew Chem Int Ed Engl 2024; 63:e202317997. [PMID: 38380789 DOI: 10.1002/anie.202317997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Copying information is vital for life's propagation. Current life forms maintain a low error rate in replication, using complex machinery to prevent and correct errors. However, primitive life had to deal with higher error rates, limiting its ability to evolve. Discovering mechanisms to reduce errors would alleviate this constraint. Here, we introduce a new mechanism that decreases error rates and corrects errors in synthetic self-replicating systems driven by self-assembly. Previous work showed that macrocycle replication occurs through the accumulation of precursor material on the sides of the fibrous replicator assemblies. Stochastic simulations now reveal that selective precursor binding to the fiber surface enhances replication fidelity and error correction. Centrifugation experiments show that replicator fibers can exhibit the necessary selectivity in precursor binding. Our results suggest that synthetic replicator systems are more evolvable than previously thought, encouraging further evolution-focused experiments.
Collapse
Affiliation(s)
- Omer Markovitch
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Juntian Wu
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
| | - Sijbren Otto
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Liu K, Blokhuis A, van Ewijk C, Kiani A, Wu J, Roos WH, Otto S. Light-driven eco-evolutionary dynamics in a synthetic replicator system. Nat Chem 2024; 16:79-88. [PMID: 37653230 DOI: 10.1038/s41557-023-01301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Darwinian evolution involves the inheritance and selection of variations in reproducing entities. Selection can be based on, among others, interactions with the environment. Conversely, the replicating entities can also affect their environment generating a reciprocal feedback on evolutionary dynamics. The onset of such eco-evolutionary dynamics marks a stepping stone in the transition from chemistry to biology. Yet the bottom-up creation of a molecular system that exhibits eco-evolutionary dynamics has remained elusive. Here we describe the onset of such dynamics in a minimal system containing two synthetic self-replicators. The replicators are capable of binding and activating a co-factor, enabling them to change the oxidation state of their environment through photoredox catalysis. The replicator distribution adapts to this change and, depending on light intensity, one or the other replicator becomes dominant. This study shows how behaviour analogous to eco-evolutionary dynamics-which until now has been restricted to biology-can be created using an artificial minimal replicator system.
Collapse
Affiliation(s)
- Kai Liu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Alex Blokhuis
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Chris van Ewijk
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Armin Kiani
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Juntian Wu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Robust Dynamics of Synthetic Molecular Systems as a Consequence of Broken Symmetry. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The construction of molecular robot-like objects that imitate living things is an important challenge for current chemists. Such molecular devices are expected to perform their duties robustly to carry out mechanical motion, process information, and make independent decisions. Dissipative self-organization plays an essential role in meeting these purposes. To produce a micro-robot that can perform the above tasks autonomously as a single entity, a function generator is required. Although many elegant review articles featuring chemical devices that mimic biological mechanical functions have been published recently, the dissipative structure, which is the minimum requirement for mimicking these functions, has not been sufficiently discussed. This article aims to show clearly that dissipative self-organization is a phenomenon involving autonomy, robustness, mechanical functions, and energy transformation. Moreover, it reports the results of recent experiments with an autonomous light-driven molecular device that achieves all of these features. In addition, a chemical model of cell-amplification is also discussed to focus on the generation of hierarchical movement by dissipative self-organization. By reviewing this research, it may be perceived that mainstream approaches to synthetic chemistry have not always been appropriate. In summary, the author proposes that the integration of catalytic functions is a key issue for the creation of autonomous microarchitecture.
Collapse
|
8
|
Hanopolskyi AI, Smaliak VA, Novichkov AI, Semenov SN. Autocatalysis: Kinetics, Mechanisms and Design. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anton I. Hanopolskyi
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Viktoryia A. Smaliak
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Alexander I. Novichkov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Sergey N. Semenov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| |
Collapse
|
9
|
Rodon Fores J, Criado‐Gonzalez M, Chaumont A, Carvalho A, Blanck C, Schmutz M, Boulmedais F, Schaaf P, Jierry L. Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability. Angew Chem Int Ed Engl 2020; 59:14558-14563. [DOI: 10.1002/anie.202005377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Jennifer Rodon Fores
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Miryam Criado‐Gonzalez
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Alain Chaumont
- Université de Strasbourg Faculté de Chimie, UMR7140 1 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Alain Carvalho
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Christian Blanck
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Marc Schmutz
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Fouzia Boulmedais
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Pierre Schaaf
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Loïc Jierry
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
10
|
Rodon Fores J, Criado‐Gonzalez M, Chaumont A, Carvalho A, Blanck C, Schmutz M, Boulmedais F, Schaaf P, Jierry L. Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jennifer Rodon Fores
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Miryam Criado‐Gonzalez
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Alain Chaumont
- Université de Strasbourg Faculté de Chimie, UMR7140 1 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Alain Carvalho
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Christian Blanck
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Marc Schmutz
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Fouzia Boulmedais
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Pierre Schaaf
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Loïc Jierry
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
11
|
From self-replication to replicator systems en route to de novo life. Nat Rev Chem 2020; 4:386-403. [PMID: 37127968 DOI: 10.1038/s41570-020-0196-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
The process by which chemistry can give rise to biology remains one of the biggest mysteries in contemporary science. The de novo synthesis and origin of life both require the functional integration of three key characteristics - replication, metabolism and compartmentalization - into a system that is maintained out of equilibrium and is capable of open-ended Darwinian evolution. This Review takes systems of self-replicating molecules as starting points and describes the steps necessary to integrate additional characteristics of life. We analyse how far experimental self-replicators have come in terms of Darwinian evolution. We also cover models of replicator communities that attempt to solve Eigen's paradox, whereby accurate replication needs complex machinery yet obtaining such complex self-replicators through evolution requires accurate replication. Successful models rely on a collective metabolism and a way of (transient) compartmentalization, suggesting that the invention and integration of these two characteristics is driven by evolution. Despite our growing knowledge, there remain numerous key challenges that may be addressed by a combined theoretical and experimental approach.
Collapse
|
12
|
Ottelé J, Hussain AS, Mayer C, Otto S. Chance emergence of catalytic activity and promiscuity in a self-replicator. Nat Catal 2020. [DOI: 10.1038/s41929-020-0463-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator. Nat Chem 2020; 12:603-607. [PMID: 32591744 DOI: 10.1038/s41557-020-0494-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
Establishing how life can emerge from inanimate matter is among the grand challenges of contemporary science. Chemical systems that capture life's essential characteristics-replication, metabolism and compartmentalization-offer a route to understanding this momentous process. The synthesis of life, whether based on canonical biomolecules or fully synthetic molecules, requires the functional integration of these three characteristics. Here we show how a system of fully synthetic self-replicating molecules, on recruiting a cofactor, acquires the ability to transform thiols in its environment into disulfide precursors from which the molecules can replicate. The binding of replicator and cofactor enhances the activity of the latter in oxidizing thiols into disulfides through photoredox catalysis and thereby accelerates replication by increasing the availability of the disulfide precursors. This positive feedback marks the emergence of light-driven protometabolism in a system that bears no resemblance to canonical biochemistry and constitutes a major step towards the highly challenging aim of creating a new and completely synthetic form of life.
Collapse
|
14
|
Ignatowska J, Mironiuk-Puchalska E, Grześkowiak P, Wińska P, Wielechowska M, Bretner M, Karatsai O, Rędowicz MJ, Koszytkowska-Stawińska M. New insight into nucleo α-amino acids - Synthesis and SAR studies on cytotoxic activity of β-pyrimidine alanines. Bioorg Chem 2020; 100:103864. [PMID: 32446118 DOI: 10.1016/j.bioorg.2020.103864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Three series of the β-pyrimidine alanines, including willardiine - a naturally occurring amino acid, were prepared from the l-serine-derived sulfamidates. Compounds 3b, 4a and 4b demonstrated antiproliferative activity toward the studied cancer cell lines, albeit the effect of these compounds on human brain astrocytoma MOG-G-CCM cells was more significant than on human neuroblastoma SK-N-AS cells. The cytosine analog of willardiine, compound 4b, reduced viability of MOG-G-CCM cells with EC50 = 36 ± 2 μM, more effectively than AMPA antagonist GYKI 52466. Willardiine showed possible capability of affecting invasiveness of glioblastoma U251 MG cells with no effect on their viability and morphology. Compound 3d, the ethyl ester of willardiine, featured activity toward binding domain hHS1S2I of the GluR2 receptor. Docking analysis revealed that the location mode of compound 3d at the S1S2 domain of hGluR2 (PDB ID: 3R7X) might differ from that of willardiine.
Collapse
Affiliation(s)
- Jolanta Ignatowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ewa Mironiuk-Puchalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Piotr Grześkowiak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | | |
Collapse
|
15
|
Cai X, Kataria R, Gibb BC. Intrinsic and Extrinsic Control of the p Ka of Thiol Guests inside Yoctoliter Containers. J Am Chem Soc 2020; 142:8291-8298. [PMID: 32271561 DOI: 10.1021/jacs.0c00907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite decades of research, there are still many open questions surrounding the mechanisms by which enzymes catalyze reactions. Understanding all the noncovalent forces involved has the potential to allow de novo catalysis design, and as a step toward this, understanding how to control the charge state of ionizable groups represents a powerful yet straightforward approach to probing complex systems. Here we utilize supramolecular capsules assembled via the hydrophobic effect to encapsulate guests and control their acidity. We find that the greatest influence on the acidity of bound guests is the location of the acidic group within the yoctoliter space. However, the nature of the electrostatic field generated by the (remote) charged solubilizing groups also plays a significant role in acidity, as does counterion complexation to the outer surfaces of the capsules. Taken together, these results suggest new ways by which to affect reactions in confined spaces.
Collapse
Affiliation(s)
- Xiaoyang Cai
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Rhea Kataria
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
16
|
Wang K, Cai X, Yao W, Tang D, Kataria R, Ashbaugh HS, Byers LD, Gibb BC. Electrostatic Control of Macrocyclization Reactions within Nanospaces. J Am Chem Soc 2019; 141:6740-6747. [DOI: 10.1021/jacs.9b02287] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kaiya Wang
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Xiaoyang Cai
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Du Tang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Rhea Kataria
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S. Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Larry D Byers
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
17
|
Valls A, Altava B, Burguete MI, Escorihuela J, Martí-Centelles V, Luis SV. Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo00163h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supramolecular interactions based on amide groups direct the preferential formation of tritopic instead of monotopic or ditopic imidazolium compounds.
Collapse
Affiliation(s)
- Adriana Valls
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - M. Isabel Burguete
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Jorge Escorihuela
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | | | - Santiago V. Luis
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| |
Collapse
|
18
|
Wang K, Jordan JH, Gibb BC. Molecular protection of fatty acid methyl esters within a supramolecular capsule. Chem Commun (Camb) 2019; 55:11695-11698. [DOI: 10.1039/c9cc06501f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe the use of a supramolecular nano-capsule for selective protection of cis- and trans-C18 mono-unsaturated fatty-acid esters.
Collapse
Affiliation(s)
- Kaiya Wang
- College Of Material Science & Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211100
- China
| | | | - Bruce C. Gibb
- Department of Chemistry
- Tulane University
- New Orleans
- China
| |
Collapse
|
19
|
Banerjee S, Vanka K. B(C6F5)3: Catalyst or Initiator? Insights from Computational Studies into Surrogate Silicon Chemistry. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Subhrashis Banerjee
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Kumar Vanka
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
20
|
Barabás B, Kurdi R, Zucchi C, Pályi G. Isotope chirality in long-armed multifunctional organosilicon ("Cephalopod") molecules. Chirality 2018; 30:913-922. [PMID: 29733469 DOI: 10.1002/chir.22865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/10/2023]
Abstract
Long-armed multifunctional organosilicon molecules display self-replicating and self-perfecting behavior in asymmetric autocatalysis (Soai reaction). Two representatives of this class were studied by statistical methods aiming at determination of probabilities of natural abundance chiral isotopomers. The results, reported here, show an astonishing richness of possibilities of the formation of chiral isotopically substituted derivatives. This feature could serve as a model for the evolution of biological chirality in prebiotic and early biotic stereochemistry.
Collapse
Affiliation(s)
- Béla Barabás
- Department of Mathematics, University of Technology and Economics, Budapest, Hungary
| | - Róbert Kurdi
- Institute of Environmental Engineering, University of Pannonia, Veszprém, Hungary
| | - Claudia Zucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gyula Pályi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Kosikova T, Philp D. Exploring the emergence of complexity using synthetic replicators. Chem Soc Rev 2018; 46:7274-7305. [PMID: 29099123 DOI: 10.1039/c7cs00123a] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant number of synthetic systems capable of replicating themselves or entities that are complementary to themselves have appeared in the last 30 years. Building on an understanding of the operation of synthetic replicators in isolation, this field has progressed to examples where catalytic relationships between replicators within the same network and the extant reaction conditions play a role in driving phenomena at the level of the whole system. Systems chemistry has played a pivotal role in the attempts to understand the origin of biological complexity by exploiting the power of synthetic chemistry, in conjunction with the molecular recognition toolkit pioneered by the field of supramolecular chemistry, thereby permitting the bottom-up engineering of increasingly complex reaction networks from simple building blocks. This review describes the advances facilitated by the systems chemistry approach in relating the expression of complex and emergent behaviour in networks of replicators with the connectivity and catalytic relationships inherent within them. These systems, examined within well-stirred batch reactors, represent conceptual and practical frameworks that can then be translated to conditions that permit replicating systems to overcome the fundamental limits imposed on selection processes in networks operating under closed conditions. This shift away from traditional spatially homogeneous reactors towards dynamic and non-equilibrium conditions, such as those provided by reaction-diffusion reaction formats, constitutes a key change that mimics environments within cellular systems, which possess obvious compartmentalisation and inhomogeneity.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
22
|
Cullen W, Metherell AJ, Wragg AB, Taylor CGP, Williams NH, Ward MD. Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis. J Am Chem Soc 2018; 140:2821-2828. [PMID: 29412665 DOI: 10.1021/jacs.7b11334] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benzisoxazole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benzisoxazole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface.
Collapse
Affiliation(s)
- William Cullen
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | | | - Ashley B Wragg
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | | | | | - Michael D Ward
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, U.K
| |
Collapse
|
23
|
Zhang GW, Li PF, Wang HX, Han Y, Chen CF. Complexation of Racemic 2,6-Helic[6]arene and Its Hexamethyl-Substituted Derivative with Quaternary Ammonium Salts, N-Heterocyclic Salts, and Tetracyanoquinodimethane. Chemistry 2017; 23:3735-3742. [PMID: 28054424 DOI: 10.1002/chem.201605394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 12/28/2022]
Abstract
Complexation of racemic 2,6-helic[6]arene 1 and its hexamethyl-substituted derivative 2 with quaternary ammonium salts, N-heterocyclic salts, and tetracyanoquinodimethane have been described in detail. It was found that host 2 could form stable complexes with acetyl choline, thiaacetyl choline, N,N,N-trimethylbenzenammonium salt, pyridinium, and 4,4'-bipyridinium salts in solution and/or in the solid state. The unsubstituted macrocycle 1 showed more significant complexation with the widely tested quaternary ammonium salts and N-heterocyclic salts, and exhibited stronger complexation towards the guests than its derivative 2. Moreover, it was found that macrocycle 1 and its derivative 2 could also complex with neutral electron-deficient tetracyanoquinodimethane (TCNQ), and the association constants were determined to be 2840±94 and 1358±46 m-1 , respectively. These results could make this new macrocycle and its derivatives find wide applications in the design and construction of functional supramolecular assemblies.
Collapse
Affiliation(s)
- Geng-Wu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Peng-Fei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Han-Xiao Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
24
|
|
25
|
Schaufelberger F, Ramström O. Kinetic Self-Sorting of Dynamic Covalent Catalysts with Systemic Feedback Regulation. J Am Chem Soc 2016; 138:7836-9. [DOI: 10.1021/jacs.6b04250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH−Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH−Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| |
Collapse
|
26
|
Neelakandan PP, Jiménez A, Thoburn JD, Nitschke JR. An Autocatalytic System of Photooxidation-Driven Substitution Reactions on a FeII4L6Cage Framework. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Neelakandan PP, Jiménez A, Thoburn JD, Nitschke JR. An Autocatalytic System of Photooxidation-Driven Substitution Reactions on a Fe(II)4L6 Cage Framework. Angew Chem Int Ed Engl 2015; 54:14378-82. [PMID: 26437971 DOI: 10.1002/anie.201507045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Indexed: 12/11/2022]
Abstract
The functions of life are accomplished by systems exhibiting nonlinear kinetics: autocatalysis, in particular, is integral to the signal amplification that allows for biological information processing. Novel synthetic autocatalytic systems provide a foundation for the design of artificial chemical networks capable of carrying out complex functions. Here we report a set of Fe(II)4L6 cages containing BODIPY chromophores having tuneable photosensitizing properties. Electron-rich anilines were observed to displace electron-deficient anilines at the dynamic-covalent imine bonds of these cages. When iodoaniline residues were incorporated, heavy-atom effects led to enhanced (1)O2 production. The incorporation of (methylthio)aniline residues into a cage allowed for the design of an autocatalytic system: oxidation of the methylthio groups into sulfoxides make them electron-deficient and allows their displacement by iodoanilines, generating a better photocatalyst and accelerating the reaction.
Collapse
Affiliation(s)
- Prakash P Neelakandan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Current address: Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062 (India)
| | - Azucena Jiménez
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Current address: Department of Chemistry, University of Oviedo, Julian Clavería 8, Oviedo 33006 (Spain)
| | - John D Thoburn
- Department of Chemistry, Randolph-Macon College, Ashland, VA 23005 (USA)
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).
| |
Collapse
|
28
|
Nowak P, Colomb-Delsuc M, Otto S, Li J. Template-Triggered Emergence of a Self-Replicator from a Dynamic Combinatorial Library. J Am Chem Soc 2015; 137:10965-9. [PMID: 26192814 DOI: 10.1021/jacs.5b04380] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Self-assembly of a specific member of a dynamic combinatorial library (DCL) may lead to self-replication of this molecule. However, if the concentration of the potential replicator in the DCL fails to exceed its critical aggregation concentration (CAC), then self-replication will not occur. We now show how addition of a template can raise the concentration of a library member-template complex beyond its CAC, leading to the onset of self-replication. Once in existence, the replicator aggregates promote further replication also in the absence of the template that induced the initial emergence of the replicator.
Collapse
Affiliation(s)
- Piotr Nowak
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mathieu Colomb-Delsuc
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jianwei Li
- Centre for Systems Chemistry, Stratingh Insitute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
29
|
Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc Natl Acad Sci U S A 2015; 112:8187-92. [PMID: 26100914 DOI: 10.1073/pnas.1506704112] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks.
Collapse
|
30
|
Plöger TA, von Kiedrowski G. A self-replicating peptide nucleic acid. Org Biomol Chem 2015; 12:6908-14. [PMID: 25065957 DOI: 10.1039/c4ob01168f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While the non-enzymatic ligation and template-directed synthesis of peptide nucleic acids (PNA) have been reported since 1995, a case of self-replication of PNA has not been achieved yet. Here, we present evidence for autocatalytic feedback in a template directed synthesis of a self-complementary hexa-PNA from two trimeric building blocks. The course of the reaction was monitored in the presence of increasing initial concentrations of the product by RP-HPLC. Kinetic modeling with the SimFit program revealed parabolic growth characteristics. The observed template effect, as well as the rate of ligation, was significantly influenced by nucleophilic catalysts, pH value, and uncharged co-solvents. Systematic optimization of the reaction conditions allowed us to increase the autocatalytic efficiency of the system by two orders of magnitude. Our findings contribute to the hypothesis that PNA may have served as a primordial genetic molecule and was involved in a potential precursor of a RNA world.
Collapse
Affiliation(s)
- Tobias A Plöger
- Ruhr-Universität Bochum, Chair of Organic Chemistry I - Bioorganic Chemistry, 44780 Bochum, Germany.
| | | |
Collapse
|
31
|
Holland MC, Gilmour R. Deconstructing Covalent Organocatalysis. Angew Chem Int Ed Engl 2015; 54:3862-71. [DOI: 10.1002/anie.201409004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 01/15/2023]
|
32
|
|
33
|
Leonetti G, Otto S. Solvent composition dictates emergence in dynamic molecular networks containing competing replicators. J Am Chem Soc 2015; 137:2067-72. [PMID: 25584629 DOI: 10.1021/ja512644f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Darwinian evolution, species that are better adapted to their environment win the competition for common resources from less well-adapted competitors. Thus, in such scenarios the nature of the environment may dictate the outcome of the competition. We investigated to what degree these biological principles acting at the level of species extend to the molecular level into systems based on fully synthetic self-replicating molecules. We now report two systems in which two replicators compete for a common building block and where the environment dictates which of the two replicators wins. We observed that subtle changes in the environment can lead to dramatic differences in the outcome of the competition.
Collapse
Affiliation(s)
- Giulia Leonetti
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
34
|
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev 2013; 43:1734-87. [PMID: 24365792 DOI: 10.1039/c3cs60037h] [Citation(s) in RCA: 686] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of artificial catalysts able to compete with the catalytic proficiency of enzymes is an intense subject of research. Non-covalent interactions are thought to be involved in several properties of enzymatic catalysis, notably (i) the confinement of the substrates and the active site within a catalytic pocket, (ii) the creation of a hydrophobic pocket in water, (iii) self-replication properties and (iv) allosteric properties. The origins of the enhanced rates and high catalytic selectivities associated with these properties are still a matter of debate. Stabilisation of the transition state and favourable conformations of the active site and the product(s) are probably part of the answer. We present here artificial catalysts and biomacromolecule hybrid catalysts which constitute good models towards the development of truly competitive artificial enzymes.
Collapse
Affiliation(s)
- Matthieu Raynal
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | | | | |
Collapse
|
35
|
Malakoutikhah M, Peyralans JJP, Colomb-Delsuc M, Fanlo-Virgós H, Stuart MCA, Otto S. Uncovering the selection criteria for the emergence of multi-building-block replicators from dynamic combinatorial libraries. J Am Chem Soc 2013; 135:18406-17. [PMID: 24219346 DOI: 10.1021/ja4067805] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A family of self-replicating macrocycles was developed using dynamic combinatorial chemistry. Replication is driven by self-assembly of the replicators into fibrils and relies critically on mechanically induced fibril fragmentation. Analysis of separate dynamic combinatorial libraries made from one of six peptide-functionalized building blocks of different hydrophobicity revealed two selection criteria that govern the emergence of replicators from these systems. First, the replicators need to have a critical macrocycle size that endows them with sufficient multivalency to enable their self-assembly into fibrils. Second, efficient replication occurs only for library members that are of low abundance in the absence of a replication pathway. This work has led to spontaneous emergence of replicators with unrivalled structural complexity, being built from up to eight identical subunits and reaching a MW of up to 5.6 kDa. The insights obtained in this work provide valuable guidance that should facilitate future discovery of new complex self-replicating molecules. They may also assist in the development of new self-synthesizing materials, where self-assembly drives the synthesis of the very molecules that self-assemble. To illustrate the potential of this concept, the present system enables access to self-assembling materials made from self-synthesizing macrocycles with tunable ring size ranging from trimers to octamers.
Collapse
Affiliation(s)
- Morteza Malakoutikhah
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Bissette AJ, Fletcher SP. Mechanisms of Autocatalysis. Angew Chem Int Ed Engl 2013; 52:12800-26. [DOI: 10.1002/anie.201303822] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 12/17/2022]
|
38
|
Jo J, Olasz A, Chen CH, Lee D. Interdigitated Hydrogen Bonds: Electrophile Activation for Covalent Capture and Fluorescence Turn-On Detection of Cyanide. J Am Chem Soc 2013; 135:3620-32. [DOI: 10.1021/ja312313f] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Junyong Jo
- Department
of Chemistry, Indiana University, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - András Olasz
- Department
of Chemistry, Indiana University, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department
of Chemistry, Indiana University, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Dongwhan Lee
- Department
of Chemistry, Indiana University, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
39
|
Tanabe J, Taura D, Yamada H, Furusho Y, Yashima E. Photocontrolled template-directed synthesis of complementary double helices assisted by amidinium–carboxylate salt bridge formation. Chem Sci 2013. [DOI: 10.1039/c3sc50833a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
Dieckmann A, Houk KN. Analysis of supramolecular complex energetics in artificial replicators. Chem Sci 2013. [DOI: 10.1039/c3sc51192h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Huck J, Philp D. Replication Processes-From Autocatalysis to Systems Chemistry. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
|
43
|
Dong Z, Luo Q, Liu J. Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev 2012; 41:7890-908. [DOI: 10.1039/c2cs35207a] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012; 74:1-34. [PMID: 22210458 DOI: 10.1007/s00239-011-9480-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
Collapse
|
45
|
Tsogoeva SB. When chiral product and catalyst are the same: discovery of asymmetric organoautocatalysis. Chem Commun (Camb) 2010; 46:7662-9. [PMID: 20830352 DOI: 10.1039/c0cc02305a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of asymmetric organoautocatalysis appears to be a natural extension to asymmetric organocatalysis, and holds implications for models on the origin of biological homochirality. The discovery of asymmetric organoautocatalysis (i.e. the process in which the chiral product of a purely organic reaction acts as an organocatalyst for its own formation under conservation of its absolute configuration) and more recent reports on related systems are discussed in this review.
Collapse
Affiliation(s)
- Svetlana B Tsogoeva
- Department of Chemistry and Pharmacy, Chair of Organic Chemistry I, University of Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany.
| |
Collapse
|
46
|
Rebek J, Kamioka S, Ajami D, C. Sather A, J. Hooley R. Autocatalysis and Organocatalysis with Kemp’s Triacid Compounds. HETEROCYCLES 2010. [DOI: 10.3987/com-10-s(e)31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|