1
|
Koh GCC, Nanda AS, Rinaldi G, Boushaki S, Degasperi A, Badja C, Pregnall AM, Zhao SJ, Chmelova L, Black D, Heskin L, Dias J, Young J, Memari Y, Shooter S, Czarnecki J, Brown MA, Davies HR, Zou X, Nik-Zainal S. A redefined InDel taxonomy provides insights into mutational signatures. Nat Genet 2025; 57:1132-1141. [PMID: 40210680 DOI: 10.1038/s41588-025-02152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Despite their deleterious effects, small insertions and deletions (InDels) have received far less attention than substitutions. Here we generated isogenic CRISPR-edited human cellular models of postreplicative repair dysfunction (PRRd), including individual and combined gene edits of DNA mismatch repair (MMR) and replicative polymerases (Pol ε and Pol δ). Unique, diverse InDel mutational footprints were revealed. However, the prevailing InDel classification framework was unable to discriminate these InDel signatures from background mutagenesis and from each other. To address this, we developed an alternative InDel classification system that considers flanking sequences and informative motifs (for example, longer homopolymers), enabling unambiguous InDel classification into 89 subtypes. Through focused characterization of seven tumor types from the 100,000 Genomes Project, we uncovered 37 InDel signatures; 27 were new. In addition to unveiling previously hidden biological insights, we also developed PRRDetect-a highly specific classifier of PRRd status in tumors, with potential implications for immunotherapies.
Collapse
Affiliation(s)
- Gene Ching Chiek Koh
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Arjun Scott Nanda
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Giuseppe Rinaldi
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Soraya Boushaki
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Cherif Badja
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Andrew Marcel Pregnall
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Salome Jingchen Zhao
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Lucia Chmelova
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Daniella Black
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Laura Heskin
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - João Dias
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jamie Young
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Yasin Memari
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Scott Shooter
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jan Czarnecki
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthew Arthur Brown
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, UK
| | - Helen Ruth Davies
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Marks SA, Zhou ZX, Lujan SA, Burkholder AB, Kunkel TA. Evidence that DNA polymerase δ proofreads errors made by DNA polymerase α across the Saccharomyces cerevisiae nuclear genome. DNA Repair (Amst) 2024; 143:103768. [PMID: 39332392 DOI: 10.1016/j.dnarep.2024.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
We show that the rates of single base substitutions, additions, and deletions across the nuclear genome are strongly increased in a strain harboring a mutator variant of DNA polymerase α combined with a mutation that inactivates the 3´-5´ exonuclease activity of DNA polymerase δ. Moreover, tetrad dissections attempting to produce a haploid triple mutant lacking Msh6, which is essential for DNA mismatch repair (MMR) of base•base mismatches made during replication, result in tiny colonies that grow very slowly and appear to be aneuploid and/or defective in oxidative metabolism. These observations are consistent with the hypothesis that during initiation of nuclear DNA replication, single-base mismatches made by naturally exonuclease-deficient DNA polymerase α are extrinsically proofread by DNA polymerase δ, such that in the absence of this proofreading, the mutation rate is strongly elevated. Several implications of these data are discussed, including that the mutational signature of defective extrinsic proofreading in yeast could appear in human tumors.
Collapse
Affiliation(s)
- Sarah A Marks
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Zhi-Xiong Zhou
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
3
|
Williams JS, Lujan SA, Arana ME, Burkholder AB, Tumbale PP, Williams RS, Kunkel TA. High fidelity DNA ligation prevents single base insertions in the yeast genome. Nat Commun 2024; 15:8730. [PMID: 39379399 PMCID: PMC11461686 DOI: 10.1038/s41467-024-53063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Finalization of eukaryotic nuclear DNA replication relies on DNA ligase 1 (LIG1) to seal DNA nicks generated during Okazaki Fragment Maturation (OFM). Using a mutational reporter in Saccharomyces cerevisiae, we previously showed that mutation of the high-fidelity magnesium binding site of LIG1Cdc9 strongly increases the rate of single-base insertions. Here we show that this rate is increased across the nuclear genome, that it is synergistically increased by concomitant loss of DNA mismatch repair (MMR), and that the additions occur in highly specific sequence contexts. These discoveries are all consistent with incorporation of an extra base into the nascent lagging DNA strand that can be corrected by MMR following mutagenic ligation by the Cdc9-EEAA variant. There is a strong preference for insertion of either dGTP or dTTP into 3-5 base pair mononucleotide sequences with stringent flanking nucleotide requirements. The results reveal unique LIG1Cdc9-dependent mutational motifs where high fidelity DNA ligation of a subset of OFs is critical for preventing mutagenesis across the genome.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Percy P Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
4
|
Dmowski M, Makiela-Dzbenska K, Sharma S, Chabes A, Fijalkowska IJ. Impairment of the non-catalytic subunit Dpb2 of DNA Pol ɛ results in increased involvement of Pol δ on the leading strand. DNA Repair (Amst) 2023; 129:103541. [PMID: 37481989 DOI: 10.1016/j.dnarep.2023.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
The generally accepted model assumes that leading strand synthesis is performed by Pol ε, while lagging-strand synthesis is catalyzed by Pol δ. Pol ε has been shown to target the leading strand by interacting with the CMG helicase [Cdc45 Mcm2-7 GINS(Psf1-3, Sld5)]. Proper functioning of the CMG-Pol ɛ, the helicase-polymerase complex is essential for its progression and the fidelity of DNA replication. Dpb2p, the essential non-catalytic subunit of Pol ε plays a key role in maintaining the correct architecture of the replisome by acting as a link between Pol ε and the CMG complex. Using a temperature-sensitive dpb2-100 mutant previously isolated in our laboratory, and a genetic system which takes advantage of a distinct mutational signature of the Pol δ-L612M variant which allows detection of the involvement of Pol δ in the replication of particular DNA strands we show that in yeast cells with an impaired Dpb2 subunit, the contribution of Pol δ to the replication of the leading strand is significantly increased.
Collapse
Affiliation(s)
- Michal Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
5
|
Mainkar P, Manape TK, Kad SK, Satheesh V, Anandhan S. Identification, cloning and characterization of AcMSH1 from Onion (Allium cepa L.). Mol Biol Rep 2023; 50:5147-5155. [PMID: 37119414 DOI: 10.1007/s11033-023-08414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND MSH1 (MutS homolog1) is a nuclear-encoded protein that plays a crucial role in maintaining low mutation rates and stability of the organellar genome. While plastid MSH1 maintains nuclear epigenome plasticity and affects plant development patterns, mitochondrial MSH1 suppresses illegitimate recombination within the mitochondrial genome, affects mitochondrial genome substoichiometric shifting activity and induces cytoplasmic male sterility (CMS) in crops. However, a detailed functional investigation of onion MSH1 has yet to be achieved. MATERIALS AND RESULTS The homology analysis of onion genome database identified a single copy of the AcMSH1 gene in the onion cv. Bhima Super. In silico analysis of AcMSH1 protein sequence revealed the presence of 6 conserved functional domains including a unique MSH1-specific GIY-YIG endonuclease domain at the C-terminal end. At N-terminal end, it has signal peptide sequences targeting chloroplast and mitochondria. The concentration of AcMSH1 was found to be highest in isolated mitochondria, followed by chloroplasts, and negligible in the cytoplasmic fraction; which proved its localization to the mitochondria and chloroplasts. Quantitative expression analysis revealed that AcMSH1 protein levels were highest in leaves, followed by flower buds, root tips, flowers, and umbels, with the lowest amount found in callus tissue. CONCLUSION Onion genome has single copy of MSH1, with characteristic GIY-YIG endonuclease domain. AcMSH1 targeted towards both chloroplasts and mitochondria. The identification and characterisation of AcMSH1 may provide valuable insights into the development of CMS lines in onion.
Collapse
Affiliation(s)
- Pawan Mainkar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410 505, Maharashtra, India
| | - Tushar Kashinath Manape
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410 505, Maharashtra, India
| | - Snehal Krishna Kad
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410 505, Maharashtra, India
| | - Viswanathan Satheesh
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa, 50010, USA
| | - Sivalingam Anandhan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410 505, Maharashtra, India.
| |
Collapse
|
6
|
Zhou ZX, Follonier C, Lujan SA, Burkholder AB, Zakian VA, Kunkel TA. Pif1 family helicases promote mutation avoidance during DNA replication. Nucleic Acids Res 2022; 50:12844-12855. [PMID: 36533450 PMCID: PMC9825187 DOI: 10.1093/nar/gkac1127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/25/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
Pif1 family 5' → 3' DNA helicases are important for replication fork progression and genome stability. The budding yeast Saccharomyces cerevisiae encodes two Pif1 family helicases, Rrm3 and Pif1, both of which are multi-functional. Here we describe novel functions for Rrm3 in promoting mutation avoidance during DNA replication. We show that loss of RRM3 results in elevated spontaneous mutations made by DNA polymerases Pols ϵ and δ, which are subject to DNA mismatch repair. The absence of RRM3 also causes higher mutagenesis by the fourth B-family DNA polymerase Pol ζ. By genome-wide analysis, we show that the mutational consequences due to loss of RRM3 vary depending on the genomic locus. Rrm3 promotes the accuracy of DNA replication by Pols ϵ and δ across the genome, and it is particularly important for preventing Pol ζ-dependent mutagenesis at tRNA genes. In addition, mutation avoidance by Rrm3 depends on its helicase activity, and Pif1 serves as a backup for Rrm3 in suppressing mutagenesis. We present evidence that the sole human Pif1 family helicase in human cells likely also promotes replication fidelity, suggesting that a role for Pif1 family helicases in mutation avoidance may be evolutionarily conserved, a possible underlying mechanism for its potential tumor-suppressor function.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Cindy Follonier
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Scott A Lujan
- Genome Integrity & Structural Biology Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, NIH/NIEHS, DHHS, Research Triangle Park, NC 27709, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Thomas A Kunkel
- Genome Integrity & Structural Biology Laboratory, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Williams JS, Kunkel TA. Ribonucleotide Incorporation by Eukaryotic B-family Replicases and Its Implications for Genome Stability. Annu Rev Biochem 2022; 91:133-155. [PMID: 35287470 DOI: 10.1146/annurev-biochem-032620-110354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our current view of how DNA-based genomes are efficiently and accurately replicated continues to evolve as new details emerge on the presence of ribonucleotides in DNA. Ribonucleotides are incorporated during eukaryotic DNA replication at rates that make them the most common noncanonical nucleotide placed into the nuclear genome, they are efficiently repaired, and their removal impacts genome integrity. This review focuses on three aspects of this subject: the incorporation of ribonucleotides into the eukaryotic nuclear genome during replication by B-family DNA replicases, how these ribonucleotides are removed, and the consequences of their presence or removal for genome stability and disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
8
|
Akashi M, Fujihara I, Takemura M, Furusawa M. 2-Dimensional Genetic Algorithm Exhibited an Essentiality of Gene Interaction for Evolution. J Theor Biol 2022; 538:111044. [PMID: 35122785 DOI: 10.1016/j.jtbi.2022.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Organisms consist of several genetic factors differing between species. However, the evolutionary effects of gene interactions on the evolutionary rate, adaptation, and divergence of organisms remain unknown. In a previous study, the 2-dimensional genetic algorithm (2DGA) program, including a gene interaction parameter, could simulate punctuated equilibrium under the disparity mode. Following this, we verified the effect of the number of gene interactions (gene cluster size) on evolution speed, adaptation, and divergence using the advanced 2DGA program. In this program, the population was replicated, mutated, and selected for 200,000 generations, and the fitness score, divergence, number of population, and genotype were output and plotted. The genotype data were used for evaluating the phylogenetic relations among the population. The gene cluster size 1) affected the disparity and parity mutagenesis modes differently, 2) determined the growth/exclusion rate and error threshold, and 3) accelerated or decelerated the population's speed of evolutionary advancement. In particular, when the gene cluster size expanded, the rate of increase in fitness scores decreased independently of the mutation rate and mode of mutation (disparity mode/parity mode). The mutation rate at the error threshold was also decreased by expanding the gene cluster size. Dendrograms traced the genotypes of the simulated population, indicating that the disparity mode caused the evolutionary process to enter 1) a stun mode, 2) an evolution mode, or 3) a divergence mode based on the mutation rate and gene cluster size, while the parity mode did not cause the population to enter a stun mode. Based on the above findings, we compared the predictions of the present study with evolution observed in the laboratory or the natural world and the processes of ongoing virus evolution, suggesting that our findings possibly explained the real evolution.
Collapse
Affiliation(s)
- Motohiro Akashi
- Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan.
| | - Ichiro Fujihara
- College of General Education, Osaka Sangyo University, Daito-shi, Osaka 574-8530, Japan.
| | - Masaharu Takemura
- Laboratory of Biology, Institute of Arts and Sciences, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Mitsuru Furusawa
- Chitose Laboratory Corp., Biotechnology Research Center, 907 Nogawa, Miyamae-ku, Kawasaki 216-0001, Japan
| |
Collapse
|
9
|
Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex. DNA Repair (Amst) 2022; 110:103272. [DOI: 10.1016/j.dnarep.2022.103272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
|
10
|
Zhou ZX, Lujan SA, Burkholder AB, St. Charles J, Dahl J, Farrell CE, Williams JS, Kunkel TA. How asymmetric DNA replication achieves symmetrical fidelity. Nat Struct Mol Biol 2021; 28:1020-1028. [PMID: 34887558 PMCID: PMC8815454 DOI: 10.1038/s41594-021-00691-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Accurate DNA replication of an undamaged template depends on polymerase selectivity for matched nucleotides, exonucleolytic proofreading of mismatches, and removal of remaining mismatches via DNA mismatch repair (MMR). DNA polymerases (Pols) δ and ε have 3'-5' exonucleases into which mismatches are partitioned for excision in cis (intrinsic proofreading). Here we provide strong evidence that Pol δ can extrinsically proofread mismatches made by itself and those made by Pol ε, independently of both Pol δ's polymerization activity and MMR. Extrinsic proofreading across the genome is remarkably efficient. We report, with unprecedented accuracy, in vivo contributions of nucleotide selectivity, proofreading, and MMR to the fidelity of DNA replication in Saccharomyces cerevisiae. We show that extrinsic proofreading by Pol δ improves and balances the fidelity of the two DNA strands. Together, we depict a comprehensive picture of how nucleotide selectivity, proofreading, and MMR cooperate to achieve high and symmetrical fidelity on the two strands.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Scott A. Lujan
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Adam B. Burkholder
- Integrative Bioinformatics Support Group, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Jordan St. Charles
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Joseph Dahl
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Corinne E. Farrell
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Jessica S. Williams
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Thomas A. Kunkel
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
11
|
Stability across the Whole Nuclear Genome in the Presence and Absence of DNA Mismatch Repair. Cells 2021; 10:cells10051224. [PMID: 34067668 PMCID: PMC8156620 DOI: 10.3390/cells10051224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
We describe the contribution of DNA mismatch repair (MMR) to the stability of the eukaryotic nuclear genome as determined by whole-genome sequencing. To date, wild-type nuclear genome mutation rates are known for over 40 eukaryotic species, while measurements in mismatch repair-defective organisms are fewer in number and are concentrated on Saccharomyces cerevisiae and human tumors. Well-studied organisms include Drosophila melanogaster and Mus musculus, while less genetically tractable species include great apes and long-lived trees. A variety of techniques have been developed to gather mutation rates, either per generation or per cell division. Generational rates are described through whole-organism mutation accumulation experiments and through offspring–parent sequencing, or they have been identified by descent. Rates per somatic cell division have been estimated from cell line mutation accumulation experiments, from systemic variant allele frequencies, and from widely spaced samples with known cell divisions per unit of tissue growth. The latter methods are also used to estimate generational mutation rates for large organisms that lack dedicated germlines, such as trees and hyphal fungi. Mechanistic studies involving genetic manipulation of MMR genes prior to mutation rate determination are thus far confined to yeast, Arabidopsis thaliana, Caenorhabditis elegans, and one chicken cell line. A great deal of work in wild-type organisms has begun to establish a sound baseline, but far more work is needed to uncover the variety of MMR across eukaryotes. Nonetheless, the few MMR studies reported to date indicate that MMR contributes 100-fold or more to genome stability, and they have uncovered insights that would have been impossible to obtain using reporter gene assays.
Collapse
|
12
|
Zhou ZX, Williams JS, Lujan SA, Kunkel TA. Ribonucleotide incorporation into DNA during DNA replication and its consequences. Crit Rev Biochem Mol Biol 2021; 56:109-124. [PMID: 33461360 DOI: 10.1080/10409238.2020.1869175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ribonucleotides are the most abundant non-canonical nucleotides in the genome. Their vast presence and influence over genome biology is becoming increasingly appreciated. Here we review the recent progress made in understanding their genomic presence, incorporation characteristics and usefulness as biomarkers for polymerase enzymology. We also discuss ribonucleotide processing, the genetic consequences of unrepaired ribonucleotides in DNA and evidence supporting the significance of their transient presence in the nuclear genome.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Jessica S Williams
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Scott A Lujan
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Thomas A Kunkel
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| |
Collapse
|
13
|
Pavlov YI, Zhuk AS, Stepchenkova EI. DNA Polymerases at the Eukaryotic Replication Fork Thirty Years after: Connection to Cancer. Cancers (Basel) 2020; 12:E3489. [PMID: 33255191 PMCID: PMC7760166 DOI: 10.3390/cancers12123489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named "division of labor," remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants' effects on cancer.
Collapse
Affiliation(s)
- Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Anna S. Zhuk
- International Laboratory of Computer Technologies, ITMO University, 197101 Saint Petersburg, Russia;
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
14
|
Bulock CR, Xing X, Shcherbakova PV. Mismatch repair and DNA polymerase δ proofreading prevent catastrophic accumulation of leading strand errors in cells expressing a cancer-associated DNA polymerase ϵ variant. Nucleic Acids Res 2020; 48:9124-9134. [PMID: 32756902 PMCID: PMC7498342 DOI: 10.1093/nar/gkaa633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Substitutions in the exonuclease domain of DNA polymerase ϵ cause ultramutated human tumors. Yeast and mouse mimics of the most common variant, P286R, produce mutator effects far exceeding the effect of Polϵ exonuclease deficiency. Yeast Polϵ-P301R has increased DNA polymerase activity, which could underlie its high mutagenicity. We aimed to understand the impact of this increased activity on the strand-specific role of Polϵ in DNA replication and the action of extrinsic correction systems that remove Polϵ errors. Using mutagenesis reporters spanning a well-defined replicon, we show that both exonuclease-deficient Polϵ (Polϵ-exo−) and Polϵ-P301R generate mutations in a strictly strand-specific manner, yet Polϵ-P301R is at least ten times more mutagenic than Polϵ-exo− at each location analyzed. Thus, the cancer variant remains a dedicated leading-strand polymerase with markedly low accuracy. We further show that P301R substitution is lethal in strains lacking Polδ proofreading or mismatch repair (MMR). Heterozygosity for pol2-P301R is compatible with either defect but causes strong synergistic increases in the mutation rate, indicating that Polϵ-P301R errors are corrected by Polδ proofreading and MMR. These data reveal the unexpected ease with which polymerase exchange occurs in vivo, allowing Polδ exonuclease to prevent catastrophic accumulation of Polϵ-P301R-generated errors on the leading strand.
Collapse
Affiliation(s)
- Chelsea R Bulock
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xuanxuan Xing
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Guilliam TA, Yeeles JTP. An updated perspective on the polymerase division of labor during eukaryotic DNA replication. Crit Rev Biochem Mol Biol 2020; 55:469-481. [PMID: 32883112 DOI: 10.1080/10409238.2020.1811630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In eukaryotes three DNA polymerases (Pols), α, δ, and ε, are tasked with bulk DNA synthesis of nascent strands during genome duplication. Most evidence supports a model where Pol α initiates DNA synthesis before Pol ε and Pol δ replicate the leading and lagging strands, respectively. However, a number of recent reports, enabled by advances in biochemical and genetic techniques, have highlighted emerging roles for Pol δ in all stages of leading-strand synthesis; initiation, elongation, and termination, as well as fork restart. By focusing on these studies, this review provides an updated perspective on the division of labor between the replicative polymerases during DNA replication.
Collapse
Affiliation(s)
- Thomas A Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Joseph T P Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
16
|
Abstract
Polδ and Polε are the two major replicative polymerases in eukaryotes, but their precise roles at the replication fork remain a subject of debate. A bulk of data supports a model where Polε and Polδ synthesize leading and lagging DNA strands, respectively. However, this model has been difficult to reconcile with the fact that mutations in Polδ have much stronger consequences for genome stability than equivalent mutations in Polε. We provide direct evidence for a long-entertained idea that Polδ can proofread errors made by Polε in addition to its own errors, thus, making a more prominent contribution to mutation avoidance. This paper provides an essential advance in the understanding of the mechanism of eukaryotic DNA replication. During eukaryotic replication, DNA polymerases ε (Polε) and δ (Polδ) synthesize the leading and lagging strands, respectively. In a long-known contradiction to this model, defects in the fidelity of Polε have a much weaker impact on mutagenesis than analogous Polδ defects. It has been previously proposed that Polδ contributes more to mutation avoidance because it proofreads mismatches created by Polε in addition to its own errors. However, direct evidence for this model was missing. We show that, in yeast, the mutation rate increases synergistically when a Polε nucleotide selectivity defect is combined with a Polδ proofreading defect, demonstrating extrinsic proofreading of Polε errors by Polδ. In contrast, combining Polδ nucleotide selectivity and Polε proofreading defects produces no synergy, indicating that Polε cannot correct errors made by Polδ. We further show that Polδ can remove errors made by exonuclease-deficient Polε in vitro. These findings illustrate the complexity of the one-strand–one-polymerase model where synthesis appears to be largely divided, but Polδ proofreading operates on both strands.
Collapse
|
17
|
Siraj AK, Parvathareddy SK, Bu R, Iqbal K, Siraj S, Masoodi T, Concepcion RM, Ghazwani LO, AlBadawi I, Al-Dayel F, Al-Kuraya KS. Germline POLE and POLD1 proofreading domain mutations in endometrial carcinoma from Middle Eastern region. Cancer Cell Int 2019; 19:334. [PMID: 31866764 PMCID: PMC6907229 DOI: 10.1186/s12935-019-1058-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background Endometrial carcinoma (EC) accounts for 5.8% of all cancers in Saudi females. Although most ECs are sporadic, 2–5% tend to be familial, being associated with Lynch syndrome and Cowden syndrome. In this study, we attempted to uncover the frequency, spectrum and phenotype of germline mutations in the proofreading domain of POLE and POLD1 genes in a large cohort of ECs from Middle Eastern region. Methods We performed Capture sequencing and Sanger sequencing to screen for proofreading domains of POLE and POLD1 genes in 432 EC cases, followed by evaluation of protein expression using immunohistochemistry. Variant interpretation was performed using PolyPhen-2, MutationAssessor, SIFT, CADD and Mutation Taster. Results In our cohort, four mutations (0.93%) were identified in 432 EC cases, two each in POLE and POLD1 proofreading domains. Furthermore, low expression of POLE and POLD1 was noted in 41.1% (170/1414) and 59.9% (251/419) of cases, respectively. Both the cases harboring POLE mutation showed high nuclear expression of POLE protein, whereas, of the two POLD1 mutant cases, one case showed high expression and another case showed low expression of POLD1 protein. Conclusions Our study shows that germline mutations in POLE and POLD1 proofreading region are a rare cause of EC in Middle Eastern population. However, it is still feasible to screen multiple cancer related genes in EC patients from Middle Eastern region using multigene panels including POLE and POLD1.
Collapse
Affiliation(s)
- Abdul K Siraj
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rong Bu
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Kaleem Iqbal
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Sarah Siraj
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Tariq Masoodi
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rica Micaela Concepcion
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Laila Omar Ghazwani
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Ismail AlBadawi
- 2Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- 3Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Khawla S Al-Kuraya
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
18
|
Conde CD, Petronczki ÖY, Baris S, Willmann KL, Girardi E, Salzer E, Weitzer S, Ardy RC, Krolo A, Ijspeert H, Kiykim A, Karakoc-Aydiner E, Förster-Waldl E, Kager L, Pickl WF, Superti-Furga G, Martínez J, Loizou JI, Ozen A, van der Burg M, Boztug K. Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress. J Clin Invest 2019; 129:4194-4206. [PMID: 31449058 PMCID: PMC6763221 DOI: 10.1172/jci128903] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Polymerase δ is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase δ complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase δ complex has emerged as a central element in genome maintenance. The essentiality of polymerase δ has constrained the generation of polymerase δ-knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase δ complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients' cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase δ. The mutations affected the stability and interactions within the polymerase δ complex or its intrinsic polymerase activity. We believe our discovery of human polymerase δ deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.
Collapse
Affiliation(s)
- Cecilia Domínguez Conde
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Safa Baris
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey
- Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Katharina L. Willmann
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Stefan Weitzer
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Hanna Ijspeert
- Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey
- Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey
- Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Elisabeth Förster-Waldl
- Department of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine
| | - Leo Kager
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, and
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Javier Martínez
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Ahmet Ozen
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey
- Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| |
Collapse
|
19
|
Zhou ZX, Lujan SA, Burkholder AB, Garbacz MA, Kunkel TA. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication. Nat Commun 2019; 10:3992. [PMID: 31488849 PMCID: PMC6728351 DOI: 10.1038/s41467-019-11995-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/09/2019] [Indexed: 01/29/2023] Open
Abstract
Most current evidence indicates that DNA polymerases ε and δ, respectively, perform the bulk of leading and lagging strand replication of the eukaryotic nuclear genome. Given that ribonucleotide and mismatch incorporation rates by these replicases influence somatic and germline patterns of variation, it is important to understand the details and exceptions to this overall division of labor. Using an improved method to map where these replicases incorporate ribonucleotides during replication, here we present evidence that DNA polymerase δ universally participates in initiating leading strand synthesis and that nascent leading strand synthesis switches from Pol ε to Pol δ during replication termination. Ribonucleotide maps from both the budding and fission yeast reveal conservation of these processes. These observations of replisome dynamics provide important insight into the mechanisms of eukaryotic replication and genome maintenance.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Marta A Garbacz
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
20
|
Williams JS, Lujan SA, Zhou ZX, Burkholder AB, Clark AB, Fargo DC, Kunkel TA. Genome-wide mutagenesis resulting from topoisomerase 1-processing of unrepaired ribonucleotides in DNA. DNA Repair (Amst) 2019; 84:102641. [PMID: 31311768 DOI: 10.1016/j.dnarep.2019.102641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/10/2023]
Abstract
Ribonucleotides are the most common non-canonical nucleotides incorporated into DNA during replication, and their processing leads to mutations and genome instability. Yeast mutation reporter systems demonstrate that 2-5 base pair deletions (Δ2-5bp) in repetitive DNA are a signature of unrepaired ribonucleotides, and that these events are initiated by topoisomerase 1 (Top1) cleavage. However, a detailed understanding of the frequency and locations of ribonucleotide-dependent mutational events across the genome has been lacking. Here we present the results of genome-wide mutational analysis of yeast strains deficient in Ribonucleotide Excision Repair (RER). We identified mutations that accumulated over thousands of generations in strains expressing either wild-type or variant replicase alleles (M644G Pol ε, L612M Pol δ, L868M Pol α) that confer increased ribonucleotide incorporation into DNA. Using a custom-designed mutation-calling pipeline called muver (for mutationes verificatae), we observe a number of surprising mutagenic features. This includes a 24-fold preferential elevation of AG and AC relative to AT dinucleotide deletions in the absence of RER, suggesting specificity for Top1-initiated deletion mutagenesis. Moreover, deletion rates in di- and trinucleotide repeat tracts increase exponentially with tract length. Consistent with biochemical and reporter gene mutational analysis, these deletions are no longer observed upon deletion of TOP1. Taken together, results from these analyses demonstrate the global impact of genomic ribonucleotide processing by Top1 on genome integrity.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Zhi-Xiong Zhou
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Alan B Clark
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - David C Fargo
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
21
|
Hino H, Shiomi A, Kusuhara M, Kagawa H, Yamakawa Y, Hatakeyama K, Kawabata T, Oishi T, Urakami K, Nagashima T, Kinugasa Y, Yamaguchi K. Clinicopathological and mutational analyses of colorectal cancer with mutations in the POLE gene. Cancer Med 2019; 8:4587-4597. [PMID: 31240875 PMCID: PMC6712448 DOI: 10.1002/cam4.2344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Here, we investigated the clinicopathological and mutation profiles of colorectal cancer (CRC) with POLE mutations. Whole‐exome sequencing was performed in 910 surgically resected primary CRCs. Tumors exceeding 500 counts of nonsynonymous single nucleotide variants (SNVs) were classified as hypermutators, whereas the remaining were classified as nonhypermutators. The hypermutators were subdivided into 2 groups. CRCs harboring more than 20% C‐to‐A and less than 3% C‐to‐G transversions were classified as POLE category tumors, whereas the remaining were classified as common‐hypermutators. Gene expression profiling (GEP) analysis was performed in 892 (98.0%) tumors. Fifty‐seven (6.3%) and 10 (1.1%) tumors were classified common‐hypermutators and POLE category tumors, respectively. POLE category tumors harbored a significantly higher SNV count than common‐hypermutators, and all POLE category tumors were associated with exonuclease domain mutations, such as P286R, F367C, V411L, and S297Y, in the POLE gene. Patients with POLE category tumors were significantly younger than those with nonhypermutators and common‐hypermutators. All POLE mutations in the early‐onset (age of onset ≤50 years old) POLE category (7 tumors) were P286R mutations. GEP analysis revealed that PD‐L1 and PD‐1 gene expression levels were significantly increased in both common‐hypermutators and POLE category tumors compared with those in nonhypermutators. CD8A expression was significantly upregulated in POLE category tumors compared with that in nonhypermutators. Thus, we concluded that CRCs with POLE proofreading deficiency had characteristics distinct from those of other CRCs. Analysis of POLE proofreading deficiency may be clinically significant for personalized management of CRCs.
Collapse
Affiliation(s)
- Hitoshi Hino
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masatoshi Kusuhara
- Regional Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Hiroyasu Kagawa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yushi Yamakawa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takanori Kawabata
- Clinical Research Promotion Unit, Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takuma Oishi
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | - Yusuke Kinugasa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan.,Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
22
|
Xing X, Kane DP, Bulock CR, Moore EA, Sharma S, Chabes A, Shcherbakova PV. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat Commun 2019; 10:374. [PMID: 30670691 PMCID: PMC6343027 DOI: 10.1038/s41467-018-08145-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Alterations in the exonuclease domain of DNA polymerase ε (Polε) cause ultramutated tumors. Severe mutator effects of the most common variant, Polε-P286R, modeled in yeast suggested that its pathogenicity involves yet unknown mechanisms beyond simple proofreading deficiency. We show that, despite producing a catastrophic amount of replication errors in vivo, the yeast Polε-P286R analog retains partial exonuclease activity and is more accurate than exonuclease-dead Polε. The major consequence of the arginine substitution is a dramatically increased DNA polymerase activity. This is manifested as a superior ability to copy synthetic and natural templates, extend mismatched primer termini, and bypass secondary DNA structures. We discuss a model wherein the cancer-associated substitution limits access of the 3’-terminus to the exonuclease site and promotes binding at the polymerase site, thus stimulating polymerization. We propose that the ultramutator effect results from increased polymerase activity amplifying the contribution of Polε errors to the genomic mutation rate. Somatic alterations in the exonuclease domain of DNA polymerase ɛ have been linked to the development of highly mutated cancers. Here, the authors report that a major consequence of the most common cancer-associated Polɛ variant is a dramatically increased DNA polymerase activity.
Collapse
Affiliation(s)
- Xuanxuan Xing
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Daniel P Kane
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY, 13214, USA
| | - Chelsea R Bulock
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87, Umeå, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
23
|
Stodola JL, Burgers PM. Mechanism of Lagging-Strand DNA Replication in Eukaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:117-133. [PMID: 29357056 DOI: 10.1007/978-981-10-6955-0_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This chapter focuses on the enzymes and mechanisms involved in lagging-strand DNA replication in eukaryotic cells. Recent structural and biochemical progress with DNA polymerase α-primase (Pol α) provides insights how each of the millions of Okazaki fragments in a mammalian cell is primed by the primase subunit and further extended by its polymerase subunit. Rapid kinetic studies of Okazaki fragment elongation by Pol δ illuminate events when the polymerase encounters the double-stranded RNA-DNA block of the preceding Okazaki fragment. This block acts as a progressive molecular break that provides both time and opportunity for the flap endonuclease 1 (FEN1) to access the nascent flap and cut it. The iterative action of Pol δ and FEN1 is coordinated by the replication clamp PCNA and produces a regulated degradation of the RNA primer, thereby preventing the formation of long-strand displacement flaps. Occasional long flaps are further processed by backup nucleases including Dna2.
Collapse
Affiliation(s)
- Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
24
|
Hatakeyama K, Ohshima K, Nagashima T, Ohnami S, Ohnami S, Serizawa M, Shimoda Y, Maruyama K, Akiyama Y, Urakami K, Kusuhara M, Mochizuki T, Yamaguchi K. Molecular profiling and sequential somatic mutation shift in hypermutator tumours harbouring POLE mutations. Sci Rep 2018; 8:8700. [PMID: 29880869 PMCID: PMC5992218 DOI: 10.1038/s41598-018-26967-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Defective DNA polymerase ε (POLE) proofreading leads to extensive somatic mutations that exhibit biased mutational properties; however, the characteristics of POLE-mutated tumours remain unclear. In the present study, we describe a molecular profile using whole exome sequencing based on the transition of somatic mutations in 10 POLE-mutated solid tumours that were obtained from 2,042 Japanese patients. The bias of accumulated variations in these mutants was quantified to follow a pattern of somatic mutations, thereby classifying the sequential mutation shift into three periods. During the period prior to occurrence of the aberrant POLE, bare accumulation of mutations in cancer-related genes was observed, whereas PTEN was highly mutated in conjunction with or subsequent to the event, suggesting that POLE and PTEN mutations were responsible for the development of POLE-mutated tumours. Furthermore, homologous recombination was restored following the occurrence of PTEN mutations. Our strategy for estimation of the footprint of somatic mutations may provide new insight towards the understanding of mutation-driven tumourigenesis.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
- SRL Inc., Shinjuku-ku, Tokyo, 163-0409, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
- SRL Inc., Shinjuku-ku, Tokyo, 163-0409, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yasuto Akiyama
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Masatoshi Kusuhara
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
- Regional Resource Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
25
|
Burkholder AB, Lujan SA, Lavender CA, Grimm SA, Kunkel TA, Fargo DC. Muver, a computational framework for accurately calling accumulated mutations. BMC Genomics 2018; 19:345. [PMID: 29743009 PMCID: PMC5944071 DOI: 10.1186/s12864-018-4753-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. RESULTS Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. CONCLUSIONS Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.
Collapse
Affiliation(s)
- Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Scott A Lujan
- Laboratory of Genomic Integrity and Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Thomas A Kunkel
- Laboratory of Genomic Integrity and Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
26
|
Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. BIOLOGY 2018; 7:biology7010005. [PMID: 29301327 PMCID: PMC5872031 DOI: 10.3390/biology7010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 3'-5' exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes. Here, we review the association of DNA polymerases in cancer from the A and B families, which participate in lesion bypass, and conduct gene replication. We also discuss possible therapeutic interventions that could be used to maneuver the role of these enzymes in tumorigenesis.
Collapse
|
27
|
Jiang Y, Liu Y, Hu H. Studies on DNA Damage Repair and Precision Radiotherapy for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:105-123. [PMID: 29282681 DOI: 10.1007/978-981-10-6020-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Radiotherapy acts as an important component of breast cancer management, which significantly decreases local recurrence in patients treated with conservative surgery or with radical mastectomy. On the foundation of technological innovation of radiotherapy setting, precision radiotherapy of cancer has been widely applied in recent years. DNA damage and its repair mechanism are the vital factors which lead to the formation of tumor. Moreover, the status of DNA damage repair in cancer cells has been shown to influence patient response to the therapy, including radiotherapy. Some genes can affect the radiosensitivity of tumor cell by regulating the DNA damage repair pathway. This chapter will describe the potential application of DNA damage repair in precision radiotherapy of breast cancer.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimin Liu
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hai Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
28
|
Pai CC, Kishkevich A, Deegan RS, Keszthelyi A, Folkes L, Kearsey SE, De León N, Soriano I, de Bruin RAM, Carr AM, Humphrey TC. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription. Cell Rep 2017; 20:2693-2705. [PMID: 28903048 PMCID: PMC5608972 DOI: 10.1016/j.celrep.2017.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/10/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6B, UK
| | - Rachel S Deegan
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Lisa Folkes
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Nagore De León
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ignacio Soriano
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
29
|
Zhivagui M, Korenjak M, Zavadil J. Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:16-22. [PMID: 27754614 DOI: 10.1111/bcpt.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome-wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen-specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single-gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure-specific base-change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| |
Collapse
|
30
|
Abstract
The fidelity of DNA replication is determined by many factors, here simplified as the contribution of the DNA polymerase (nucleotide selectivity and proofreading), mismatch repair, a balanced supply of nucleotides, and the condition of the DNA template (both in terms of sequence context and the presence of DNA lesions). This review discusses the contribution and interplay between these factors to the overall fidelity of DNA replication.
Collapse
Affiliation(s)
- Rais A Ganai
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 901 87 Umeå, Sweden; Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
31
|
Nickoloff JA, Jones D, Lee SH, Williamson EA, Hromas R. Drugging the Cancers Addicted to DNA Repair. J Natl Cancer Inst 2017; 109:3832892. [PMID: 28521333 PMCID: PMC5436301 DOI: 10.1093/jnci/djx059] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dennie Jones
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Robert Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
32
|
Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Genes (Basel) 2017; 8:genes8070190. [PMID: 28737709 PMCID: PMC5541323 DOI: 10.3390/genes8070190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4).
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Xiaoxiao Wang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Zhongtao Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Ernest Y C Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
33
|
Andrianova MA, Bazykin GA, Nikolaev SI, Seplyarskiy VB. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. Genome Res 2017; 27:1336-1343. [PMID: 28512192 PMCID: PMC5538550 DOI: 10.1101/gr.219915.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/09/2017] [Indexed: 12/13/2022]
Abstract
Mismatch repair (MMR) is one of the main systems maintaining fidelity of replication. Differences in correction of errors produced during replication of the leading and the lagging DNA strands were reported in yeast and in human cancers, but the causes of these differences remain unclear. Here, we analyze data on human cancers with somatic mutations in two of the major DNA polymerases, delta and epsilon, that replicate the genome. We show that these cancers demonstrate a substantial asymmetry of the mutations between the leading and the lagging strands. The direction of this asymmetry is the opposite between cancers with mutated polymerases delta and epsilon, consistent with the role of these polymerases in replication of the lagging and the leading strands in human cells, respectively. Moreover, the direction of strand asymmetry observed in cancers with mutated polymerase delta is similar to that observed in MMR-deficient cancers. Together, these data indicate that polymerase delta (possibly together with polymerase alpha) contributes more mismatches during replication than its leading-strand counterpart, polymerase epsilon; that most of these mismatches are repaired by the MMR system; and that MMR repairs about three times more mismatches produced in cells during lagging strand replication compared with the leading strand.
Collapse
Affiliation(s)
- Maria A Andrianova
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Vladimir B Seplyarskiy
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Lujan SA, Williams JS, Kunkel TA. DNA Polymerases Divide the Labor of Genome Replication. Trends Cell Biol 2016; 26:640-654. [PMID: 27262731 DOI: 10.1016/j.tcb.2016.04.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/14/2023]
Abstract
DNA polymerases synthesize DNA in only one direction, but large genomes require RNA priming and bidirectional replication from internal origins. We review here the physical, chemical, and evolutionary constraints underlying these requirements. We then consider the roles of the major eukaryotic replicases, DNA polymerases α, δ, and ɛ, in replicating the nuclear genome. Pol α has long been known to extend RNA primers at origins and on Okazaki fragments that give rise to the nascent lagging strand. Taken together, more recent results of mutation and ribonucleotide incorporation mapping, electron microscopy, and immunoprecipitation of nascent DNA now lead to a model wherein Pol ɛ and Pol δ, respectively, synthesize the majority of the nascent leading and lagging strands of undamaged DNA.
Collapse
Affiliation(s)
- Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
35
|
Watt DL, Buckland RJ, Lujan SA, Kunkel TA, Chabes A. Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools. Nucleic Acids Res 2016; 44:1669-80. [PMID: 26609135 PMCID: PMC4770217 DOI: 10.1093/nar/gkv1298] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/07/2023] Open
Abstract
The absolute and relative concentrations of the four dNTPs are key determinants of DNA replication fidelity, yet the consequences of altered dNTP pools on replication fidelity have not previously been investigated on a genome-wide scale. Here, we use deep sequencing to determine the types, rates and locations of uncorrected replication errors that accumulate in the nuclear genome of a mismatch repair-deficient diploid yeast strain with elevated dCTP and dTTP concentrations. These imbalanced dNTP pools promote replication errors in specific DNA sequence motifs suggesting increased misinsertion and increased mismatch extension at the expense of proofreading. Interestingly, substitution rates are similar for leading and lagging strand replication, but are higher in regions replicated late in S phase. Remarkably, the rate of single base deletions is preferentially increased in coding sequences and in short rather than long mononucleotides runs. Based on DNA sequence motifs, we propose two distinct mechanisms for generating single base deletions in vivo. Collectively, the results indicate that elevated dCTP and dTTP pools increase mismatch formation and decrease error correction across the nuclear genome, and most strongly increases mutation rates in coding and late replicating sequences.
Collapse
Affiliation(s)
- Danielle L Watt
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Robert J Buckland
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
36
|
Lujan SA, Williams JS, Kunkel TA. Eukaryotic genome instability in light of asymmetric DNA replication. Crit Rev Biochem Mol Biol 2015; 51:43-52. [PMID: 26822554 DOI: 10.3109/10409238.2015.1117055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eukaryotic nuclear genome is replicated asymmetrically, with the leading strand replicated continuously and the lagging strand replicated as discontinuous Okazaki fragments that are subsequently joined. Both strands are replicated with high fidelity, but the processes used to achieve high fidelity are likely to differ. Here we review recent studies of similarities and differences in the fidelity with which the three major eukaryotic replicases, DNA polymerases α, δ, and ɛ, replicate the leading and lagging strands with high nucleotide selectivity and efficient proofreading. We then relate the asymmetric fidelity at the replication fork to the efficiency of DNA mismatch repair, ribonucleotide excision repair and topoisomerase 1 activity.
Collapse
Affiliation(s)
- Scott A Lujan
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Jessica S Williams
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Thomas A Kunkel
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| |
Collapse
|
37
|
Johnson RE, Klassen R, Prakash L, Prakash S. A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands. Mol Cell 2015; 59:163-175. [PMID: 26145172 DOI: 10.1016/j.molcel.2015.05.038] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/20/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Genetic studies with S. cerevisiae Polδ (pol3-L612M) and Polε (pol2-M644G) mutant alleles, each of which display a higher rate for the generation of a specific mismatch, have led to the conclusion that Polε is the primary leading strand replicase and that Polδ is restricted to replicating the lagging strand template. Contrary to this widely accepted view, here we show that Polδ plays a major role in the replication of both DNA strands, and that the paucity of pol3-L612M-generated errors on the leading strand results from their more proficient removal. Thus, the apparent lack of Polδ contribution to leading strand replication is due to differential mismatch removal rather than differential mismatch generation. Altogether, our genetic studies with Pol3 and Pol2 mutator alleles support the conclusion that Polδ, and not Polε, is the major DNA polymerase for carrying out both leading and lagging DNA synthesis.
Collapse
Affiliation(s)
- Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| | - Roland Klassen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| |
Collapse
|
38
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
39
|
Dissecting genetic and environmental mutation signatures with model organisms. Trends Genet 2015; 31:465-74. [PMID: 25940384 DOI: 10.1016/j.tig.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon.
Collapse
|
40
|
St Charles JA, Liberti SE, Williams JS, Lujan SA, Kunkel TA. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair (Amst) 2015; 31:41-51. [PMID: 25996407 DOI: 10.1016/j.dnarep.2015.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022]
Abstract
Mismatches generated during eukaryotic nuclear DNA replication are removed by two evolutionarily conserved error correction mechanisms acting in series, proofreading and mismatch repair (MMR). Defects in both processes are associated with increased susceptibility to cancer. To better understand these processes, we have quantified base selectivity, proofreading and MMR during nuclear DNA replication in Saccharomyces cerevisiae. In the absence of proofreading and MMR, the primary leading and lagging strand replicases, polymerase ɛ and polymerase δ respectively, synthesize DNA in vivo with somewhat different error rates and specificity, and with apparent base selectivity that is more than 100 times higher than measured in vitro. Moreover, leading and lagging strand replication fidelity rely on a different balance between proofreading and MMR. On average, proofreading contributes more to replication fidelity than does MMR, but their relative contributions vary from nearly all proofreading of some mismatches to mostly MMR of other mismatches. Thus accurate replication of the two DNA strands results from a non-uniform and variable balance between error prevention, proofreading and MMR.
Collapse
Affiliation(s)
- Jordan A St Charles
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sascha E Liberti
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
41
|
Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet 2015; 6:157. [PMID: 25954303 PMCID: PMC4407582 DOI: 10.3389/fgene.2015.00157] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023] Open
Abstract
DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants. Proc Natl Acad Sci U S A 2015; 112:E2457-66. [PMID: 25827226 DOI: 10.1073/pnas.1422948112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Collapse
|
43
|
Lujan SA, Clark AB, Kunkel TA. Differences in genome-wide repeat sequence instability conferred by proofreading and mismatch repair defects. Nucleic Acids Res 2015; 43:4067-74. [PMID: 25824945 PMCID: PMC4417177 DOI: 10.1093/nar/gkv271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/22/2022] Open
Abstract
Mutation rates are used to calibrate molecular clocks and to link genetic variants with human disease. However, mutation rates are not uniform across each eukaryotic genome. Rates for insertion/deletion (indel) mutations have been found to vary widely when examined in vitro and at specific loci in vivo. Here, we report the genome-wide rates of formation and repair of indels made during replication of yeast nuclear DNA. Using over 6000 indels accumulated in four mismatch repair (MMR) defective strains, and statistical corrections for false negatives, we find that indel rates increase by 100 000-fold with increasing homonucleotide run length, representing the greatest effect on replication fidelity of any known genomic parameter. Nonetheless, long genomic homopolymer runs are overrepresented relative to random chance, implying positive selection. Proofreading defects in the replicative polymerases selectively increase indel rates in short repetitive tracts, likely reflecting the distance over which Pols δ and ϵ interact with duplex DNA upstream of the polymerase active site. In contrast, MMR defects hugely increase indel mutagenesis in long repetitive sequences. Because repetitive sequences are not uniformly distributed among genomic functional elements, the quantitatively different consequences on genome-wide repeat sequence instability conferred by defects in proofreading and MMR have important biological implications.
Collapse
Affiliation(s)
- Scott A Lujan
- Genome Instability and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Alan B Clark
- Genome Instability and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Instability and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
44
|
Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. PLoS Genet 2015; 11:e1005049. [PMID: 25742645 PMCID: PMC4351087 DOI: 10.1371/journal.pgen.1005049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/02/2015] [Indexed: 01/18/2023] Open
Abstract
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants. Many DNA polymerases are able to proofread their errors: after incorporation of a wrong base, the resulting mispair invokes an exonuclease activity of the polymerase that removes the mispaired base and allows replication to continue. Elimination of the proofreading activity thus results in much higher mutation rates. We demonstrate that the two major replicative DNA polymerases in yeast, Pol δ and Pol ε, have different proofreading abilities. In diploid cells, Pol ε is not able to proofread errors created by other Pol ε molecules, whereas Pol δ can proofread not only errors created by other Pol δ molecules but also errors created by Pol ε molecules. We also find that mispaired bases not corrected by proofreading have much different likelihoods of being extended, depending on the particular base-base mismatch. In humans, defects in Pol δ or Pol ε proofreading can lead to cancer, and these results help explain the formation of those tumors and the finding that Pol ε mutants seem to be found as frequently, or more so, in human tumors as Pol δ mutants.
Collapse
|
45
|
Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS, Clausen MF, Malc EP, Mieczkowski PA, Fargo DC, Smith DJ, Kunkel TA. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 2015; 22:185-91. [PMID: 25622295 PMCID: PMC4351163 DOI: 10.1038/nsmb.2957] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5' DNA end-mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases α and δ in lagging-strand replication and of DNA polymerase ɛ in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5' DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.
Collapse
Affiliation(s)
- Anders R Clausen
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Scott A Lujan
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Clinton D Orebaugh
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Jessica S Williams
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Maryam F Clausen
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ewa P Malc
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Piotr A Mieczkowski
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Thomas A Kunkel
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| |
Collapse
|
46
|
Garbacz M, Araki H, Flis K, Bebenek A, Zawada AE, Jonczyk P, Makiela-Dzbenska K, Fijalkowska IJ. Fidelity consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex. DNA Repair (Amst) 2015; 29:23-35. [PMID: 25758782 DOI: 10.1016/j.dnarep.2015.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 01/08/2023]
Abstract
DNA polymerase epsilon interacts with the CMG (Cdc45-MCM-GINS) complex by Dpb2p, the non-catalytic subunit of DNA polymerase epsilon. It is postulated that CMG is responsible for targeting of Pol ɛ to the leading strand. We isolated a mutator dpb2-100 allele which encodes the mutant form of Dpb2p. We showed previously that Dpb2-100p has impaired interactions with Pol2p, the catalytic subunit of Pol ɛ. Here, we present that Dpb2-100p has strongly impaired interaction with the Psf1 and Psf3 subunits of the GINS complex. Our in vitro results suggest that while dpb2-100 does not alter Pol ɛ's biochemical properties including catalytic efficiency, processivity or proofreading activity - it moderately decreases the fidelity of DNA synthesis. As the in vitro results did not explain the strong in vivo mutator effect of the dpb2-100 allele we analyzed the mutation spectrum in vivo. The analysis of the mutation rates in the dpb2-100 mutant indicated an increased participation of the error-prone DNA polymerase zeta in replication. However, even in the absence of Pol ζ activity the presence of the dpb2-100 allele was mutagenic, indicating that a significant part of mutagenesis is Pol ζ-independent. A strong synergistic mutator effect observed for transversions in the triple mutant dpb2-100 pol2-4 rev3Δ as compared to pol2-4 rev3Δ and dpb2-100 rev3Δ suggests that in the presence of the dpb2-100 allele the number of replication errors is enhanced. We hypothesize that in the dpb2-100 strain, where the interaction between Pol ɛ and GINS is weakened, the access of Pol δ to the leading strand may be increased. The increased participation of Pol δ on the leading strand in the dpb2-100 mutant may explain the synergistic mutator effect observed in the dpb2-100 pol3-5DV double mutant.
Collapse
Affiliation(s)
- Marta Garbacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Hiroyuki Araki
- National Institute of Genetics, Division of Microbial Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Anna Bebenek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Molecular Biology, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Anna E Zawada
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland.
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland.
| |
Collapse
|
47
|
Lagging-strand replication shapes the mutational landscape of the genome. Nature 2015; 518:502-506. [PMID: 25624100 PMCID: PMC4374164 DOI: 10.1038/nature14183] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/05/2015] [Indexed: 12/21/2022]
Abstract
The origin of mutations is central to understanding evolution and of key relevance to health. Variation occurs non-randomly across the genome, and mechanisms for this remain to be defined. Here, we report that the 5′-ends of Okazaki fragments have significantly elevated levels of nucleotide substitution, indicating a replicative origin for such mutations. With a novel method, emRiboSeq, we map the genome-wide contribution of polymerases, and show that despite Okazaki fragment processing, DNA synthesised by error-prone Pol-α is retained in vivo, comprising ~1.5% of the mature genome. We propose that DNA-binding proteins that rapidly re-associate post-replication act as partial barriers to Pol-δ mediated displacement of Pol-α synthesised DNA, resulting in incorporation of such Pol-α tracts and elevated mutation rates at specific sites. We observe a mutational cost to chromatin and regulatory protein binding, resulting in mutation hotspots at regulatory elements, with signatures of this process detectable in both yeast and humans.
Collapse
|
48
|
Van C, Williams JS, Kunkel TA, Peterson CL. Deposition of histone H2A.Z by the SWR-C remodeling enzyme prevents genome instability. DNA Repair (Amst) 2014; 25:9-14. [PMID: 25463393 DOI: 10.1016/j.dnarep.2014.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
The yeast SWR-C chromatin remodeling enzyme catalyzes chromatin incorporation of the histone variant H2A.Z which plays roles in transcription, DNA repair, and chromosome segregation. Dynamic incorporation of H2A.Z by SWR-C also enhances the ability of exonuclease I (Exo1) to process DNA ends during repair of double strand breaks. Given that Exo1 also participates in DNA replication and mismatch repair, here we test whether SWR-C influences DNA replication fidelity. We find that inactivation of SWR-C elevates the spontaneous mutation rate of a strain encoding a L612M variant of DNA polymerase (Pol) δ, with a single base mutation signature characteristic of lagging strand replication errors. However, this genomic instability does not solely result from reduced Exo1 function, because single base mutator effects are seen in both Exo1-proficient and Exo1-deficient pol3-L612M swr1Δ strains. The data are consistent with the possibility that incorporation of the H2A.Z variant by SWR-C may stimulate Exo1 activity, as well as enhance the fidelity of replication by Pol δ, the repair of mismatches generated by Pol δ, or both.
Collapse
Affiliation(s)
- Christopher Van
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Jessica S Williams
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A Kunkel
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
49
|
Billingsley CC, Cohn DE, Mutch DG, Stephens JA, Suarez AA, Goodfellow PJ. Polymerase ɛ (POLE) mutations in endometrial cancer: clinical outcomes and implications for Lynch syndrome testing. Cancer 2014; 121:386-94. [PMID: 25224212 DOI: 10.1002/cncr.29046] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND DNA polymerase ɛ (POLE) exonuclease domain mutations characterize a subtype of endometrial cancer (EC) with a markedly increased somatic mutational burden. POLE-mutant tumors were described as a molecular subtype with improved progression-free survival by The Cancer Genome Atlas. In this study, the frequency, spectrum, prognostic significance, and potential clinical application of POLE mutations were investigated in patients with endometrioid EC. METHODS Polymerase chain reaction amplification and Sanger sequencing were used to test for POLE mutations in 544 tumors. Correlations between demographic, survival, clinicopathologic, and molecular features were investigated. Statistical tests were 2-sided. RESULTS Thirty POLE mutations (5.6%) were identified. Mutations were associated with younger age (<60 years; P=.001). POLE mutations were detected in tumors with microsatellite stability (MSS) and microsatellite instability (MSI) at similar frequencies (5.9% and 5.2%, respectively) and were most common in tumors with MSI that lacked mutL homolog 1 (MLH1) methylation (P<.001). There was no association with progression-free survival (hazard ratio, 0.22; P=.127). CONCLUSIONS The discovery that mutations occur with equal frequency in MSS and MSI tumors and are most frequent in MSI tumors lacking MLH1 methylation has implications for Lynch syndrome screening and mutation testing. The current results indicate that POLE mutations are associated with somatic mutation in DNA mismatch repair genes in a subset of tumors. The absence of an association between POLE mutation and progression-free survival indicates that POLE mutation status is unlikely to be a clinically useful prognostic marker. However, POLE testing in MSI ECs could serve as a marker of somatic disease origin. Therefore, POLE tumor testing may be a valuable exclusionary criterion for Lynch syndrome gene testing.
Collapse
Affiliation(s)
- Caroline C Billingsley
- Department of Obstetrics and Gynecology, Division of Gynecology Oncology, The Ohio State University, College of Medicine, Columbus, Ohio
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Mutational heterogeneity must be taken into account when reconstructing evolutionary histories, calibrating molecular clocks, and predicting links between genes and disease. Selective pressures and various DNA transactions have been invoked to explain the heterogeneous distribution of genetic variation between species, within populations, and in tissue-specific tumors. To examine relationships between such heterogeneity and variations in leading- and lagging-strand replication fidelity and mismatch repair, we accumulated 40,000 spontaneous mutations in eight diploid yeast strains in the absence of selective pressure. We found that replicase error rates vary by fork direction, coding state, nucleosome proximity, and sequence context. Further, error rates and DNA mismatch repair efficiency both vary by mismatch type, responsible polymerase, replication time, and replication origin proximity. Mutation patterns implicate replication infidelity as one driver of variation in somatic and germline evolution, suggest mechanisms of mutual modulation of genome stability and composition, and predict future observations in specific cancers.
Collapse
|