1
|
Ghosh S, Dantuluri S, Jacewicz A, Sanchez AM, Abdullahu L, Damha MJ, Schwer B, Shuman S. Characterization of tRNA splicing enzymes RNA ligase and tRNA 2'-phosphotransferase from the pathogenic fungi Mucorales. RNA (NEW YORK, N.Y.) 2024; 30:367-380. [PMID: 38238085 PMCID: PMC10946426 DOI: 10.1261/rna.079911.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024]
Abstract
Fungal Trl1 is an essential trifunctional tRNA splicing enzyme that heals and seals tRNA exons with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trl1 enzymes are present in many human fungal pathogens and are promising targets for antifungal drug discovery because their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. Here we report that Mucorales species (deemed high-priority human pathogens by WHO) elaborate a noncanonical tRNA splicing apparatus in which a monofunctional RNA ligase enzyme is encoded separately from any end-healing enzymes. We show that Mucor circinelloides RNA ligase (MciRNL) is active in tRNA splicing in vivo in budding yeast in lieu of the Trl1 ligase domain. Biochemical and kinetic characterization of recombinant MciRNL underscores its requirement for a 2'-PO4 terminus in the end-joining reaction, whereby the 2'-PO4 enhances the rates of RNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3) by ∼125-fold and ∼6200-fold, respectively. In the canonical fungal tRNA splicing pathway, the splice junction 2'-PO4 installed by RNA ligase is removed by a dedicated NAD+-dependent RNA 2'-phosphotransferase Tpt1. Here we identify and affirm by genetic complementation in yeast the biological activity of Tpt1 orthologs from three Mucorales species. Recombinant M. circinelloides Tpt1 has vigorous NAD+-dependent RNA 2'-phosphotransferase activity in vitro.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Leonora Abdullahu
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
2
|
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
3
|
Ahammed KS, van Hoof A. Fungi of the order Mucorales express a "sealing-only" tRNA ligase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567474. [PMID: 38014270 PMCID: PMC10680797 DOI: 10.1101/2023.11.16.567474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease (TSEN), followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins each can functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, contain an atypical Trl1 that contains the sealing domain, but lack both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified non-orthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.
Collapse
Affiliation(s)
- Khondakar Sayef Ahammed
- Department of Microbiology and Molecular Genetics. UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences. University of Texas Health Science Center at Houston
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics. UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences. University of Texas Health Science Center at Houston
| |
Collapse
|
4
|
Saito M, Inose R, Sato A, Tomita M, Suzuki H, Kanai A. Systematic Analysis of Diverse Polynucleotide Kinase Clp1 Family Proteins in Eukaryotes: Three Unique Clp1 Proteins of Trypanosoma brucei. J Mol Evol 2023; 91:669-686. [PMID: 37606665 PMCID: PMC10598085 DOI: 10.1007/s00239-023-10128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
The Clp1 family proteins, consisting of the Clp1 and Nol9/Grc3 groups, have polynucleotide kinase (PNK) activity at the 5' end of RNA strands and are important enzymes in the processing of some precursor RNAs. However, it remains unclear how this enzyme family diversified in the eukaryotes. We performed a large-scale molecular evolutionary analysis of the full-length genomes of 358 eukaryotic species to classify the diverse Clp1 family proteins. The average number of Clp1 family proteins in eukaryotes was 2.3 ± 1.0, and most representative species had both Clp1 and Nol9/Grc3 proteins, suggesting that the Clp1 and Nol9/Grc3 groups were already formed in the eukaryotic ancestor by gene duplication. We also detected an average of 4.1 ± 0.4 Clp1 family proteins in members of the protist phylum Euglenozoa. For example, in Trypanosoma brucei, there are three genes of the Clp1 group and one gene of the Nol9/Grc3 group. In the Clp1 group proteins encoded by these three genes, the C-terminal domains have been replaced by unique characteristics domains, so we designated these proteins Tb-Clp1-t1, Tb-Clp1-t2, and Tb-Clp1-t3. Experimental validation showed that only Tb-Clp1-t2 has PNK activity against RNA strands. As in this example, N-terminal and C-terminal domain replacement also contributed to the diversification of the Clp1 family proteins in other eukaryotic species. Our analysis also revealed that the Clp1 family proteins in humans and plants diversified through isoforms created by alternative splicing.
Collapse
Affiliation(s)
- Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Rerina Inose
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan.
- Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan.
| |
Collapse
|
5
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
6
|
Saito M, Sato A, Nagata S, Tamaki S, Tomita M, Suzuki H, Kanai A. Large-Scale Molecular Evolutionary Analysis Uncovers a Variety of Polynucleotide Kinase Clp1 Family Proteins in the Three Domains of Life. Genome Biol Evol 2020; 11:2713-2726. [PMID: 31513263 PMCID: PMC6777427 DOI: 10.1093/gbe/evz195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 01/13/2023] Open
Abstract
Clp1, a polyribonucleotide 5′-hydroxyl kinase in eukaryotes, is involved in pretRNA splicing and mRNA 3′-end formation. Enzymes similar in amino acid sequence to Clp1, Nol9, and Grc3, are present in some eukaryotes and are involved in prerRNA processing. However, our knowledge of how these Clp1 family proteins evolved and diversified is limited. We conducted a large-scale molecular evolutionary analysis of the Clp1 family proteins in all living organisms for which protein sequences are available in public databases. The phylogenetic distribution and frequencies of the Clp1 family proteins were investigated in complete genomes of Bacteria, Archaea and Eukarya. In total, 3,557 Clp1 family proteins were detected in the three domains of life, Bacteria, Archaea, and Eukarya. Many were from Archaea and Eukarya, but a few were found in restricted, phylogenetically diverse bacterial species. The domain structures of the Clp1 family proteins also differed among the three domains of life. Although the proteins were, on average, 555 amino acids long (range, 196–2,728), 122 large proteins with >1,000 amino acids were detected in eukaryotes. These novel proteins contain the conserved Clp1 polynucleotide kinase domain and various other functional domains. Of these proteins, >80% were from Fungi or Protostomia. The polyribonucleotide kinase activity of Thermus scotoductus Clp1 (Ts-Clp1) was characterized experimentally. Ts-Clp1 preferentially phosphorylates single-stranded RNA oligonucleotides (Km value for ATP, 2.5 µM), or single-stranded DNA at higher enzyme concentrations. We propose a comprehensive assessment of the diversification of the Clp1 family proteins and the molecular evolution of their functional domains.
Collapse
Affiliation(s)
- Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Shohei Nagata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Satoshi Tamaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
7
|
Schmidt CA, Matera AG. tRNA introns: Presence, processing, and purpose. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1583. [DOI: 10.1002/wrna.1583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
- Department of Biology, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
- Department of Genetics, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
8
|
Nandy A, Saenz-Méndez P, Gorman AM, Samali A, Eriksson LA. Homology model of the human tRNA splicing ligase RtcB. Proteins 2017; 85:1983-1993. [PMID: 28707320 DOI: 10.1002/prot.25352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/28/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
RtcB is an essential human tRNA ligase required for ligating the 2',3'-cyclic phosphate and 5'-hydroxyl termini of cleaved tRNA halves during tRNA splicing and XBP1 fragments during endoplasmic reticulum stress. Activation of XBP1 has been implicated in various human tumors including breast cancer. Here we present, for the first time, a homology model of human RtcB (hRtcB) in complex with manganese and covalently bound GMP built from the Pyrococcus horikoshii RtcB (bRtcB) crystal structure, PDB ID 4DWQA. The structure is analyzed in terms of stereochemical quality, folding reliability, secondary structure similarity with bRtcB, druggability of the active site binding pocket and its metal-binding microenvironment. In comparison with bRtcB, loss of a manganese-coordinating water and movement of Asn226 (Asn202 in 4DWQA) to form metal-ligand coordination, demonstrates the uniqueness of the hRtcB model. Rotation of GMP leads to the formation of an additional metal-ligand coordination (Mn-O). Umbrella sampling simulations of Mn binding in wild type and the catalytically inactive C122A mutant reveal a clear reduction of Mn binding ability in the mutant, thus explaining the loss of activity therein. Our results furthermore clearly show that the GTP binding site of the enzyme is a well-defined pocket that can be utilized as target site for in silico drug discovery.
Collapse
Affiliation(s)
- Argha Nandy
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Patricia Saenz-Méndez
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden.,Computational Chemistry and Biology Group, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| | - Adrienne M Gorman
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
9
|
Muruganandam G, Raasakka A, Myllykoski M, Kursula I, Kursula P. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase. BMC BIOCHEMISTRY 2017; 18:7. [PMID: 28511668 PMCID: PMC5434554 DOI: 10.1186/s12858-017-0084-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/10/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). RESULTS We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. CONCLUSIONS We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.
Collapse
Affiliation(s)
- Gopinath Muruganandam
- Centre for Structural Systems Biology - Helmholtz Centre for Infection Research, German Electron Synchrotron (DESY), Hamburg, Germany
| | - Arne Raasakka
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Inari Kursula
- Centre for Structural Systems Biology - Helmholtz Centre for Infection Research, German Electron Synchrotron (DESY), Hamburg, Germany
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Petri Kursula
- Centre for Structural Systems Biology - Helmholtz Centre for Infection Research, German Electron Synchrotron (DESY), Hamburg, Germany
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
11
|
Lopes RRS, Silveira GDO, Eitler R, Vidal RS, Kessler A, Hinger S, Paris Z, Alfonzo JD, Polycarpo C. The essential function of the Trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNATyr. RNA (NEW YORK, N.Y.) 2016; 22:1190-9. [PMID: 27284166 PMCID: PMC4931112 DOI: 10.1261/rna.056242.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2016] [Indexed: 05/27/2023]
Abstract
Trypanosoma brucei, the etiologic agent of sleeping sickness, encodes a single intron-containing tRNA, tRNA(Tyr), and splicing is essential for its viability. In Archaea and Eukarya, tRNA splicing requires a series of enzymatic steps that begin with intron cleavage by a tRNA-splicing endonuclease and culminates with joining the resulting tRNA exons by a splicing tRNA ligase. Here we explored the function of TbTrl1, the T. brucei homolog of the yeast Trl1 tRNA ligase. We used a combination of RNA interference and molecular biology approaches to show that down-regulation of TbTrl1 expression leads to accumulation of intron-containing tRNA(Tyr) and a concomitant growth arrest at the G1 phase. These defects were efficiently rescued by expression of an "intronless" version of tRNA(Tyr) in the same RNAi cell line. Taken together, these experiments highlight the crucial importance of the TbTrl1 for tRNA(Tyr) maturation and viability, while revealing tRNA splicing as its only essential function.
Collapse
Affiliation(s)
- Raphael R S Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| | - Gilbert de O Silveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| | - Roberta Eitler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil
| | - Raphael S Vidal
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil
| | - Alan Kessler
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Scott Hinger
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zdeněk Paris
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Carla Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| |
Collapse
|
12
|
Myllykoski M, Seidel L, Muruganandam G, Raasakka A, Torda AE, Kursula P. Structural and functional evolution of 2',3'-cyclic nucleotide 3'-phosphodiesterase. Brain Res 2015; 1641:64-78. [PMID: 26367445 DOI: 10.1016/j.brainres.2015.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant membrane-associated enzyme within the vertebrate myelin sheath. While the physiological function of CNPase still remains to be characterized in detail, it is known - in addition to its in vitro enzymatic activity - to interact with other proteins, small molecules, and membrane surfaces. From an evolutionary point of view, it can be deduced that CNPase is not restricted to myelin-forming cells or vertebrate tissues. Its evolution has involved gene fusion, addition of other small segments with distinct functions, such as membrane attachment, and possibly loss of function at the polynucleotide kinase-like domain. Currently, it is unclear whether the enzymatic function of the conserved phosphodiesterase domain in vertebrate myelin has a physiological role, or if CNPase could actually function - like many other classical myelin proteins - in a more structural role. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Leonie Seidel
- Centre for Bioinformatics, University of Hamburg, Bundesstraße 43, 20146 Hamburg, Germany
| | | | - Arne Raasakka
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Andrew E Torda
- Centre for Bioinformatics, University of Hamburg, Bundesstraße 43, 20146 Hamburg, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland; German Electron Synchrotron, Notkestraße 85, 22607 Hamburg, Germany; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
13
|
Unciuleac MC, Shuman S. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi. RNA (NEW YORK, N.Y.) 2015; 21:824-832. [PMID: 25740837 PMCID: PMC4408790 DOI: 10.1261/rna.049197.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3'-OH/5'-PO4 duplexes in which the 3'-OH strand is RNA. It does so via the "classic" ligase pathway, entailing reaction with ATP to form a covalent NgrRnl-AMP intermediate, transfer of AMP to the nick 5'-PO4, and attack of the RNA 3'-OH on the adenylylated nick to form a 3'-5' phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3'-OH/5'-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new "Rnl5 family" of nick-sealing ligases with a signature domain organization.
Collapse
Affiliation(s)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
14
|
Lopes RRS, Kessler AC, Polycarpo C, Alfonzo JD. Cutting, dicing, healing and sealing: the molecular surgery of tRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:337-49. [PMID: 25755220 DOI: 10.1002/wrna.1279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/09/2022]
Abstract
All organisms encode transfer RNAs (tRNAs) that are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends; some tRNAs also contain introns, which are removed by splicing. Despite commonality in what the ultimate goal is (i.e., producing a mature tRNA), mechanistically, tRNA splicing differs between Bacteria and Archaea or Eukarya. The number and position of tRNA introns varies between organisms and even between different tRNAs within the same organism, suggesting a degree of plasticity in both the evolution and persistence of modern tRNA splicing systems. Here we will review recent findings that not only highlight nuances in splicing pathways but also provide potential reasons for the maintenance of introns in tRNA. Recently, connections between defects in the components of the tRNA splicing machinery and medically relevant phenotypes in humans have been reported. These differences will be discussed in terms of the importance of splicing for tRNA function and in a broader context on how tRNA splicing defects can often have unpredictable consequences.
Collapse
Affiliation(s)
- Raphael R S Lopes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
15
|
Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 2014; 5:213. [PMID: 25071838 PMCID: PMC4090602 DOI: 10.3389/fgene.2014.00213] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo Ako-gun, Hyogo, Japan
| |
Collapse
|
16
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
17
|
Myllykoski M, Raasakka A, Lehtimäki M, Han H, Kursula I, Kursula P. Crystallographic analysis of the reaction cycle of 2',3'-cyclic nucleotide 3'-phosphodiesterase, a unique member of the 2H phosphoesterase family. J Mol Biol 2013; 425:4307-22. [PMID: 23831225 PMCID: PMC7094350 DOI: 10.1016/j.jmb.2013.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/26/2022]
Abstract
2H phosphoesterases catalyze reactions on nucleotide substrates and contain two conserved histidine residues in the active site. Very limited information is currently available on the details of the active site and substrate/product binding during the catalytic cycle of these enzymes. We performed a comprehensive X-ray crystallographic study of mouse 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), a membrane-associated enzyme present at high levels in the tetrapod myelin sheath. We determined crystal structures of the CNPase phosphodiesterase domain complexed with substrate, product, and phosphorothioate analogues. The data provide detailed information on the CNPase reaction mechanism, including substrate binding mode and coordination of the nucleophilic water molecule. Linked to the reaction, an open/close motion of the β5–α7 loop is observed. The role of the N terminus of helix α7—unique for CNPase in the 2H family—during the reaction indicates that 2H phosphoesterases differ in their respective reaction mechanisms despite the conserved catalytic residues. Furthermore, based on small-angle X-ray scattering, we present a model for the full-length enzyme, indicating that the two domains of CNPase form an elongated molecule. Finally, based on our structural data and a comprehensive bioinformatics study, we discuss the conservation of CNPase in various organisms. A detailed structural analysis of the CNPase catalytic cycle was carried out. Complexes with substrates, products, and analogues highlight roles for a nearby helix and loop in the reaction mechanism. The full-length CNPase adopts an elongated conformation in solution. CNPase is a unique member of the 2H family, and the results will help understand its physiological significance.
Collapse
Affiliation(s)
- Matti Myllykoski
- Department of Biochemistry, University of Oulu, FIN-90014 Oulu, Finland; Biocenter Oulu, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
18
|
Wang LK, Das U, Smith P, Shuman S. Structure and mechanism of the polynucleotide kinase component of the bacterial Pnkp-Hen1 RNA repair system. RNA (NEW YORK, N.Y.) 2012; 18:2277-86. [PMID: 23118415 PMCID: PMC3504678 DOI: 10.1261/rna.036061.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from many phyla. Pnkp is composed of three catalytic modules: an N-terminal polynucleotide 5'-kinase, a central 2',3' phosphatase, and a C-terminal ligase. Here we report the crystal structure of the kinase domain of Clostridium thermocellum Pnkp bound to ATP•Mg²⁺ (substrate complex) and ADP•Mg²⁺ (product complex). The protein consists of a core P-loop phosphotransferase fold embellished by a distinctive homodimerization module composed of secondary structure elements derived from the N and C termini of the kinase domain. ATP is bound within a crescent-shaped groove formed by the P-loop (¹⁵GSSGSGKST²³) and an overlying helix-loop-helix "lid." The α and β phosphates are engaged by a network of hydrogen bonds from Thr23 and the P-loop main-chain amides; the γ phosphate is anchored by the lid residues Arg120 and Arg123. The P-loop lysine (Lys21) and the catalytic Mg²⁺ bridge the ATP β and γ phosphates. The P-loop serine (Ser22) is the sole enzymic constituent of the octahedral metal coordination complex. Structure-guided mutational analysis underscored the essential contributions of Lys21 and Ser22 in the ATP donor site and Asp38 and Arg41 in the phosphoacceptor site. Our studies suggest a catalytic mechanism whereby Asp38 (as general base) activates the polynucleotide 5'-OH for its nucleophilic attack on the γ phosphorus and Lys21 and Mg²⁺ stabilize the transition state.
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Ushati Das
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Paul Smith
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
- Corresponding authorE-mail
| |
Collapse
|
19
|
Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3'-terminal phosphate and 5'-OH. Proc Natl Acad Sci U S A 2012; 109:15235-40. [PMID: 22949672 DOI: 10.1073/pnas.1213795109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The RtcB protein has recently been identified as a 3'-phosphate RNA ligase that directly joins an RNA strand ending with a 2',3'-cyclic phosphate to the 5'-hydroxyl group of another RNA strand in a GTP/Mn(2+)-dependent reaction. Here, we report two crystal structures of Pyrococcus horikoshii RNA-splicing ligase RtcB in complex with Mn(2+) alone (RtcB/ Mn(2+)) and together with a covalently bound GMP (RtcB-GMP/Mn(2+)). The RtcB/ Mn(2+) structure (at 1.6 Å resolution) shows two Mn(2+) ions at the active site, and an array of sulfate ions nearby that indicate the binding sites of the RNA phosphate backbone. The structure of the RtcB-GMP/Mn(2+) complex (at 2.3 Å resolution) reveals the detailed geometry of guanylylation of histidine 404. The critical roles of the key residues involved in the binding of the two Mn(2+) ions, the four sulfates, and GMP are validated in extensive mutagenesis and biochemical experiments, which also provide a thorough characterization for the three steps of the RtcB ligation pathway: (i) guanylylation of the enzyme, (ii) guanylyl-transfer to the RNA substrate, and (iii) overall ligation. These results demonstrate that the enzyme's substrate-induced GTP binding site and the putative reactive RNA ends are in the vicinity of the binuclear Mn(2+) active center, which provides detailed insight into how the enzyme-bound GMP is tansferred to the 3'-phosphate of the RNA substrate for activation and subsequent nucleophilic attack by the 5'-hydroxyl of the second RNA substrate, resulting in the ligated product and release of GMP.
Collapse
|
20
|
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70. [PMID: 22426497 PMCID: PMC3400036 DOI: 10.1007/s00018-012-0944-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
21
|
Sato A, Soga T, Igarashi K, Takesue K, Tomita M, Kanai A. GTP-dependent RNA 3'-terminal phosphate cyclase from the hyperthermophilic archaeon Pyrococcus furiosus. Genes Cells 2011; 16:1190-9. [PMID: 22074260 DOI: 10.1111/j.1365-2443.2011.01561.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We discovered that the PF1549 gene in Pyrococcus furiosus encodes a very heat-stable RNA 3'-terminal phosphate cyclase (Pf-Rtc). Although all previously reported Rtc proteins are ATP-dependent enzymes, we found that Pf-Rtc requires GTP for its cyclase activity at 95 °C. Low-level activation of the enzyme was also observed in the presence of dGTP but not other dNTPs, indicating that the guanine base is very important for Pf-Rtc activity. We analyzed a series of GTP analogues and found that the conversion from GTP to GMP is important for Pf-Rtc activity and that an excess of GMP inhibits this activity. Gel-shift analysis clearly showed that the RNA-binding activity of Pf-Rtc is totally dependent on the linear form of the 3'-terminal phosphate, with an apparent K(d) value of 20 nm at 95°C. Furthermore, we found that Pf-Rtc may contribute to GTP-dependent RNA ligation activity through the PF0027 protein (a 2'-5' RNA ligase-like protein in P. furiosus). The possible roles of Pf-Rtc and the importance of terminal phosphate structures in RNA are discussed.
Collapse
Affiliation(s)
- Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Iwawaki T, Tokuda M. Function of yeast and amphioxus tRNA ligase in IRE1alpha-dependent XBP1 mRNA splicing. Biochem Biophys Res Commun 2011; 413:527-31. [PMID: 21924241 DOI: 10.1016/j.bbrc.2011.08.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
Abstract
During their maturation step, transfer RNAs (tRNAs) undergo excision of their introns by specific splicing. Although tRNA splicing is a molecular event observed in all domains of life, the machinery of the ligation reaction has diverged during evolution. Yeast tRNA ligase 1 (TRL1) is a multifunctional protein that alone catalyzes RNA ligation in tRNA splicing, whereas three molecules [RNA ligase (RNL), Clp1, and PNK/CPDase] are necessary for RNA ligation in tRNA splicing in amphioxi. RNA ligation not only occurs in tRNA splicing, but also in yeast HAC1 mRNA splicing and in animal X-box binding protein 1 (XBP1) mRNA splicing under conditions of endoplasmic reticulum (ER) stress. Yeast TRL1 is known to function as an RNA ligase for HAC1 mRNA splicing, whereas the RNA ligase for XBP1 mRNA splicing is unknown in animals. We examined whether yeast and amphioxus RNA ligases for tRNA splicing function in RNA ligation in mammalian XBP1 splicing. Both RNA ligases functioned in RNA ligation in mammalian XBP1 splicing in vitro. Interestingly, Clp1, and PNK/CPDase were not necessary for exon-exon ligation in XBP1 mRNA by amphioxus RNL. These results suggest that RNA ligase for tRNA splicing might therefore commonly function as an RNA ligase for XBP1 mRNA splicing.
Collapse
Affiliation(s)
- Takao Iwawaki
- Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | |
Collapse
|
23
|
Mori S, Kajita T, Endo T, Yoshihisa T. The intron of tRNA-TrpCCA is dispensable for growth and translation of Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2011; 17:1760-9. [PMID: 21784868 PMCID: PMC3162340 DOI: 10.1261/rna.2851411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/20/2011] [Indexed: 05/31/2023]
Abstract
A part of eukaryotic tRNA genes harbor an intron at one nucleotide 3' to the anticodon, so that removal of the intron is an essential processing step for tRNA maturation. While some tRNA introns have important roles in modification of certain nucleotides, essentiality of the tRNA intron in eukaryotes has not been tested extensively. This is partly because most of the eukaryotic genomes have multiple genes encoding an isoacceptor tRNA. Here, we examined whether the intron of tRNA-Trp(CCA) genes, six copies of which are scattered on the genome of yeast, Saccharomyces cerevisiae, is essential for growth or translation of the yeast in vivo. We devised a procedure to remove all of the tRNA introns from the yeast genome iteratively with marker cassettes containing both positive and negative markers. Using this procedure, we removed all the introns from the six tRNA-Trp(CCA) genes, and found that the intronless strain grew normally and expressed tRNA-Trp(CCA) in an amount similar to that of the wild-type genes. Neither incorporation of (35)S-labeled amino acids into a TCA-insoluble fraction nor the major protein pattern on SDS-PAGE/2D gel were affected by complete removal of the intron, while expression levels of some proteins were marginally affected. Therefore, the tRNA-Trp(CCA) intron is dispensable for growth and bulk translation of the yeast. This raises the possibility that some mechanism other than selective pressure from translational efficiency maintains the tRNA intron on the yeast genome.
Collapse
Affiliation(s)
- Shunsuke Mori
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Takuya Kajita
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Tohru Yoshihisa
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| |
Collapse
|
24
|
Jain R, Shuman S. Active site mapping and substrate specificity of bacterial Hen1, a manganese-dependent 3' terminal RNA ribose 2'O-methyltransferase. RNA (NEW YORK, N.Y.) 2011; 17:429-38. [PMID: 21205839 PMCID: PMC3039143 DOI: 10.1261/rna.2500711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The RNA methyltransferase Hen1 and the RNA end-healing/sealing enzyme Pnkp comprise an RNA repair system encoded by an operon-like cassette present in bacteria from eight different phyla. Clostridium thermocellum Hen1 (CthHen1) is a manganese-dependent RNA ribose 2'O-methyltransferase that marks the 3' terminal nucleoside of broken RNAs and protects repair junctions from iterative damage by transesterifying endonucleases. Here we used the crystal structure of the homologous plant Hen1 to guide a mutational analysis of CthHen1, the results of which provide new insights to RNA end recognition and catalysis. We illuminated structure-activity relations at eight essential constituents of the active site implicated in binding the 3' dinucleotide of the RNA methyl acceptor (Arg273, Arg414), the manganese cofactor (Glu366, Glu369, His370, His418), and the AdoMet methyl donor (Asp291, Asp316). We investigated the effects of varying the terminal nucleobase, RNA size, RNA content, and RNA secondary structure on methyl acceptor activity. Key findings are as follows. CthHen1 displayed a fourfold preference for guanosine as the terminal nucleoside. RNA size had little impact in the range of 12-24 nucleotides, but activity declined sharply with a 9-mer. CthHen1 was adept at methylating a polynucleotide composed of 23 deoxyribonucleotides and one 3' terminal ribonucleotide, signifying that it has no strict RNA specificity beyond the 3' nucleoside. CthHen1 methylated RNA ends in the context of duplex secondary structures. These properties distinguish bacterial Hen1 from plant and metazoan homologs.
Collapse
Affiliation(s)
- Ruchi Jain
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|