1
|
Kashyap D, Rele S, Bagde PH, Saini V, Chatterjee D, Jain AK, Pandey RK, Jha HC. Comprehensive insight into altered host cell-signaling cascades upon Helicobacter pylori and Epstein-Barr virus infections in cancer. Arch Microbiol 2023; 205:262. [PMID: 37310490 DOI: 10.1007/s00203-023-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/β-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Pranit Hemant Bagde
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | | | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Solna, Sweden
| | - Hem Chandra Jha
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Madhya Pradesh, 453552, Indore, India.
| |
Collapse
|
2
|
A central role of IKK2 and TPL2 in JNK activation and viral B-cell transformation. Nat Commun 2020; 11:685. [PMID: 32019925 PMCID: PMC7000802 DOI: 10.1038/s41467-020-14502-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
IκB kinase 2 (IKK2) is well known for its pivotal role as a mediator of the canonical NF-κB pathway, which has important functions in inflammation and immunity, but also in cancer. Here we identify a novel and critical function of IKK2 and its co-factor NEMO in the activation of oncogenic c-Jun N-terminal kinase (JNK) signaling, induced by the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). Independent of its kinase activity, the TGFβ-activated kinase 1 (TAK1) mediates LMP1 signaling complex formation, NEMO ubiquitination and subsequent IKK2 activation. The tumor progression locus 2 (TPL2) kinase is induced by LMP1 via IKK2 and transmits JNK activation signals downstream of IKK2. The IKK2-TPL2-JNK axis is specific for LMP1 and differs from TNFα, Interleukin-1 and CD40 signaling. This pathway mediates essential LMP1 survival signals in EBV-transformed human B cells and post-transplant lymphoma, and thus qualifies as a target for treatment of EBV-induced cancer.
Collapse
|
3
|
Abstract
Epstein-Barr virus latent membrane protein 1 (LMP1) is expressed in multiple human malignancies, including nasopharyngeal carcinoma and Hodgkin and immunosuppression-associated lymphomas. LMP1 mimics CD40 signaling to activate multiple growth and survival pathways, in particular, NF-κB. LMP1 has critical roles in Epstein-Barr virus (EBV)-driven B-cell transformation, and its expression causes fatal lymphoproliferative disease in immunosuppressed mice. Here, we review recent developments in studies of LMP1 signaling, LMP1-induced host dependency factors, mouse models of LMP1 lymphomagenesis, and anti-LMP1 immunotherapy approaches.
Collapse
Affiliation(s)
- Liang Wei Wang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Sizun Jiang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Benjamin E Gewurz
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
4
|
Verginelli F, Adesso L, Limon I, Alisi A, Gueguen M, Panera N, Giorda E, Raimondi L, Ciarapica R, Campese AF, Screpanti I, Stifani S, Kitajewski J, Miele L, Rota R, Locatelli F. Activation of an endothelial Notch1-Jagged1 circuit induces VCAM1 expression, an effect amplified by interleukin-1β. Oncotarget 2016; 6:43216-29. [PMID: 26646450 PMCID: PMC4791227 DOI: 10.18632/oncotarget.6456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/21/2015] [Indexed: 01/13/2023] Open
Abstract
The Notch1 and Notch4 signaling pathways regulate endothelial cell homeostasis. Inflammatory cytokines induce the expression of endothelial adhesion molecules, including VCAM1, partly by downregulating Notch4 signaling. We investigated the role of endothelial Notch1 in this IL-1β-mediated process. Brief treatment with IL-1β upregulated endothelial VCAM1 and Notch ligand Jagged1. IL-1β decreased Notch1 mRNA levels, but levels of the active Notch1ICD protein remained constant. IL-1β-mediated VCAM1 induction was downregulated in endothelial cells subjected to pretreatment with a pharmacological inhibitor of the γ-secretase, which activates Notch receptors, producing NotchICD. It was also downregulated in cells in which Notch1 and/or Jagged1 were silenced.Conversely, the forced expression of Notch1ICD in naïve endothelial cells upregulated VCAM1 per se and amplified IL-1β-mediated VCAM1 induction. Jagged1 levels increased and Notch4 signaling was downregulated in parallel. Finally, Notch1ICD and Jagged1 expression was upregulated in the endothelium of the liver in a model of chronic liver inflammation.In conclusion, we describe here a cell-autonomous, pro-inflammatory endothelial Notch1-Jagged1 circuit (i) triggering the expression of VCAM1 even in the absence of inflammatory cytokines and (ii) enhancing the effects of IL-1β. Thus, IL-1β regulates Notch1 and Notch4 activity in opposite directions, consistent with a selective targeting of Notch1 in inflamed endothelium.
Collapse
Affiliation(s)
- Federica Verginelli
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Laura Adesso
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Isabelle Limon
- Department of Sorbonne Universités, UPMC University Paris 06, CNRS, UMR, IBPS, Paris, France
| | - Anna Alisi
- Liver Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marie Gueguen
- Department of Sorbonne Universités, UPMC University Paris 06, CNRS, UMR, IBPS, Paris, France
| | - Nadia Panera
- Liver Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ezio Giorda
- Department of Unit of Flow Cytometry, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lavinia Raimondi
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Roberta Ciarapica
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | - Stefano Stifani
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jan Kitajewski
- Departments of Pathology and Ob/Gyn, Columbia University Medical Center, New York, NY, USA
| | - Lucio Miele
- Department of Genetics and Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA
| | - Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.,Dipartimento di Scienze Pediatriche, Università di Pavia, Pavia PV, Italy
| |
Collapse
|
5
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
6
|
Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus Latent Membrane Protein 1. Viruses 2013; 5:1587-606. [PMID: 23793113 PMCID: PMC3717723 DOI: 10.3390/v5061587] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022] Open
Abstract
The principal Epstein-Barr virus (EBV) oncoprotein, Latent Membrane Protein 1 (LMP1), is expressed in most EBV-associated human malignancies. LMP1 mimics CD40 receptor signaling to provide infected cells with constitutive NF-κB, MAP kinase, IRF7, and PI3 kinase pathway stimulation. EBV-transformed B-cells are particularly dependent on constitutive NF-κB activity, and rapidly undergo apoptosis upon NF-κB blockade. Here, we review LMP1 function, with special attention to current understanding of the molecular mechanisms of LMP1-mediated NF-κB and IRF7 pathway activation. Recent advances include the elucidation of transmembrane motifs important for LMP1 trafficking and ligand-independent signaling, analysis of genome-wide LMP1 gene targets, and the identification of novel cell proteins that mediate LMP1 NF-κB and IRF7 pathway activation.
Collapse
Affiliation(s)
| | | | - Benjamin E. Gewurz
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-011-617-525-4263; Fax: +1-011-615-525-4251
| |
Collapse
|
7
|
Kumar S, Kunec D, Buza JJ, Chiang HI, Zhou H, Subramaniam S, Pendarvis K, Cheng HH, Burgess SC. Nuclear Factor kappa B is central to Marek's disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo. BMC SYSTEMS BIOLOGY 2012; 6:123. [PMID: 22979947 PMCID: PMC3472249 DOI: 10.1186/1752-0509-6-123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/04/2012] [Indexed: 12/15/2022]
Abstract
Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general.
Collapse
Affiliation(s)
- Shyamesh Kumar
- Department of Pathobiology and Population Medicine, Mississippi State University, MS 39762, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shkoda A, Town JA, Griese J, Romio M, Sarioglu H, Knöfel T, Giehler F, Kieser A. The germinal center kinase TNIK is required for canonical NF-κB and JNK signaling in B-cells by the EBV oncoprotein LMP1 and the CD40 receptor. PLoS Biol 2012; 10:e1001376. [PMID: 22904686 PMCID: PMC3419181 DOI: 10.1371/journal.pbio.1001376] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/06/2012] [Indexed: 01/04/2023] Open
Abstract
TNIK has an important function in physiological activation and viral transformation of human B-cells by interacting with the TRAF6 adapter complex and mediating NF-κB and JNK signal transduction. The tumor necrosis factor-receptor-associated factor 2 (TRAF2)- and Nck-interacting kinase (TNIK) is a ubiquitously expressed member of the germinal center kinase family. The TNIK functions in hematopoietic cells and the role of TNIK-TRAF interaction remain largely unknown. By functional proteomics we identified TNIK as interaction partner of the latent membrane protein 1 (LMP1) signalosome in primary human B-cells infected with the Epstein-Barr tumor virus (EBV). RNAi-mediated knockdown proved a critical role for TNIK in canonical NF-κB and c-Jun N-terminal kinase (JNK) activation by the major EBV oncoprotein LMP1 and its cellular counterpart, the B-cell co-stimulatory receptor CD40. Accordingly, TNIK is mandatory for proliferation and survival of EBV-transformed B-cells. TNIK forms an activation-induced complex with the critical signaling mediators TRAF6, TAK1/TAB2, and IKKβ, and mediates signalosome formation at LMP1. TNIK directly binds TRAF6, which bridges TNIK's interaction with the C-terminus of LMP1. Separate TNIK domains are involved in NF-κB and JNK signaling, the N-terminal TNIK kinase domain being essential for IKKβ/NF-κB and the C-terminus for JNK activation. We therefore suggest that TNIK orchestrates the bifurcation of both pathways at the level of the TRAF6-TAK1/TAB2-IKK complex. Our data establish TNIK as a novel key player in TRAF6-dependent JNK and NF-κB signaling and a transducer of activating and transforming signals in human B-cells. The germinal center kinase family member TNIK was discovered in a yeast-two-hybrid screen for interaction partners of the adapter proteins TRAF2 and Nck, and here we show it is one of the missing molecular players in two key signaling pathways in B-lymphocytes. We found that TNIK is crucial for the activities of the CD40 receptor on Bcells and its viral mimic, the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). EBV is a human DNA tumor virus that is associated with various malignancies. It targets and transforms B-cells by hijacking the cellular signaling machinery via its oncogene LMP1. In normal Bcell physiology, the CD40 receptor is central to the immune response by mediating B-cell activation and proliferation. TNIK turns out to be an organizer of the LMP1- and CD40-induced signaling complexes by interacting with the TRAF6 adapter protein, well known for its role in linking distinct signaling pathways. Through this mechanism the two receptors depend on TNIK to activate the canonical NF-κB and JNK signal transduction pathways, which are important for the physiological activation of B-cells (a process that enables antibody production), as well as for their transformation into tumor cells. TNIK thus constitutes a key player in the transmission of physiological and pathological signals in human B-cells that might serve as a future therapeutic target against B-cell malignancies.
Collapse
Affiliation(s)
- Anna Shkoda
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Jennifer A. Town
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Janine Griese
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Michael Romio
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Hakan Sarioglu
- Research Unit Protein Science, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Thomas Knöfel
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Fabian Giehler
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Arnd Kieser
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
- * E-mail:
| |
Collapse
|
9
|
Abstract
Although canonical NFκB is frequently critical for cell proliferation, survival, or differentiation, NFκB hyperactivation can cause malignant, inflammatory, or autoimmune disorders. Despite intensive study, mammalian NFκB pathway loss-of-function RNAi analyses have been limited to specific protein classes. We therefore undertook a human genome-wide siRNA screen for novel NFκB activation pathway components. Using an Epstein Barr virus latent membrane protein (LMP1) mutant, the transcriptional effects of which are canonical NFκB-dependent, we identified 155 proteins significantly and substantially important for NFκB activation in HEK293 cells. These proteins included many kinases, phosphatases, ubiquitin ligases, and deubiquinating enzymes not previously known to be important for NFκB activation. Relevance to other canonical NFκB pathways was extended by finding that 118 of the 155 LMP1 NF-κB activation pathway components were similarly important for IL-1β-, and 79 for TNFα-mediated NFκB activation in the same cells. MAP3K8, PIM3, and six other enzymes were uniquely relevant to LMP1-mediated NFκB activation. Most novel pathway components functioned upstream of IκB kinase complex (IKK) activation. Robust siRNA knockdown effects were confirmed for all mRNAs or proteins tested. Although multiple ZC3H-family proteins negatively regulate NFκB, ZC3H13 and ZC3H18 were activation pathway components. ZC3H13 was critical for LMP1, TNFα, and IL-1β NFκB-dependent transcription, but not for IKK activation, whereas ZC3H18 was critical for IKK activation. Down-modulators of LMP1 mediated NFκB activation were also identified. These experiments identify multiple targets to inhibit or stimulate LMP1-, IL-1β-, or TNFα-mediated canonical NFκB activation.
Collapse
|
10
|
Sommermann TG, O'Neill K, Plas DR, Cahir-McFarland E. IKKβ and NF-κB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res 2011; 71:7291-300. [PMID: 21987722 DOI: 10.1158/0008-5472.can-11-1715] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
All cancer cells require increased nutrient uptake to support proliferation. In this study, we investigated the signals that govern glucose uptake in B-cell lymphomas and determined that the inhibitor of NF-κB-kinase β (IKKβ) induced glucose transporter-1 (GLUT1) membrane trafficking in both viral and spontaneous B-cell lymphomas. IKKβ induced AKT activity, whereas IKKβ-driven NF-κB transcription was required for GLUT1 surface localization downstream of AKT. Activated NF-κB promoted AKT-mediated phosphorylation of the GLUT1 regulator, AKT substrate of 160kD (AS160), but was not required for AKT phosphorylation of the mTOR regulator Tuberous Sclerosis 2 (TSC2). In Epstein-Barr virus-transformed B cells, NF-κB inhibition repressed glucose uptake and induced caspase-independent cell death associated with autophagy. After NF-κB inhibition, an alternate carbon source ameliorated both autophagy and cell death, whereas autophagy inhibitors specifically accelerated cell death. Taken together, the results indicate that NF-κB signaling establishes a metabolic program supporting proliferation and apoptosis resistance by driving glucose import.
Collapse
Affiliation(s)
- Thomas G Sommermann
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
11
|
Canonical NF-kappaB activation is essential for Epstein-Barr virus latent membrane protein 1 TES2/CTAR2 gene regulation. J Virol 2011; 85:6764-73. [PMID: 21543491 DOI: 10.1128/jvi.00422-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) transforms rodent fibroblasts and is expressed in most EBV-associated malignancies. LMP1 (transformation effector site 2 [TES2]/C-terminal activation region 2 [CTAR2]) activates NF-κB, p38, Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and interferon regulatory factor 7 (IRF7) pathways. We have investigated LMP1 TES2 genome-wide RNA effects at 4 time points after LMP1 TES2 expression in HEK-293 cells. By using a false discovery rate (FDR) of <0.001 after correction for multiple hypotheses, LMP1 TES2 caused >2-fold changes in 1,916 mRNAs; 1,479 RNAs were upregulated and 437 were downregulated. In contrast to tumor necrosis factor alpha (TNF-α) stimulation, which transiently upregulates many target genes, LMP1 TES2 maintained most RNA effects through the time course, despite robust and sustained induction of negative feedback regulators, such as IκBα and A20. LMP1 TES2-regulated RNAs encode many NF-κB signaling proteins and secondary interacting proteins. Consequently, many LMP1 TES2-regulated RNAs encode proteins that form an extensive interactome. Gene set enrichment analyses found LMP1 TES2-upregulated genes to be significantly enriched for pathways in cancer, B- and T-cell receptor signaling, and Toll-like receptor signaling. Surprisingly, LMP1 TES2 and IκBα superrepressor coexpression decreased LMP1 TES2 RNA effects to only 5 RNAs, with FDRs of <0.001-fold and >2-fold changes. Thus, canonical NF-κB activation is critical for almost all LMP1 TES2 RNA effects in HEK-293 cells and a more significant therapeutic target than previously appreciated.
Collapse
|