1
|
Willing F, Mhaindarkar V, Hirsch J, Lanz M, Mitton-Fry M, Gubaev A, Klostermeier D. Different propensities for gate opening in gyrases and topoisomerase IV. Nucleic Acids Res 2025; 53:gkaf330. [PMID: 40304180 PMCID: PMC12041858 DOI: 10.1093/nar/gkaf330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
The bacterial type IIA topoisomerases gyrase and topoisomerase IV (Topo IV) catalyze DNA supercoiling and decatenation (gyrase), or DNA relaxation and decatenation (Topo IV) in ATP-dependent reactions. Most bacteria contain both gyrase and Topo IV, which jointly remove torsional stress during replication: gyrase removes positive supercoils ahead of the replication fork, while Topo IV decatenates pre-catenanes behind the fork and the catenated daughter chromosomes. Some bacteria, including Mycobacterium tuberculosis, contain only a gyrase, which then needs to perform both reactions. The molecular determinants for the predominant activity of type IIA topoisomerases are unclear. We hypothesize that the prevalent activity is connected to the stabilities of the DNA- and C-gates. In a comparative single-molecule FRET study of Bacillus subtilis and M. tuberculosis gyrase and B. subtilis Topo IV, we show that the DNA-gates are less stable than the C-gates in all three enzymes. The stabilities of the DNA-gates of gyrase and Topo IV are similar. Strikingly, the C-gates in both gyrases are highly stable, but the C-gate in Topo IV is markedly less stable. Our results suggest that the stability of the C-gate of type IIA topoisomerases is linked to their activities.
Collapse
Affiliation(s)
- Florian Willing
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Vaibhav P Mhaindarkar
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Jana Hirsch
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Martin A Lanz
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Mark J Mitton-Fry
- The Ohio State University, College of Pharmacy, Division of Medicinal Chemistry and Pharmacognosy, 500 West 12th Avenue, Columbus, OH 43210, United States
| | - Airat Gubaev
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| |
Collapse
|
2
|
Michalczyk E, Pakosz-Stępień Z, Liston JD, Gittins O, Pabis M, Heddle JG, Ghilarov D. Structural basis of chiral wrap and T-segment capture by Escherichia coli DNA gyrase. Proc Natl Acad Sci U S A 2024; 121:e2407398121. [PMID: 39589884 PMCID: PMC11626157 DOI: 10.1073/pnas.2407398121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Type II topoisomerase DNA gyrase transduces the energy of ATP hydrolysis into the negative supercoiling of DNA. The postulated catalytic mechanism involves stabilization of a chiral DNA loop followed by the passage of the T-segment through the temporarily cleaved G-segment resulting in sign inversion. The molecular basis for this is poorly understood as the chiral loop has never been directly observed. We have obtained high-resolution cryoEM structures of Escherichia coli gyrase with chirally wrapped 217 bp DNA with and without the fluoroquinolone moxifloxacin (MFX). Each structure constrains a positively supercoiled figure-of-eight DNA loop stabilized by a GyrA β-pinwheel domain which has the structure of a flat disc. By comparing the catalytic site of the native drug-free and MFX-bound gyrase structures both of which contain a single metal ion, we demonstrate that the enzyme is observed in a native precatalytic state. Our data imply that T-segment trapping is not dependent on the dimerization of the ATPase domains which appears to only be possible after strand passage has taken place.
Collapse
Affiliation(s)
- Elizabeth Michalczyk
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków30-348, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
| | - Zuzanna Pakosz-Stępień
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Jonathon D. Liston
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Olivia Gittins
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Marta Pabis
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
| | - Jonathan G. Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
3
|
Jian JY, Osheroff N. Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases. Int J Mol Sci 2023; 24:11199. [PMID: 37446377 PMCID: PMC10342825 DOI: 10.3390/ijms241311199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Type II topoisomerases are essential enzymes that modulate the topological state of DNA supercoiling in all living organisms. These enzymes alter DNA topology by performing double-stranded passage reactions on over- or underwound DNA substrates. This strand passage reaction generates a transient covalent enzyme-cleaved DNA structure known as the cleavage complex. Al-though the cleavage complex is a requisite catalytic intermediate, it is also intrinsically dangerous to genomic stability in biological systems. The potential threat of type II topoisomerase function can also vary based on the nature of the supercoiled DNA substrate. During essential processes such as DNA replication and transcription, cleavage complex formation can be inherently more dangerous on overwound versus underwound DNA substrates. As such, it is important to understand the profound effects that DNA topology can have on the cellular functions of type II topoisomerases. This review will provide a broad assessment of how human and bacterial type II topoisomerases recognize and act on their substrates of various topological states.
Collapse
Affiliation(s)
- Jeffrey Y. Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Villain P, da Cunha V, Villain E, Forterre P, Oberto J, Catchpole R, Basta T. The hyperthermophilic archaeon Thermococcus kodakarensis is resistant to pervasive negative supercoiling activity of DNA gyrase. Nucleic Acids Res 2021; 49:12332-12347. [PMID: 34755863 PMCID: PMC8643681 DOI: 10.1093/nar/gkab869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
In all cells, DNA topoisomerases dynamically regulate DNA supercoiling allowing essential DNA processes such as transcription and replication to occur. How this complex system emerged in the course of evolution is poorly understood. Intriguingly, a single horizontal gene transfer event led to the successful establishment of bacterial gyrase in Archaea, but its emergent function remains a mystery. To better understand the challenges associated with the establishment of pervasive negative supercoiling activity, we expressed the gyrase of the bacterium Thermotoga maritima in a naïve archaeon Thermococcus kodakarensis which naturally has positively supercoiled DNA. We found that the gyrase was catalytically active in T. kodakarensis leading to strong negative supercoiling of plasmid DNA which was stably maintained over at least eighty generations. An increased sensitivity of gyrase-expressing T. kodakarensis to ciprofloxacin suggested that gyrase also modulated chromosomal topology. Accordingly, global transcriptome analyses revealed large scale gene expression deregulation and identified a subset of genes responding to the negative supercoiling activity of gyrase. Surprisingly, the artificially introduced dominant negative supercoiling activity did not have a measurable effect on T. kodakarensis growth rate. Our data suggest that gyrase can become established in Thermococcales archaea without critically interfering with DNA transaction processes.
Collapse
Affiliation(s)
- Paul Villain
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Duprey A, Groisman EA. The regulation of DNA supercoiling across evolution. Protein Sci 2021; 30:2042-2056. [PMID: 34398513 PMCID: PMC8442966 DOI: 10.1002/pro.4171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
DNA supercoiling controls a variety of cellular processes, including transcription, recombination, chromosome replication, and segregation, across all domains of life. As a physical property, DNA supercoiling alters the double helix structure by under- or over-winding it. Intriguingly, the evolution of DNA supercoiling reveals both similarities and differences in its properties and regulation across the three domains of life. Whereas all organisms exhibit local, constrained DNA supercoiling, only bacteria and archaea exhibit unconstrained global supercoiling. DNA supercoiling emerges naturally from certain cellular processes and can also be changed by enzymes called topoisomerases. While structurally and mechanistically distinct, topoisomerases that dissipate excessive supercoils exist in all domains of life. By contrast, topoisomerases that introduce positive or negative supercoils exist only in bacteria and archaea. The abundance of topoisomerases is also transcriptionally and post-transcriptionally regulated in domain-specific ways. Nucleoid-associated proteins, metabolites, and physicochemical factors influence DNA supercoiling by acting on the DNA itself or by impacting the activity of topoisomerases. Overall, the unique strategies that organisms have evolved to regulate DNA supercoiling hold significant therapeutic potential, such as bactericidal agents that target bacteria-specific processes or anticancer drugs that hinder abnormal DNA replication by acting on eukaryotic topoisomerases specialized in this process. The investigation of DNA supercoiling therefore reveals general principles, conserved mechanisms, and kingdom-specific variations relevant to a wide range of biological questions.
Collapse
Affiliation(s)
- Alexandre Duprey
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Eduardo A. Groisman
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
- Yale Microbial Sciences InstituteWest HavenConnecticutUSA
| |
Collapse
|
6
|
Hirsch J, Klostermeier D. What makes a type IIA topoisomerase a gyrase or a Topo IV? Nucleic Acids Res 2021; 49:6027-6042. [PMID: 33905522 PMCID: PMC8216471 DOI: 10.1093/nar/gkab270] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Type IIA topoisomerases catalyze a variety of different reactions: eukaryotic topoisomerase II relaxes DNA in an ATP-dependent reaction, whereas the bacterial representatives gyrase and topoisomerase IV (Topo IV) preferentially introduce negative supercoils into DNA (gyrase) or decatenate DNA (Topo IV). Gyrase and Topo IV perform separate, dedicated tasks during replication: gyrase removes positive supercoils in front, Topo IV removes pre-catenanes behind the replication fork. Despite their well-separated cellular functions, gyrase and Topo IV have an overlapping activity spectrum: gyrase is also able to catalyze DNA decatenation, although less efficiently than Topo IV. The balance between supercoiling and decatenation activities is different for gyrases from different organisms. Both enzymes consist of a conserved topoisomerase core and structurally divergent C-terminal domains (CTDs). Deletion of the entire CTD, mutation of a conserved motif and even by just a single point mutation within the CTD converts gyrase into a Topo IV-like enzyme, implicating the CTDs as the major determinant for function. Here, we summarize the structural and mechanistic features that make a type IIA topoisomerase a gyrase or a Topo IV, and discuss the implications for type IIA topoisomerase evolution.
Collapse
Affiliation(s)
- Jana Hirsch
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| |
Collapse
|
7
|
Hobson MJ, Bryant Z, Berger JM. Modulated control of DNA supercoiling balance by the DNA-wrapping domain of bacterial gyrase. Nucleic Acids Res 2020; 48:2035-2049. [PMID: 31950157 PMCID: PMC7038939 DOI: 10.1093/nar/gkz1230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 01/26/2023] Open
Abstract
Negative supercoiling by DNA gyrase is essential for maintaining chromosomal compaction, transcriptional programming, and genetic integrity in bacteria. Questions remain as to how gyrases from different species have evolved profound differences in their kinetics, efficiency, and extent of negative supercoiling. To explore this issue, we analyzed homology-directed mutations in the C-terminal, DNA-wrapping domain of the GyrA subunit of Escherichia coli gyrase (the 'CTD'). The addition or removal of select, conserved basic residues markedly impacts both nucleotide-dependent DNA wrapping and supercoiling by the enzyme. Weakening CTD-DNA interactions slows supercoiling, impairs DNA-dependent ATP hydrolysis, and limits the extent of DNA supercoiling, while simultaneously enhancing decatenation and supercoil relaxation. Conversely, strengthening DNA wrapping does not result in a more extensively supercoiled DNA product, but partially uncouples ATP turnover from strand passage, manifesting in futile cycling. Our findings indicate that the catalytic cycle of E. coli gyrase operates at high thermodynamic efficiency, and that the stability of DNA wrapping by the CTD provides one limit to DNA supercoil introduction, beyond which strand passage competes with ATP-dependent supercoil relaxation. These results highlight a means by which gyrase can evolve distinct homeostatic supercoiling setpoints in a species-specific manner.
Collapse
Affiliation(s)
- Matthew J Hobson
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Investigating the Roles of the C-Terminal Domain of Plasmodium falciparum GyrA. PLoS One 2015; 10:e0142313. [PMID: 26566222 PMCID: PMC4643928 DOI: 10.1371/journal.pone.0142313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 10/20/2015] [Indexed: 01/11/2023] Open
Abstract
Malaria remains as one of the most deadly diseases in developing countries. The Plasmodium causative agents of human malaria such as Plasmodium falciparum possess an organelle, the apicoplast, which is the result of secondary endosymbiosis and retains its own circular DNA. A type II topoisomerase, DNA gyrase, is present in the apicoplast. In prokaryotes this enzyme is a proven, effective target for antibacterial agents, and its discovery in P. falciparum opens up the prospect of exploiting it as a drug target. Basic characterisation of P. falciparum gyrase is important because there are significant sequence differences between it and the prokaryotic enzyme. However, it has proved difficult to obtain soluble protein. Here we have predicted a new domain boundary in P. falciparum GyrA that corresponds to the C-terminal domain of prokaryotic GyrA and successfully purified it in a soluble form. Biochemical analyses revealed many similarities between the C-terminal domains of GyrA from E. coli and P. falciparum, suggesting that despite its considerably larger size, the malarial protein carries out a similar DNA wrapping function. Removal of a unique Asn-rich region in the P. falciparum protein did not result in a significant change, suggesting it is dispensable for DNA wrapping.
Collapse
|
9
|
Bacillus anthracis GrlAV96A topoisomerase IV, a quinolone resistance mutation that does not affect the water-metal ion bridge. Antimicrob Agents Chemother 2014; 58:7182-7. [PMID: 25246407 DOI: 10.1128/aac.03734-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rise in quinolone resistance is threatening the clinical use of this important class of broad-spectrum antibacterials. Quinolones kill bacteria by increasing the level of DNA strand breaks generated by the type II topoisomerases gyrase and topoisomerase IV. Most commonly, resistance is caused by mutations in the serine and acidic amino acid residues that anchor a water-metal ion bridge that facilitates quinolone-enzyme interactions. Although other mutations in gyrase and topoisomerase IV have been reported in quinolone-resistant strains, little is known regarding their contributions to cellular quinolone resistance. To address this issue, we characterized the effects of the V96A mutation in the A subunit of Bacillus anthracis topoisomerase IV on quinolone activity. The results indicate that this mutation causes an ∼ 3-fold decrease in quinolone potency and reduces the stability of covalent topoisomerase IV-cleaved DNA complexes. However, based on metal ion usage, the V96A mutation does not disrupt the function of the water-metal ion bridge. A similar level of resistance to quinazolinediones (which do not use the bridge) was seen. V96A is the first topoisomerase IV mutation distal to the water-metal ion bridge demonstrated to decrease quinolone activity. It also represents the first A subunit mutation reported to cause resistance to quinazolinediones. This cross-resistance suggests that the V96A change has a global effect on the structure of the drug-binding pocket of topoisomerase IV.
Collapse
|
10
|
Aldred KJ, Breland EJ, Vlčková V, Strub MP, Neuman KC, Kerns RJ, Osheroff N. Role of the water-metal ion bridge in mediating interactions between quinolones and Escherichia coli topoisomerase IV. Biochemistry 2014; 53:5558-67. [PMID: 25115926 PMCID: PMC4151693 DOI: 10.1021/bi500682e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Although
quinolones have been in clinical use for decades, the
mechanism underlying drug activity and resistance has remained elusive.
However, recent studies indicate that clinically relevant quinolones
interact with Bacillus anthracis (Gram-positive)
topoisomerase IV through a critical water–metal ion bridge
and that the most common quinolone resistance mutations decrease drug
activity by disrupting this bridge. As a first step toward determining
whether the water–metal ion bridge is a general mechanism of
quinolone–topoisomerase interaction, we characterized drug
interactions with wild-type Escherichia coli (Gram-negative)
topoisomerase IV and a series of ParC enzymes with mutations (S80L,
S80I, S80F, and E84K) in the predicted bridge-anchoring residues.
Results strongly suggest that the water–metal ion bridge is
essential for quinolone activity against E. coli topoisomerase
IV. Although the bridge represents a common and critical mechanism
that underlies broad-spectrum quinolone function, it appears to play
different roles in B. anthracis and E. coli topoisomerase IV. The water–metal ion bridge is the most
important binding contact of clinically relevant quinolones with the
Gram-positive enzyme. However, it primarily acts to properly align
clinically relevant quinolones with E. coli topoisomerase
IV. Finally, even though ciprofloxacin is unable to increase levels
of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit
the overall catalytic activity of these topoisomerase IV proteins.
Inhibition parallels drug binding, suggesting that the presence of
the drug in the active site is sufficient to diminish DNA relaxation
rates.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | |
Collapse
|
11
|
The tail that wags the dog: topoisomerase IV ParC C-terminal domain controls strand passage activity through multipartite topology-dependent interactions with DNA. J Mol Biol 2013; 425:3025-8. [PMID: 23851170 DOI: 10.1016/j.jmb.2013.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Vos SM, Lee I, Berger JM. Distinct regions of the Escherichia coli ParC C-terminal domain are required for substrate discrimination by topoisomerase IV. J Mol Biol 2013; 425:3029-45. [PMID: 23867279 DOI: 10.1016/j.jmb.2013.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/14/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022]
Abstract
Type IIA DNA topoisomerases are essential enzymes that use ATP to maintain chromosome supercoiling and remove links between sister chromosomes. In Escherichia coli, the type IIA topoisomerase topo IV rapidly removes positive supercoils and catenanes from DNA but is significantly slower when confronted with negatively supercoiled substrates. The ability of topo IV to discriminate between positively and negatively supercoiled DNA requires the C-terminal domain (CTD) of one of its two subunits, ParC. To determine how the ParC CTD might assist with substrate discrimination, we identified potential DNA interacting residues on the surface of the CTD, mutated these residues, and tested their effect on both topo IV enzymatic activity and DNA binding by the isolated domain. Surprisingly, different regions of the ParC CTD do not bind DNA equivalently, nor contribute equally to the action of topo IV on different types of DNA substrates. Moreover, we find that the CTD contains an autorepressive element that inhibits activity on negatively supercoiled and catenated substrates, as well as a distinct region that aids in bending the DNA duplex that tracks through the enzyme's nucleolytic center. Our data demonstrate that the CTD is essential for proper engagement of both gate and transfer segment DNAs, reconciling different models to explain how topo IV discriminates between distinct DNAs topologies.
Collapse
Affiliation(s)
- Seychelle M Vos
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
13
|
Seol Y, Gentry AC, Osheroff N, Neuman KC. Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα. J Biol Chem 2013; 288:13695-703. [PMID: 23508957 PMCID: PMC3650406 DOI: 10.1074/jbc.m112.444745] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/04/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human topoisomerase IIα unlinks catenated chromosomes and preferentially relaxes positive supercoils. RESULTS Supercoil chirality, twist density, and tension determine topoisomerase IIα relaxation rate and processivity. CONCLUSION Strand passage rate is determined by the efficiency of transfer segment capture that is modulated by the topoisomerase C-terminal domains. SIGNIFICANCE Single-molecule measurements reveal the mechanism of chiral discrimination and tension dependence of supercoil relaxation by human topoisomerase IIα. Type IIA topoisomerases (Topo IIA) are essential enzymes that relax DNA supercoils and remove links joining replicated chromosomes. Human topoisomerase IIα (htopo IIα), one of two human isoforms, preferentially relaxes positive supercoils, a feature shared with Escherichia coli topoisomerase IV (Topo IV). The mechanistic basis of this chiral discrimination remains unresolved. To address this important issue, we measured the relaxation of individual supercoiled and "braided" DNA molecules by htopo IIα using a magnetic tweezers-based single-molecule assay. Our study confirmed the chiral discrimination activity of htopo IIα and revealed that the strand passage rate depends on DNA twist, tension on the DNA, and the C-terminal domain (CTD). Similar to Topo IV, chiral discrimination by htopo IIα results from chiral interactions of the CTDs with DNA writhe. In contrast to Topo IV, however, these interactions lead to chiral differences in relaxation rate rather than processivity. Increasing tension or twist disrupts the CTD-DNA interactions with a subsequent loss of chiral discrimination. Together, these results suggest that transfer segment (T-segment) capture is the rate-limiting step in the strand passage cycle. We propose a model for T-segment capture that provides a mechanistic basis for chiral discrimination and provides a coherent explanation for the effects of DNA twist and tension on eukaryotic type IIA topoisomerases.
Collapse
Affiliation(s)
- Yeonee Seol
- From the Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Amanda C. Gentry
- the Departments of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Neil Osheroff
- the Departments of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Keir C. Neuman
- From the Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
14
|
Tretter EM, Berger JM. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: II. The shape of the GyrA subunit C-terminal domain (CTD) is not a sole determinant for controlling supercoiling efficiency. J Biol Chem 2012; 287:18645-54. [PMID: 22457352 DOI: 10.1074/jbc.m112.345736] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA topoisomerases are essential enzymes that can overwind, underwind, and disentangle double-helical DNA segments to maintain the topological state of chromosomes. Nearly all bacteria utilize a unique type II topoisomerase, gyrase, which actively adds negative supercoils to chromosomes using an ATP-dependent DNA strand passage mechanism; however, the specific activities of these enzymes can vary markedly from species to species. Escherichia coli gyrase is known to favor supercoiling over decatenation (Zechiedrich, E. L., Khodursky, A. B., and Cozzarelli, N. R. (1997) Genes Dev. 11, 2580-2592), whereas the opposite has been reported for Mycobacterium tuberculosis gyrase (Aubry, A., Fisher, L. M., Jarlier, V., and Cambau, E. (2006) Biochem. Biophys. Res. Commun. 348, 158-165). Here, we set out to understand the molecular basis for these differences using structural and biochemical approaches. Contrary to expectations based on phylogenetic inferences, we find that the dedicated DNA wrapping domains (the C-terminal domains) of both gyrases are highly similar, both architecturally and in their ability to introduce writhe into DNA. However, the M. tuberculosis enzyme lacks a C-terminal control element recently uncovered in E. coli gyrase (see accompanying article (Tretter, E. M., and Berger, J. M. (2012) J. Biol. Chem. 287, 18636-18644)) and turns over ATP at a much slower rate. Together, these findings demonstrate that C-terminal domain shape is not the sole regulatory determinant of gyrase activity and instead indicate that an inability to tightly couple DNA wrapping to ATP turnover is why M. tuberculosis gyrase cannot supercoil DNA to the same extent as its γ-proteobacterial counterpart. Our observations demonstrate that gyrase has been modified in multiple ways throughout evolution to fine-tune its specific catalytic properties.
Collapse
Affiliation(s)
- Elsa M Tretter
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
15
|
Tretter EM, Berger JM. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity. J Biol Chem 2012; 287:18636-44. [PMID: 22457353 DOI: 10.1074/jbc.m112.345678] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerases manage chromosome supercoiling and organization in all cells. Gyrase, a prokaryotic type IIA topoisomerase, consumes ATP to introduce negative supercoils through a strand passage mechanism. All type IIA topoisomerases employ a similar set of catalytic domains for function; however, the activity and specificity of gyrase are augmented by a specialized DNA binding and wrapping element, termed the C-terminal domain (CTD), which is appended to its GyrA subunit. We have discovered that a nonconserved, acidic tail at the extreme C terminus of the Escherichia coli GyrA CTD has a dramatic and unexpected impact on gyrase function. Removal of the CTD tail enables GyrA to introduce writhe into DNA in the absence of GyrB, an activity exhibited by other GyrA orthologs, but not by wild-type E. coli GyrA. Strikingly, a "tail-less" gyrase holoenzyme is markedly impaired for DNA supercoiling capacity, but displays normal ATPase function. Our findings reveal that the E. coli GyrA tail regulates DNA wrapping by the CTD to increase the coupling efficiency between ATP turnover and supercoiling, demonstrating that CTD functions can be fine-tuned to control gyrase activity in a highly sophisticated manner.
Collapse
Affiliation(s)
- Elsa M Tretter
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
16
|
Forterre P. Introduction and Historical Perspective. CANCER DRUG DISCOVERY AND DEVELOPMENT 2012. [DOI: 10.1007/978-1-4614-0323-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Aldred KJ, McPherson SA, Wang P, Kerns RJ, Graves DE, Turnbough CL, Osheroff N. Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. Biochemistry 2011; 51:370-81. [PMID: 22126453 DOI: 10.1021/bi2013905] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, is considered a serious threat as a bioweapon. The drugs most commonly used to treat anthrax are quinolones, which act by increasing the levels of DNA cleavage mediated by topoisomerase IV and gyrase. Quinolone resistance most often is associated with specific serine mutations in these enzymes. Therefore, to determine the basis for quinolone action and resistance, we characterized wild-type B. anthracis topoisomerase IV, the GrlA(S81F) and GrlA(S81Y) quinolone-resistant mutants, and the effects of quinolones and a related quinazolinedione on these enzymes. Ser81 is believed to anchor a water-Mg(2+) bridge that coordinates quinolones to the enzyme through the C3/C4 keto acid. Consistent with this hypothesized bridge, ciprofloxacin required increased Mg(2+) concentrations to support DNA cleavage by GrlA(S81F) topoisomerase IV. The three enzymes displayed similar catalytic activities in the absence of drugs. However, the resistance mutations decreased the affinity of topoisomerase IV for ciprofloxacin and other quinolones, diminished quinolone-induced inhibition of DNA religation, and reduced the stability of the enzyme-quinolone-DNA ternary complex. Wild-type DNA cleavage levels were generated by mutant enzymes at high quinolone concentrations, suggesting that increased drug potency could overcome resistance. 8-Methyl-quinazoline-2,4-dione, which lacks the quinolone keto acid (and presumably does not require the water-Mg(2+) bridge to mediate protein interactions), was more potent than quinolones against wild-type topoisomerase IV and was equally efficacious. Moreover, it maintained high potency and efficacy against the mutant enzymes, effectively inhibited DNA religation, and formed stable ternary complexes. Our findings provide an underlying biochemical basis for the ability of quinazolinediones to overcome clinically relevant quinolone resistance mutations in bacterial type II topoisomerases.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Vos SM, Tretter EM, Schmidt BH, Berger JM. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 2011; 12:827-41. [PMID: 22108601 DOI: 10.1038/nrm3228] [Citation(s) in RCA: 495] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are complex molecular machines that modulate DNA topology to maintain chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, topoisomerases are frequently linked to larger pathways and systems that resolve specific DNA superstructures and intermediates arising from cellular processes such as DNA repair, transcription, replication and chromosome compaction. Topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands. This property has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. Despite decades of study, surprising findings involving topoisomerases continue to emerge with respect to their cellular function, regulation and utility as therapeutic targets.
Collapse
Affiliation(s)
- Seychelle M Vos
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
19
|
Chen CKM, Chan NL, Wang AHJ. The many blades of the β-propeller proteins: conserved but versatile. Trends Biochem Sci 2011; 36:553-61. [PMID: 21924917 DOI: 10.1016/j.tibs.2011.07.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
The β-propeller is a highly symmetrical structure with 4-10 repeats of a four-stranded antiparallel β-sheet motif. Although β-propeller proteins with different blade numbers all adopt disc-like shapes, they are involved in a diverse set of functions, and defects in this family of proteins have been associated with human diseases. However, it has remained ambiguous how variations in blade number could alter the function of β-propellers. In addition to the regularly arranged β-propeller topology, a recently discovered β-pinwheel propeller has been found. Here, we review the structural and functional diversity of β-propeller proteins, including β-pinwheels, as well as recent advances in the typical and atypical propeller structures.
Collapse
Affiliation(s)
- Cammy K-M Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|
20
|
Akanuma S, Iwami S, Yokoi T, Nakamura N, Watanabe H, Yokobori SI, Yamagishi A. Phylogeny-Based Design of a B-Subunit of DNA Gyrase and Its ATPase Domain Using a Small Set of Homologous Amino Acid Sequences. J Mol Biol 2011; 412:212-25. [DOI: 10.1016/j.jmb.2011.07.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
21
|
Lanz MA, Klostermeier D. Guiding strand passage: DNA-induced movement of the gyrase C-terminal domains defines an early step in the supercoiling cycle. Nucleic Acids Res 2011; 39:9681-94. [PMID: 21880594 PMCID: PMC3239214 DOI: 10.1093/nar/gkr680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA gyrase catalyzes ATP-dependent negative supercoiling of DNA in a strand passage mechanism. A double-stranded segment of DNA, the T-segment, is passed through the gap in a transiently cleaved G-segment by coordinated closing and opening of three protein interfaces in gyrase. T-segment capture is thought to be guided by the C-terminal domains of the GyrA subunit of gyrase that wrap DNA around their perimeter and cause a DNA-crossing with a positive handedness. We show here that the C-terminal domains are in a downward-facing orientation in the absence of DNA, but swing up and rotate away from the gyrase body when DNA binds. The upward movement of the C-terminal domains is an early event in the catalytic cycle of gyrase that is triggered by binding of a G-segment, and first contacts of the DNA with the C-terminal domains, and contributes to T-segment capture and subsequent strand passage.
Collapse
Affiliation(s)
- Martin A Lanz
- University of Basel, Biozentrum, Biophysical Chemistry, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
22
|
Evolutionary twist on topoisomerases: conversion of gyrase to topoisomerase IV. Proc Natl Acad Sci U S A 2010; 107:22363-4. [PMID: 21169503 DOI: 10.1073/pnas.1016041108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|