1
|
Bayramov AV, Yastrebov SA, Mednikov DN, Araslanova KR, Ermakova GV, Zaraisky AG. Paired fins in vertebrate evolution and ontogeny. Evol Dev 2024; 26:e12478. [PMID: 38650470 DOI: 10.1111/ede.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Yastrebov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry N Mednikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Ermakova GV, Meyntser IV, Zaraisky AG, Bayramov AV. Loss of noggin1, a classic embryonic inducer gene, in elasmobranchs. Sci Rep 2024; 14:3805. [PMID: 38360907 PMCID: PMC10869764 DOI: 10.1038/s41598-024-54435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Secreted proteins of the Noggin family serve as pivotal regulators of early development and cell differentiation in all multicellular animals, including vertebrates. Noggin1 was identified first among all Noggins. Moreover, it was described as the first known embryonic inducer specifically secreted by the Spemann organizer and capable of inducing a secondary body axis when expressed ectopically. In the classical default model of neural induction, Noggin1 is presented as an antagonist of BMP signalling, playing a role as a neural inducer. Additionally, Noggin1 is involved in the dorsalization of embryonic mesoderm and later controls the differentiation of various tissues, including muscles, bones, and neural crest derivatives. Hitherto, noggin1 was found in all studied vertebrates. Here, we report the loss of noggin1 in elasmobranchs (sharks, rays and skates), which is a unique case among vertebrates. noggin2 and noggin4 retained in this group and studied in the embryos of the grey bamboo shark Chiloscyllium griseum revealed similarities in expression patterns and functional properties with their orthologues described in other vertebrates. The loss of noggin1 in elasmobranchs may be associated with histological features of the formation of their unique internal cartilaginous skeleton, although additional research is required to establish functional connections between these events.
Collapse
Affiliation(s)
- Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Irina V Meyntser
- Moskvarium Center for Oceanography and Marine Biology, Moscow, 129223, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
3
|
Rees JM, Sleight VA, Clark SJ, Nakamura T, Gillis JA. Ectodermal Wnt signaling, cell fate determination, and polarity of the skate gill arch skeleton. eLife 2023; 12:e79964. [PMID: 36940244 PMCID: PMC10027317 DOI: 10.7554/elife.79964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
The gill skeleton of cartilaginous fishes (sharks, skates, rays, and holocephalans) exhibits a striking anterior-posterior polarity, with a series of fine appendages called branchial rays projecting from the posterior margin of the gill arch cartilages. We previously demonstrated in the skate (Leucoraja erinacea) that branchial rays derive from a posterior domain of pharyngeal arch mesenchyme that is responsive to Sonic hedgehog (Shh) signaling from a distal gill arch epithelial ridge (GAER) signaling centre. However, how branchial ray progenitors are specified exclusively within posterior gill arch mesenchyme is not known. Here, we show that genes encoding several Wnt ligands are expressed in the ectoderm immediately adjacent to the skate GAER, and that these Wnt signals are transduced largely in the anterior arch environment. Using pharmacological manipulation, we show that inhibition of Wnt signalling results in an anterior expansion of Shh signal transduction in developing skate gill arches, and in the formation of ectopic anterior branchial ray cartilages. Our findings demonstrate that ectodermal Wnt signalling contributes to gill arch skeletal polarity in skate by restricting Shh signal transduction and chondrogenesis to the posterior arch environment and highlights the importance of signalling interactions at embryonic tissue boundaries for cell fate determination in vertebrate pharyngeal arches.
Collapse
Affiliation(s)
- Jenaid M Rees
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of AberdeenAberdeenUnited Kingdom
| | | | - Tetsuya Nakamura
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - J Andrew Gillis
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|
4
|
One of these is not like the others. Proc Natl Acad Sci U S A 2023; 120:e2212339119. [PMID: 36669101 PMCID: PMC9942816 DOI: 10.1073/pnas.2212339119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
5
|
Cooper RL, Nicklin EF, Rasch LJ, Fraser GJ. Teeth outside the mouth: The evolution and development of shark denticles. Evol Dev 2023; 25:54-72. [PMID: 36594351 DOI: 10.1111/ede.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Vertebrate skin appendages are incredibly diverse. This diversity, which includes structures such as scales, feathers, and hair, likely evolved from a shared anatomical placode, suggesting broad conservation of the early development of these organs. Some of the earliest known skin appendages are dentine and enamel-rich tooth-like structures, collectively known as odontodes. These appendages evolved over 450 million years ago. Elasmobranchs (sharks, skates, and rays) have retained these ancient skin appendages in the form of both dermal denticles (scales) and oral teeth. Despite our knowledge of denticle function in adult sharks, our understanding of their development and morphogenesis is less advanced. Even though denticles in sharks appear structurally similar to oral teeth, there has been limited data directly comparing the molecular development of these distinct elements. Here, we chart the development of denticles in the embryonic small-spotted catshark (Scyliorhinus canicula) and characterize the expression of conserved genes known to mediate dental development. We find that shark denticle development shares a vast gene expression signature with developing teeth. However, denticles have restricted regenerative potential, as they lack a sox2+ stem cell niche associated with the maintenance of a dental lamina, an essential requirement for continuous tooth replacement. We compare developing denticles to other skin appendages, including both sensory skin appendages and avian feathers. This reveals that denticles are not only tooth-like in structure, but that they also share an ancient developmental gene set that is likely common to all epidermal appendages.
Collapse
Affiliation(s)
- Rory L Cooper
- Department of Genetics and Evolution, The University of Geneva, Geneva, Switzerland
| | - Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Liam J Rasch
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Hirschberger C, Gillis JA. The pseudobranch of jawed vertebrates is a mandibular arch-derived gill. Development 2022; 149:275947. [PMID: 35762641 PMCID: PMC9340550 DOI: 10.1242/dev.200184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/14/2022] [Indexed: 12/16/2022]
Abstract
The pseudobranch is a gill-like epithelial elaboration that sits behind the jaw of most fishes. This structure was classically regarded as a vestige of the ancestral gill arch-like condition of the gnathostome jaw. However, more recently, hypotheses of jaw evolution by transformation of a gill arch have been challenged, and the pseudobranch has alternatively been considered a specialised derivative of the second (hyoid) pharyngeal arch. Here, we demonstrate in the skate (Leucoraja erinacea) that the pseudobranch does, in fact, derive from the mandibular arch, and that it shares gene expression features and cell types with gills. We also show that the skate mandibular arch pseudobranch is supported by a spiracular cartilage that is patterned by a shh-expressing epithelial signalling centre. This closely parallels the condition seen in the gill arches, where cartilaginous appendages called branchial rays, which support the respiratory lamellae of the gills, are patterned by a shh-expressing gill arch epithelial ridge. Together with similar discoveries in zebrafish, our findings support serial homology of the pseudobranch and gills, and an ancestral origin of gill arch-like anatomical features from the gnathostome mandibular arch. Summary: The skate pseudobranch is a gill serial homologue and reveals the ancestral gill arch-like nature of the jawed vertebrate mandibular arch.
Collapse
Affiliation(s)
- Christine Hirschberger
- University of Cambridge 1 Department of Zoology , , Downing Street, Cambridge CB2 3EJ , UK
| | - J. Andrew Gillis
- University of Cambridge 1 Department of Zoology , , Downing Street, Cambridge CB2 3EJ , UK
- Marine Biological Laboratory 2 , 7 MBL Street, Woods Hole, MA 02543 , USA
| |
Collapse
|
7
|
Distinct proliferative and middle ear skeletal-patterning functions for SHH-expressing epithelia in the chick hyoid arch. Dev Biol 2022; 489:98-108. [PMID: 35714752 DOI: 10.1016/j.ydbio.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
During chick craniofacial development, the second (hyoid) pharyngeal arch expands to close the neck and gives rise to skeletal elements, including the columella of the middle ear (a homologue of the mammalian stapes). Sonic hedgehog (SHH) signalling has been implicated in hyoid arch expansion and columella formation, but spatial and temporal aspects of these signalling interactions within the hyoid arch remain poorly understood. Here, we show that SHH is initially expressed in the posterior endoderm of the hyoid arch, and that this domain subsequently splits into a distal domain at the site of arch expansion (the posterior epithelial margin, PEM), and a proximal domain that lines the foregut (the proximal hyoid epithelium, PHE). Pharmacological manipulations and heterotopic grafting experiments demonstrate that SHH signalling is required for hyoid arch expansion and skeletogenesis, and reveal distinct roles for the PEM and PHE in these processes. The PEM promotes mesenchymal cell proliferation during arch expansion but is not sufficient to repattern the columella. Conversely, the PHE promotes mesenchymal cell survival, and PHE grafts induce partial duplication of the columella. This work demonstrates crucial and distinct roles for endodermal SHH signalling in hyoid arch morphogenesis and patterning of the middle ear skeleton.
Collapse
|
8
|
Atake OJ, Eames BF. Mineralized Cartilage and Bone-Like Tissues in Chondrichthyans Offer Potential Insights Into the Evolution and Development of Mineralized Tissues in the Vertebrate Endoskeleton. Front Genet 2021; 12:762042. [PMID: 35003210 PMCID: PMC8727550 DOI: 10.3389/fgene.2021.762042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The impregnation of biominerals into the extracellular matrix of living organisms, a process termed biomineralization, gives rise to diverse mineralized (or calcified) tissues in vertebrates. Preservation of mineralized tissues in the fossil record has provided insights into the evolutionary history of vertebrates and their skeletons. However, current understanding of the vertebrate skeleton and of the processes underlying its formation is biased towards biomedical models such as the tetrapods mouse and chick. Chondrichthyans (sharks, skates, rays, and chimaeras) and osteichthyans are the only vertebrate groups with extant (living) representatives that have a mineralized skeleton, but the basal phylogenetic position of chondrichthyans could potentially offer unique insights into skeletal evolution. For example, bone is a vertebrate novelty, but the internal supporting skeleton (endoskeleton) of extant chondrichthyans is commonly described as lacking bone. The molecular and developmental basis for this assertion is yet to be tested. Subperichondral tissues in the endoskeleton of some chondrichthyans display mineralization patterns and histological and molecular features of bone, thereby challenging the notion that extant chondrichthyans lack endoskeletal bone. Additionally, the chondrichthyan endoskeleton demonstrates some unique features and others that are potentially homologous with other vertebrates, including a polygonal mineralization pattern, a trabecular mineralization pattern, and an unconstricted perichordal sheath. Because of the basal phylogenetic position of chondrichthyans among all other extant vertebrates with a mineralized skeleton, developmental and molecular studies of chondrichthyans are critical to flesh out the evolution of vertebrate skeletal tissues, but only a handful of such studies have been carried out to date. This review discusses morphological and molecular features of chondrichthyan endoskeletal tissues and cell types, ultimately emphasizing how comparative embryology and transcriptomics can reveal homology of mineralized skeletal tissues (and their cell types) between chondrichthyans and other vertebrates.
Collapse
Affiliation(s)
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Barske L, Fabian P, Hirschberger C, Jandzik D, Square T, Xu P, Nelson N, Yu HV, Medeiros DM, Gillis JA, Crump JG. Evolution of vertebrate gill covers via shifts in an ancient Pou3f3 enhancer. Proc Natl Acad Sci U S A 2020; 117:24876-24884. [PMID: 32958671 PMCID: PMC7547273 DOI: 10.1073/pnas.2011531117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whereas the gill chambers of jawless vertebrates open directly into the environment, jawed vertebrates evolved skeletal appendages that drive oxygenated water unidirectionally over the gills. A major anatomical difference between the two jawed vertebrate lineages is the presence of a single large gill cover in bony fishes versus separate covers for each gill chamber in cartilaginous fishes. Here, we find that these divergent patterns correlate with the pharyngeal arch expression of Pou3f3 orthologs. We identify a deeply conserved Pou3f3 arch enhancer present in humans through sharks but undetectable in jawless fish. Minor differences between the bony and cartilaginous fish enhancers account for their restricted versus pan-arch expression patterns. In zebrafish, mutation of Pou3f3 or the conserved enhancer disrupts gill cover formation, whereas ectopic pan-arch Pou3f3b expression generates ectopic skeletal elements resembling the multimeric covers of cartilaginous fishes. Emergence of this Pou3f3 arch enhancer >430 Mya and subsequent modifications may thus have contributed to the acquisition and diversification of gill covers and respiratory strategies during gnathostome evolution.
Collapse
Affiliation(s)
- Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | | | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
- Department of Zoology, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Pengfei Xu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Nellie Nelson
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Haoze Vincent Yu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
10
|
Lovejoy DA, Michalec OM, Hogg DW, Wosnick DI. Role of elasmobranchs and holocephalans in understanding peptide evolution in the vertebrates: Lessons learned from gonadotropin releasing hormone (GnRH) and corticotropin releasing factor (CRF) phylogenies. Gen Comp Endocrinol 2018; 264:78-83. [PMID: 28935583 DOI: 10.1016/j.ygcen.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
The cartilaginous fishes (Class Chondrichthyes) comprise two morphologically distinct subclasses; Elasmobranchii and Holocephali. Evidence indicates early divergence of these subclasses, suggesting monophyly of their lineage. However, such a phylogenetic understanding is not yet developed within two highly conserved peptide lineages, GnRH and CRF. Various GnRH forms exist across the Chondrichthyes. Although 4-7 immunoreactive forms have been described in Elasmobranchii, only one has been elucidated in Holocephali. In contrast, Chondrichthyan CRF phylogeny follows a pattern more consistent with vertebrate evolution. For example, three forms are expressed within the lamprey, with similar peptides present within the genome of the Callorhinchus milii, a holocephalan. Although these findings are consistent with recent evidence regarding the phylogenetic age of Chondrichthyan lineages, CRF evolution in vertebrates remains elusive. Assuming that the Elasmobranchii and Holocephali are part of a monocladistic clade within the Chondrichthyes, we interpret the findings of GnRH and CRF to be products of their respective lineages.
Collapse
Affiliation(s)
- David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | - Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David W Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David I Wosnick
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Riley C, Cloutier R, Grogan ED. Similarity of morphological composition and developmental patterning in paired fins of the elephant shark. Sci Rep 2017; 7:9985. [PMID: 28855616 PMCID: PMC5577158 DOI: 10.1038/s41598-017-10538-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/10/2017] [Indexed: 11/25/2022] Open
Abstract
Jawed vertebrates, or gnathostomes, have two sets of paired appendages, pectoral and pelvic fins in fishes and fore- and hindlimbs in tetrapods. As for paired limbs, paired fins are purported serial homologues, and the advent of pelvic fins has been hypothesized to have resulted from a duplication of the developmental mechanisms present in the pectoral fins, but re-iterated at a posterior location. Developmental similarity of gene expression between pectoral and pelvic fins has been documented in chondrichthyans, but a detailed morphological description of the progression of paired fin development for this group is still lacking. We studied paired fin development in an ontogenetic series of a phylogenetically basal chondrichthyan, the elephant shark Callorhinchus milii. A strong similarity in the morphology and progression of chondrification between the pectoral and pelvic fins was found, which could be interpretated as further evidence of serial homology in paired fins, that could have arisen by duplication. Furthermore, this high degree of morphological and developmental similarity suggests the presence of morphological and developmental modules within paired fins, as observed in paired limbs. This is the first time morphological and developmental modules are described for the paired fins of chimaeras.
Collapse
Affiliation(s)
- Cyrena Riley
- Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada
| | - Richard Cloutier
- Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada.
| | - Eileen D Grogan
- Biology Department, Saint Joseph's University, Philadelphia, Pennsylvania, 19131, USA
| |
Collapse
|
12
|
Transcriptome Analysis Reveals Increases in Visceral Lipogenesis and Storage and Activation of the Antigen Processing and Presentation Pathway during the Mouth-Opening Stage in Zebrafish Larvae. Int J Mol Sci 2017; 18:ijms18081634. [PMID: 28758957 PMCID: PMC5578024 DOI: 10.3390/ijms18081634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
The larval phase of the fish life cycle has the highest mortality, particularly during the transition from endogenous to exogenous feeding. However, the transcriptional events underlying these processes have not been fully characterized. To understand the molecular mechanisms underlying mouth-opening acclimation, RNA-seq was used to investigate the transcriptional profiles of the endogenous feeding, mixed feeding and exogenous feeding stages of zebrafish larvae. Differential expression analysis showed 2172 up-regulated and 2313 down-regulated genes during this stage. Genes associated with the assimilation of exogenous nutrients such as the arachidonic acid metabolism, linoleic acid metabolism, fat digestion and absorption, and lipogenesis were activated significantly, whereas dissimilation including the cell cycle, homologous recombination, and fatty acid metabolism were inhibited, indicating a physiological switch for energy storage occurred during the mouth-opening stage. Moreover, the immune recognition involved in the antigen processing and presentation pathway was activated and nutritional supply seemed to be required in this event confirmed by qPCR. These results suggested the energy utilization during the mouth-opening stage is more tended to be reserved or used for some important demands, such as activity regulation, immune defense, and lipid deposition, instead of rapid growth. The findings of this study are important for understanding the physiological switches during the mouth-opening stage.
Collapse
|
13
|
Gillis JA, Hall BK. A shared role for sonic hedgehog signalling in patterning chondrichthyan gill arch appendages and tetrapod limbs. Development 2016; 143:1313-7. [PMID: 27095494 DOI: 10.1242/dev.133884] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022]
Abstract
Chondrichthyans (sharks, skates, rays and holocephalans) possess paired appendages that project laterally from their gill arches, known as branchial rays. This led Carl Gegenbaur to propose that paired fins (and hence tetrapod limbs) originally evolved via transformation of gill arches. Tetrapod limbs are patterned by asonic hedgehog(Shh)-expressing signalling centre known as the zone of polarising activity, which establishes the anteroposterior axis of the limb bud and maintains proliferative expansion of limb endoskeletal progenitors. Here, we use loss-of-function, label-retention and fate-mapping approaches in the little skate to demonstrate that Shh secretion from a signalling centre in the developing gill arches establishes gill arch anteroposterior polarity and maintains the proliferative expansion of branchial ray endoskeletal progenitor cells. These findings highlight striking parallels in the axial patterning mechanisms employed by chondrichthyan branchial rays and paired fins/limbs, and provide mechanistic insight into the anatomical foundation of Gegenbaur's gill arch hypothesis.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Brian K Hall
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
14
|
Rasch LJ, Martin KJ, Cooper RL, Metscher BD, Underwood CJ, Fraser GJ. An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev Biol 2016; 415:347-370. [PMID: 26845577 DOI: 10.1016/j.ydbio.2016.01.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/11/2016] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
The evolution of oral teeth is considered a major contributor to the overall success of jawed vertebrates. This is especially apparent in cartilaginous fishes including sharks and rays, which develop elaborate arrays of highly specialized teeth, organized in rows and retain the capacity for life-long regeneration. Perpetual regeneration of oral teeth has been either lost or highly reduced in many other lineages including important developmental model species, so cartilaginous fishes are uniquely suited for deep comparative analyses of tooth development and regeneration. Additionally, sharks and rays can offer crucial insights into the characters of the dentition in the ancestor of all jawed vertebrates. Despite this, tooth development and regeneration in chondrichthyans is poorly understood and remains virtually uncharacterized from a developmental genetic standpoint. Using the emerging chondrichthyan model, the catshark (Scyliorhinus spp.), we characterized the expression of genes homologous to those known to be expressed during stages of early dental competence, tooth initiation, morphogenesis, and regeneration in bony vertebrates. We have found that expression patterns of several genes from Hh, Wnt/β-catenin, Bmp and Fgf signalling pathways indicate deep conservation over ~450 million years of tooth development and regeneration. We describe how these genes participate in the initial emergence of the shark dentition and how they are redeployed during regeneration of successive tooth generations. We suggest that at the dawn of the vertebrate lineage, teeth (i) were most likely continuously regenerative structures, and (ii) utilised a core set of genes from members of key developmental signalling pathways that were instrumental in creating a dental legacy redeployed throughout vertebrate evolution. These data lay the foundation for further experimental investigations utilizing the unique regenerative capacity of chondrichthyan models to answer evolutionary, developmental, and regenerative biological questions that are impossible to explore in classical models.
Collapse
Affiliation(s)
- Liam J Rasch
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kyle J Martin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rory L Cooper
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Brian D Metscher
- Department of Theoretical Biology, University of Vienna, Vienna A-1090, Austria
| | - Charlie J Underwood
- Department of Earth and Planetary Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
15
|
Boisvert CA, Martins CL, Edmunds AG, Cocks J, Currie P. Capture, transport, and husbandry of elephant sharks (Callorhinchus milii) adults, eggs, and hatchlings for research and display. Zoo Biol 2014; 34:94-8. [PMID: 25400285 DOI: 10.1002/zoo.21183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 11/09/2022]
Abstract
Elephant sharks (Callorhinchus milii) have the slowest evolving genome of all vertebrates and are an interesting model species for evolution research and a prized display animal. However, their deep water habitat, short breeding season, fragility, and susceptibility to stress-induced mortality have made them difficult animals to capture, keep in captivity, and obtain fertilized eggs from. Gravid females were captured by rod and reel from Western Port Bay, Australia and transferred to a 40 000 L closed aquaculture system to lay their eggs before being released. The water quality parameters, averaged over three seasons of 4-6 weeks (mean ± standard deviation) were: 16.8°C ± 2.31, salinity 37.1 ± 2.9 g/L, ammonia 0.137 ± 0.2 mg/L, nitrite levels 0.89 ± 0.9 mg/L, nitrate 66.8 ± 45.6 mg/L, pH 7.8 ± 0.18, dissolved oxygen levels 93.6 ± 5.3%, ORP 307 ± 63.3 mV. Eggs were incubated in purpose built egg cages and embryos hatched after 143.6 days ± 1.3 at 16.9 ± 0.9°C of incubation. These procedures led to no adult mortality in the last 2 years and 620 eggs with known deposition date were collected over 4 years, of which 81.5% (±4.8) were viable. Collection of abundant embryological material with known deposition date is of paramount importance for evolutionary developmental research. We attribute this success to excellent water quality, maximum reduction of stress during capture, transport, handling, and captive care.
Collapse
|
16
|
Brazeau MD, Friedman M. The characters of Palaeozoic jawed vertebrates. Zool J Linn Soc 2014; 170:779-821. [PMID: 25750460 PMCID: PMC4347021 DOI: 10.1111/zoj.12111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/27/2013] [Indexed: 12/01/2022]
Abstract
Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems.
Collapse
Affiliation(s)
- Martin D Brazeau
- Naturalis Biodiversity CenterP.O. Box 9514, 2300 RA, Leiden, The Netherlands
| | - Matt Friedman
- Department of Earth Sciences, University of OxfordSouth Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
17
|
Juarez M, Reyes M, Coleman T, Rotenstein L, Sao S, Martinez D, Jones M, Mackelprang R, De Bellard ME. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum. J Comp Neurol 2014; 521:3303-20. [PMID: 23640803 DOI: 10.1002/cne.23351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022]
Abstract
The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates.
Collapse
Affiliation(s)
- Marilyn Juarez
- Biology Department, California State University Northridge, Northridge, California 91330, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pradel A, Didier D, Casane D, Tafforeau P, Maisey JG. Holocephalan embryo provides new information on the evolution of the glossopharyngeal nerve, metotic fissure and parachordal plate in gnathostomes. PLoS One 2013; 8:e66988. [PMID: 23799138 PMCID: PMC3684585 DOI: 10.1371/journal.pone.0066988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 05/11/2013] [Indexed: 11/25/2022] Open
Abstract
The phylogenetic relationships between the different groups of Paleozoic gnathostomes are still debated, mainly because of incomplete datasets on Paleozoic jawed vertebrate fossils and ontogeny of some modern taxa. This issue is illustrated by the condition of the glossopharyngeal nerve relative to the parachordal plate, the otic capsules and the metotic fissure in gnathostomes. Two main conditions are observed in elasmobranchs (shark and rays) and osteichthyans (bony fishes and tetrapods). The condition in the other chondrichthyan taxon, the holocephalans, is still poorly known, and without any information on this taxon, it remains difficult to polarize the condition in gnathostomes. Based on the anatomical study of an embryo of the holocephalan Callorhinchus milii by means of propagation X-Ray Synchrotron phase contrast microtomography using both holotomography and single distance phase retrieval process, we show that, contrary to what was previously inferred for holocephalans (i.e. an osteichthyan-like condition), the arrangement of the glossopharyngeal nerve relative to the surrounding structure in holocephalans is more similar to that of elasmobranchs. Furthermore, the holocephalan condition represents a combination of plesiomorphic characters for gnathostomes (e.g., the glossopharyngeal nerve leaves the braincase via the metotic fissure) and homoplastic characters. By contrast, the crown osteichthyans are probably derived in having the glossopharyngeal nerve that enters the saccular chamber and in having the glossopharyngeal foramen separated from the metotic fissure.
Collapse
Affiliation(s)
- Alan Pradel
- Department of Vertebrate Paleontology, American Museum of Natural History, New York, New York, USA.
| | | | | | | | | |
Collapse
|
19
|
Carvalho M, Bockmann FA, de Carvalho MR. Homology of the fifth epibranchial and accessory elements of the ceratobranchials among gnathostomes: insights from the development of ostariophysans. PLoS One 2013; 8:e62389. [PMID: 23638061 PMCID: PMC3630151 DOI: 10.1371/journal.pone.0062389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Epibranchials are among the main dorsal elements of the gill basket in jawed vertebrates (Gnathostomata). Among extant fishes, chondrichthyans most resemble the putative ancestral condition as all branchial arches possess every serially homologous piece. In osteichthyans, a primitive rod-like epibranchial 5, articulated to ceratobranchial 5, is absent. Instead, epibranchial 5 of many actinopterygians is here identified as an accessory element attached to ceratobranchial 4. Differences in shape and attachment of epibranchial 5 in chondrichthyans and actinopterygians raised suspicions about their homology, prompting us to conduct a detailed study of the morphology and development of the branchial basket of three ostariophysans (Prochilodus argenteus, Characiformes; Lophiosilurus alexandri and Pseudoplatystoma corruscans, Siluriformes). Results were interpreted within a phylogenetic context of major gnathostome lineages. Developmental series strongly suggest that the so-called epibranchial 5 of actinopterygians does not belong to the epal series because it shares the same chondroblastic layer with ceratobranchial 4 and its ontogenetic emergence is considerably late. This neomorphic structure is called accessory element of ceratobranchial 4. Its distribution among gnathostomes indicates it is a teleost synapomorphy, occurring homoplastically in Polypteriformes, whereas the loss of the true epibranchial 5 is an osteichthyan synapomorphy. The origin of the accessory element of ceratobranchial 4 appears to have occurred twice in osteichthyans, but it may have a single origin; in this case, the accessory element of ceratobranchial 4 would represent a remnant of a series of elements distally attached to ceratobranchials 1-4, a condition totally or partially retained in basal actinopterygians. Situations wherein a structure is lost while a similar neomorphic element is present may lead to erroneous homology assessments; these can be avoided by detailed morphological and ontogenetic investigations interpreted in the light of well-supported phylogenetic hypotheses.
Collapse
Affiliation(s)
- Murilo Carvalho
- Laboratório de Ictiologia de Ribeirão Preto (LIRP), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, PPG Biologia Comparada, Ribeirão Preto, SP, Brazil
- Laboratório de Ictiologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávio Alicino Bockmann
- Laboratório de Ictiologia de Ribeirão Preto (LIRP), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, PPG Biologia Comparada, Ribeirão Preto, SP, Brazil
| | - Marcelo Rodrigues de Carvalho
- Laboratório de Ictiologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Rijli FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ. Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev Biol 2013; 377:428-48. [PMID: 23473983 DOI: 10.1016/j.ydbio.2013.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/26/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liang L, Reinick C, Angleson JK, Dores RM. Evolution of melanocortin receptors in cartilaginous fish: melanocortin receptors and the stress axis in elasmobranches. Gen Comp Endocrinol 2013; 181:4-9. [PMID: 22964529 DOI: 10.1016/j.ygcen.2012.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/05/2012] [Accepted: 08/12/2012] [Indexed: 11/17/2022]
Abstract
There is general agreement that the presence of five melanocortin receptor genes in tetrapods is the result of two genome duplications that occurred prior to the emergence of the gnathostomes, and at least one local gene duplication that occurred early in the radiation of the ancestral gnathostomes. Hence, it is assumed that representatives from the extant classes of gnathostomes (i.e., Chondrichthyes, Actinopterygii, Sarcopterygii) should also have five paralogous melanocortin genes. Current studies on cartilaginous fishes indicate that while there is evidence for five paralogous melanocortin receptor genes in this class, to date all five paralogs have not been detected in the genome of a single species. This mini-review will discuss the ligand selectivity properties of the melanocortin-3 receptor of the elephant shark (subclass Holocephali) and the ligand selectivity properties of the melanocortin-3 receptor, melanocortin-4 receptor, and the melanocortin-5 receptor of the dogfish (subclass Elasmobranchii). The potential relationship of these melanocortin receptors to the hypothalamus/pituitary/interrenal axis will be discussed.
Collapse
Affiliation(s)
- Liang Liang
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | | | | |
Collapse
|
22
|
Gillis JA, Modrell MS, Baker CVH. A timeline of pharyngeal endoskeletal condensation and differentiation in the shark, Scyliorhinus canicula, and the paddlefish, Polyodon spathula. ZEITSCHRIFT FUR ANGEWANDTE ICHTHYOLOGIE = JOURNAL OF APPLIED ICHTHYOLOGY 2012; 28:341-345. [PMID: 26566297 PMCID: PMC4640176 DOI: 10.1111/j.1439-0426.2012.01976.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lesser-spotted dogfish (Scyliorhinus canicula) and the North American paddlefish (Polyodon spathula) are two emerging model systems for the study of vertebrate craniofacial development. Notably, both of these taxa have retained plesiomorphic aspects of pharyngeal endoskeletal organization, relative to more commonly used models of vertebrate craniofacial development (e.g. zebrafish, chick and mouse), and are therefore well suited to inform the pharyngeal endoskeletal patterning mechanisms that functioned in the last common ancestor of jawed vertebrates. Here, we present a histological overview of the condensation and chondrogenesis of the most prominent endoskeletal elements of the jaw, hyoid and gill arches - the palatoquadrate/Meckel's cartilage, the hyomandibula/ceratohyal, and the epi-/ceratobranchial cartilages, respectively - in embryonic series of S. canicula and P. spathula. Our observations provide a provisional timeline and anatomical framework for further molecular developmental and functional investigations of pharyngeal endoskeletal differentiation and patterning in these phylogenetically informative taxa.
Collapse
Affiliation(s)
- J A Gillis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - M S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - C V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Dean MN, Summers AP, Ferry LA. Very low pressures drive ventilatory flow in chimaeroid fishes. J Morphol 2011; 273:461-79. [DOI: 10.1002/jmor.11035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 11/06/2022]
|
24
|
Abstract
Holocephalans (ratfish, rabbitfish and chimaeras) figure with increasing prominence in studies of gnathostome evolutionary biology. Here, we provide the first complete description of the teeth and toothplates of one of the earliest known holocephalans, Chondrenchelys problematica, including the first unambiguous evidence of a gnathostome with an extra-mandibular dentition. We further demonstrate that holocephalan toothplate ontogeny differs fundamentally from all other extant gnathostome examples, and show how the conjunction of these teeth and toothplates challenges the monophyly of an extinct chondrichthyan clade, the Petalodontiformes. Chondrenchelys provides a novel perspective on the evolution of dentitions in shark-like fishes, expands the known repertoire of gnathostome dental morphologies and offers a glimpse of radically new chondrichthyan ecomorphs, now lost from the modern biota, following the end-Devonian extinctions.
Collapse
Affiliation(s)
- John A Finarelli
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
25
|
Richardson J, Shono T, Okabe M, Graham A. The presence of an embryonic opercular flap in amniotes. Proc Biol Sci 2011; 279:224-9. [PMID: 21632625 DOI: 10.1098/rspb.2011.0740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The operculum is a large flap consisting of several flat bones found on the side of the head of bony fish. During development, the opercular bones form within the second pharyngeal arch, which expands posteriorly and comes to cover the gill-bearing arches. With the evolution of the tetrapods and the assumption of a terrestrial lifestyle, it was believed that the operculum was lost. Here, we demonstrate that an embryonic operculum persists in amniotes and that its early development is homologous with that of teleosts. As in zebrafish, the second pharyngeal arch of the chick embryo grows disproportionately and comes to cover the posterior arches. We show that the developing second pharyngeal arch in both chick and zebrafish embryos express orthologous genes and require shh signalling for caudal expansion. In amniotes, however, the caudal edge of the expanded second arch fuses to the surface of the neck. We have detailed how this process occurs and also demonstrated a requirement for thyroid signalling here. Our results thus demonstrate the persistence of an embryonic opercular flap in amniotes, that its fusion mirrors aspects of amphibian metamorphosis and gives insights into the origin of branchial cleft anomalies in humans.
Collapse
Affiliation(s)
- Jo Richardson
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | | | | | | |
Collapse
|
26
|
Begemann G. Literature Review and Commentary. Zebrafish 2011. [DOI: 10.1089/zeb.2011.9998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gerrit Begemann
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|