1
|
Robbins CM, Qian K, Zhang YJ, Kainerstorfer JM. Monte Carlo simulation of spatial frequency domain imaging for breast tumors during compression. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:096001. [PMID: 39282216 PMCID: PMC11399730 DOI: 10.1117/1.jbo.29.9.096001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
Significance Near-infrared optical imaging methods have shown promise for monitoring response to neoadjuvant chemotherapy (NAC) for breast cancer, with endogenous contrast coming from oxy- and deoxyhemoglobin. Spatial frequency domain imaging (SFDI) could be used to detect this contrast in a low-cost and portable format, but it has limited imaging depth. It is possible that local tissue compression could be used to reduce the effective tumor depth. Aim To evaluate the potential of SFDI for therapy response prediction, we aim to predict how changes to tumor size, stiffness, and hemoglobin concentration would be reflected in contrast measured by SFDI under tissue compression. Approach Finite element analysis of compression on an inclusion-containing soft material is combined with Monte Carlo simulation to predict the measured optical contrast. Results When the effect of compression on blood volume is not considered, contrast gain from compression increases with the size and stiffness of the inclusion and decreases with the inclusion depth. With a model of reduction of blood volume from compression, compression reduces imaging contrast, an effect that is greater for larger inclusions and stiffer inclusions at shallower depths. Conclusions This computational modeling study represents a first step toward tracking tumor changes induced by NAC using SFDI and local compression.
Collapse
Affiliation(s)
- Constance M Robbins
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Department of Radiology, Pittsburgh, Pennsylvania, United States
| | - Kuanren Qian
- Carnegie Mellon University, Department of Mechanical Engineering, Pittsburgh, Pennsylvania, United States
| | - Yongjie Jessica Zhang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Mechanical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jana M Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Ozcan BB, Wanniarachchi H, Mason RP, Dogan BE. Current status of optoacoustic breast imaging and future trends in clinical application: is it ready for prime time? Eur Radiol 2024; 34:6092-6107. [PMID: 38308678 PMCID: PMC11297194 DOI: 10.1007/s00330-024-10600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024]
Abstract
Optoacoustic imaging (OAI) is an emerging field with increasing applications in patients and exploratory clinical trials for breast cancer. Optoacoustic imaging (or photoacoustic imaging) employs non-ionizing, laser light to create thermoelastic expansion in tissues and detect the resulting ultrasonic emission. By combining high optical contrast capabilities with the high spatial resolution and anatomic detail of grayscale ultrasound, OAI offers unique opportunities for visualizing biological function of tissues in vivo. Over the past decade, human breast applications of OAI, including benign/malignant mass differentiation, distinguishing cancer molecular subtype, and predicting metastatic potential, have significantly increased. We discuss the current state of optoacoustic breast imaging, as well as future opportunities and clinical application trends. CLINICAL RELEVANCE STATEMENT: Optoacoustic imaging is a novel breast imaging technique that enables the assessment of breast cancer lesions and tumor biology without the risk of ionizing radiation exposure, intravenous contrast, or radionuclide injection. KEY POINTS: • Optoacoustic imaging (OAI) is a safe, non-invasive imaging technique with thriving research and high potential clinical impact. • OAI has been considered a complementary tool to current standard breast imaging techniques. • OAI combines parametric maps of molecules that absorb light and scatter acoustic waves (like hemoglobin, melanin, lipids, and water) with anatomical images, facilitating scalable and real-time molecular evaluation of tissues.
Collapse
Affiliation(s)
- B Bersu Ozcan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA.
| | - Hashini Wanniarachchi
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| | - Basak E Dogan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| |
Collapse
|
3
|
Mule N, Maffeis G, Cubeddu R, Santangelo C, Bianchini G, Panizza P, Taroni P. Monitoring of neoadjuvant chemotherapy through time domain diffuse optics: breast tissue composition changes and collagen discriminative potential. BIOMEDICAL OPTICS EXPRESS 2024; 15:4842-4858. [PMID: 39346975 PMCID: PMC11427201 DOI: 10.1364/boe.527968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 10/01/2024]
Abstract
The purpose of this clinical study is to test a broad spectral range (635-1060 nm) time-domain diffuse optical spectroscopy in monitoring the response of breast cancer patients to neoadjuvant chemotherapy (NAC). The broadband operation allows us to fully analyze tissue composition in terms of hemoglobin, water, lipids and collagen concentration, which has never been systematically studied until now during the course of therapy. Patients are subjected to multiple breast optical imaging sessions, each one performed at different stages of NAC, both on tumor-bearing and contralateral healthy breasts. We correlate the optical results with conventional imaging techniques and pathological response. Preliminary outcomes on 10 patients' data show an average significant reduction in the concentrations of oxy-hemoglobin (-53%, p = 0.0020), collagen (-36%, p = 0.0039) and water (-15%, p = 0.0195), and increase in lipids (+39%, p = 0.0137) from baseline to the end of therapy in the tumor-bearing breast of patients who responded to therapy at least partially. With respect to scattering, the scattering amplitude, a, increases slightly (+15%, p = 0.0039) by the end of the therapy compared to the baseline, while the scattering slope, b, shows no significant change (+4%, p = 0.9219). Some change in the constituents' concentrations was also noticed in the contralateral healthy breast, even though it was significant only for oxy-hemoglobin concentration. We observed that collagen seems to be the only component distinguishing between complete and partial responders by the end of 2-3 weeks from the baseline. In the complete responder group, collagen significantly decreased after 2-3 weeks with respect to baseline (p = 0.0423). While the partial responder group also showed a decrease, it did not reach statistical significance (p = 0.1012). This suggests that collagen could serve as a potential biomarker to measure NAC effectiveness early during treatment. Even though obtained on a small group of patients, these initial results are consistent with those of standard medical modalities and highlight the sensitivity of the technique to changes that occur in breast composition during NAC.
Collapse
Affiliation(s)
- Nikhitha Mule
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
- Scientific Institute (IRCCS) Ospedale San Raffaele, Breast Imaging Unit, Via Olgettina 60, 20132 Milano, Italy
| | - Giulia Maffeis
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Rinaldo Cubeddu
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Carolina Santangelo
- Scientific Institute (IRCCS) Ospedale San Raffaele, Breast Imaging Unit, Via Olgettina 60, 20132 Milano, Italy
| | - Giampaolo Bianchini
- Scientific Institute (IRCCS) Ospedale San Raffaele, Department of Medical Oncology, Via Olgettina 60, 20132 Milano, Italy
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Pietro Panizza
- Scientific Institute (IRCCS) Ospedale San Raffaele, Breast Imaging Unit, Via Olgettina 60, 20132 Milano, Italy
| | - Paola Taroni
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
4
|
Deng B, Muldoon A, Cormier J, Mercaldo ND, Niehoff E, Moffett N, Saksena MA, Isakoff SJ, Carp SA. Functional hemodynamic imaging markers for the prediction of pathological outcomes in breast cancer patients treated with neoadjuvant chemotherapy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:066001. [PMID: 38737790 PMCID: PMC11088438 DOI: 10.1117/1.jbo.29.6.066001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Significance Achieving pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) is a significant predictor of increased likelihood of survival in breast cancer patients. Early prediction of pCR is of high clinical value as it could allow personalized adjustment of treatment regimens in non-responding patients for improved outcomes. Aim We aim to assess the association between hemoglobin-based functional imaging biomarkers derived from diffuse optical tomography (DOT) and the pathological outcome represented by pCR at different timepoints along the course of NACT. Approach Twenty-two breast cancer patients undergoing NACT were enrolled in a multimodal DOT and X-ray digital breast tomosynthesis (DBT) imaging study in which their breasts were imaged at different compression levels. Logistic regressions were used to study the associations between DOT-derived imaging markers evaluated after the first and second cycles of chemotherapy, respectively, with pCR status determined after the conclusion of NACT at the time of surgery. Receiver operating characteristic curve analysis was also used to explore the predictive performance of selected DOT-derived markers. Results Normalized tumor HbT under half compression was significantly lower in the pCR group compared to the non-pCR group after two chemotherapy cycles (p = 0.042 ). In addition, the change in normalized tumor StO 2 upon reducing compression from full to half mammographic force was identified as another potential indicator of pCR at an earlier time point, i.e., after the first chemo cycle (p = 0.038 ). Exploratory predictive assessments showed that AUCs using DOT-derived functional imaging markers as predictors reach as high as 0.75 and 0.71, respectively, after the first and second chemo cycle, compared to AUCs of 0.50 and 0.53 using changes in tumor size measured on DBT and MRI. Conclusions These findings suggest that breast DOT could be used to assist response assessment in women undergoing NACT, a critical but unmet clinical need, and potentially enable personalized adjustments of treatment regimens.
Collapse
Affiliation(s)
- Bin Deng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Ailis Muldoon
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jayne Cormier
- Massachusetts General Hospital, Breast Imaging Division, Department of Radiology, Boston, Massachusetts, United States
| | - Nathaniel D. Mercaldo
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Institute for Technology Assessment, Boston, Massachusetts, United States
| | - Elizabeth Niehoff
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Natalie Moffett
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Mansi A. Saksena
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Breast Imaging Division, Department of Radiology, Boston, Massachusetts, United States
| | - Steven J. Isakoff
- Harvard Medical School, Boston, Massachusetts, United States
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Cao X, Muller KE, Chamberlin MD, Gui J, Kaufman PA, Schwartz GN, diFlorio-Alexander RM, Pogue BW, Paulsen KD, Jiang S. Near-Infrared Spectral Tomography for Predicting Residual Cancer Burden during Early-Stage Neoadjuvant Chemotherapy for Breast Cancer. Clin Cancer Res 2023; 29:4822-4829. [PMID: 37733788 DOI: 10.1158/1078-0432.ccr-23-1593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE The aim of this study is to investigate whether near-infrared spectral tomography (NIRST) might serve as a reliable prognostic tool to predict residual cancer burden (RCB) in patients with breast cancer undergoing neoadjuvant chemotherapy (NAC) based upon early treatment response measurements. EXPERIMENTAL DESIGN A total of thirty-five patients with breast cancer receiving NAC were included in this study. NIRST imaging was performed at multiple time points, including: before treatment, at end of the first cycle, at the mid-point, and post-NAC treatments. From reconstructed NIRST images, average values of total hemoglobin (HbT) were obtained for both the tumor region and contralateral breast at each time point. RCB scores/classes were assessed by a pathologist using histologic slides of the surgical specimen obtained after completing NAC. Logistic regression of the normalized early percentage change of HbT in the tumor region (ΔHbT%) was used to predict RCB and determine its significance as an indicator for differentiating cases within each RCB class. RESULTS The ΔHbT% at the end of the first cycle, as compared with pretreatment levels, showed excellent prognostic capability in differentiating RCB-0 from RCB-I/II/III or RCB-II from RCB-0/I/III (P < 0.001). Corresponding area under the curve (AUC) values for these comparisons were 0.97 and 0.94, and accuracy values were 0.90 and 0.83, respectively. CONCLUSIONS NIRST holds promise as a potential clinical tool that can be seamlessly integrated into existing clinical workflow within the infusion suite. By providing early assessment of RCB, NIRST has potential to improve breast cancer patient management strategies.
Collapse
Affiliation(s)
- Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | | | - Jiang Gui
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | | | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
6
|
Pavlov MV, Bavrina AP, Plekhanov VI, Golubyatnikov GY, Orlova AG, Subochev PV, Davydova DA, Turchin IV, Maslennikova AV. Changes in the tumor oxygenation but not in the tumor volume and tumor vascularization reflect early response of breast cancer to neoadjuvant chemotherapy. Breast Cancer Res 2023; 25:12. [PMID: 36717842 PMCID: PMC9887770 DOI: 10.1186/s13058-023-01607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Breast cancer neoadjuvant chemotherapy (NACT) allows for assessing tumor sensitivity to systemic treatment, planning adjuvant treatment and follow-up. However, a sufficiently large number of patients fail to achieve the desired level of pathological tumor response while optimal early response assessment methods have not been established now. In our study, we simultaneously assessed the early chemotherapy-induced changes in the tumor volume by ultrasound (US), the tumor oxygenation by diffuse optical spectroscopy imaging (DOSI), and the state of the tumor vascular bed by Doppler US to elaborate the predictive criteria of breast tumor response to treatment. METHODS A total of 133 patients with a confirmed diagnosis of invasive breast cancer stage II to III admitted to NACT following definitive breast surgery were enrolled, of those 103 were included in the final analysis. Tumor oxygenation by DOSI, tumor volume by US, and tumor vascularization by Doppler US were determined before the first and second cycle of NACT. After NACT completion, patients underwent surgery followed by pathological examination and assessment of the pathological tumor response. On the basis of these, data regression predictive models were created. RESULTS We observed changes in all three parameters 3 weeks after the start of the treatment. However, a high predictive potential for early assessment of tumor sensitivity to NACT demonstrated only the level of oxygenation, ΔStO2, (ρ = 0.802, p ≤ 0.01). The regression model predicts the tumor response with a high probability of a correct conclusion (89.3%). The "Tumor volume" model and the "Vascularization index" model did not accurately predict the absence of a pathological tumor response to treatment (60.9% and 58.7%, respectively), while predicting a positive response to treatment was relatively better (78.9% and 75.4%, respectively). CONCLUSIONS Diffuse optical spectroscopy imaging appeared to be a robust tool for early predicting breast cancer response to chemotherapy. It may help identify patients who need additional molecular genetic study of the tumor in order to find the source of resistance to treatment, as well as to correct the treatment regimen.
Collapse
Affiliation(s)
- Mikhail V. Pavlov
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Anna P. Bavrina
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950
| | - Vladimir I. Plekhanov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - German Yu. Golubyatnikov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna G. Orlova
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Pavel V. Subochev
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Diana A. Davydova
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Ilya V. Turchin
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna V. Maslennikova
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950 ,grid.28171.3d0000 0001 0344 908XNational Research Lobachevsky State University of Nizhny Novgorod, Gagarin Ave., 23, Nizhny Novgorod, Russia 603022
| |
Collapse
|
7
|
Song B, Yin X, Fan Y, Zhao Y. Quantitative spatial mapping of tissue water and lipid content using spatial frequency domain imaging in the 900- to 1000-nm wavelength region. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220120GRR. [PMID: 36303279 PMCID: PMC9612091 DOI: 10.1117/1.jbo.27.10.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Significance Water and lipid are key participants of many biological processes, but there are few label-free, non-contact optical methods that can spatially map these components in-vivo. Shortwave infrared meso-patterned imaging (SWIR-MPI) is an emerging technique that successfully addresses this need. However, it requires a dedicated SWIR camera to probe the 900- to 1300-nm wavelength region, which hinders practical translation of the technology. Aim Compared with SWIR-MPI, we aim to develop a new technique that can dramatically reduce the cost in detector while maintaining high accuracy for the quantification of tissue water and lipid content. Approach By utilizing water and lipid absorption features in the 900- to 1000-nm wavelength region as well as optimal wavelength and spatial frequency combinations, we develop a new imaging technique based on spatial frequency domain imaging to quantitatively map tissue water and lipid content using a regular silicon-based camera. Results The proposed method is validated with a phantom study, which shows average error of 0.9 ± 1.2 % for water content estimation, and -0.4 ± 0.7 % for lipid content estimation, respectively. The proposed method is also demonstrated for ex vivo porcine tissue lipid mapping as well as in-vivo longitudinal water content monitoring. Conclusions The proposed technique enables spatial mapping of tissue water and lipid content with the cost in detector reduced by two orders of magnitude compared with SWIR-MPI while maintaining high accuracy. The experimental results highlight the potential of this technique for substantial impact in both scientific and industrial applications.
Collapse
Affiliation(s)
- Bowen Song
- Beihang University, School of Engineering Medicine, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
| | - Xinman Yin
- Beihang University, School of Engineering Medicine, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
| | - Yubo Fan
- Beihang University, School of Engineering Medicine, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
| | - Yanyu Zhao
- Beihang University, School of Engineering Medicine, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Mundo AI, Tipton JR, Muldoon TJ. Generalized additive models to analyze nonlinear trends in biomedical longitudinal data using R: Beyond repeated measures ANOVA and linear mixed models. Stat Med 2022; 41:4266-4283. [PMID: 35796389 PMCID: PMC9844249 DOI: 10.1002/sim.9505] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/24/2022] [Accepted: 06/06/2022] [Indexed: 01/19/2023]
Abstract
In biomedical research, the outcome of longitudinal studies has been traditionally analyzed using the repeated measures analysis of variance (rm-ANOVA) or more recently, linear mixed models (LMEMs). Although LMEMs are less restrictive than rm-ANOVA as they can work with unbalanced data and non-constant correlation between observations, both methodologies assume a linear trend in the measured response. It is common in biomedical research that the true trend response is nonlinear and in these cases the linearity assumption of rm-ANOVA and LMEMs can lead to biased estimates and unreliable inference. In contrast, GAMs relax the linearity assumption of rm-ANOVA and LMEMs and allow the data to determine the fit of the model while also permitting incomplete observations and different correlation structures. Therefore, GAMs present an excellent choice to analyze longitudinal data with non-linear trends in the context of biomedical research. This paper summarizes the limitations of rm-ANOVA and LMEMs and uses simulated data to visually show how both methods produce biased estimates when used on data with non-linear trends. We present the basic theory of GAMs and using reported trends of oxygen saturation in tumors, we simulate example longitudinal data (2 treatment groups, 10 subjects per group, 5 repeated measures for each group) to demonstrate their implementation in R. We also show that GAMs are able to produce estimates with non-linear trends even when incomplete observations exist (with 40% of the simulated observations missing). To make this work reproducible, the code and data used in this paper are available at: https://github.com/aimundo/GAMs-biomedical-research.
Collapse
Affiliation(s)
- Ariel I. Mundo
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - John R. Tipton
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
9
|
Zhao Y, Song B, Wang M, Zhao Y, Fan Y. Halftone spatial frequency domain imaging enables kilohertz high-speed label-free non-contact quantitative mapping of optical properties for strongly turbid media. LIGHT, SCIENCE & APPLICATIONS 2021; 10:245. [PMID: 34887375 PMCID: PMC8660769 DOI: 10.1038/s41377-021-00681-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 05/05/2023]
Abstract
The ability to quantify optical properties (i.e., absorption and scattering) of strongly turbid media has major implications on the characterization of biological tissues, fluid fields, and many others. However, there are few methods that can provide wide-field quantification of optical properties, and none is able to perform quantitative optical property imaging with high-speed (e.g., kilohertz) capabilities. Here we develop a new imaging modality termed halftone spatial frequency domain imaging (halftone-SFDI), which is approximately two orders of magnitude faster than the state-of-the-art, and provides kilohertz high-speed, label-free, non-contact, wide-field quantification for the optical properties of strongly turbid media. This method utilizes halftone binary patterned illumination to target the spatial frequency response of turbid media, which is then mapped to optical properties using model-based analysis. We validate the halftone-SFDI on an array of phantoms with a wide range of optical properties as well as in vivo human tissue. We demonstrate with an in vivo rat brain cortex imaging study, and show that halftone-SFDI can longitudinally monitor the absolute concentration as well as spatial distribution of functional chromophores in tissue. We also show that halftone-SFDI can spatially map dual-wavelength optical properties of a highly dynamic flow field at kilohertz speed. Together, these results highlight the potential of halftone-SFDI to enable new capabilities in fundamental research and translational studies including brain science and fluid dynamics.
Collapse
Affiliation(s)
- Yanyu Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China.
| | - Bowen Song
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Ming Wang
- Institute of Spacecraft Application System Engineering, China Academy of Space Technology, 100094, Beijing, China
| | - Yang Zhao
- Beijing Institute of Spacecraft Engineering, 100094, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China.
| |
Collapse
|
10
|
Istfan R, Gómez CA, Applegate M, Rozenberg D, Reid WD, Roblyer D. Hemodynamics of the sternocleidomastoid measured with frequency domain near-infrared spectroscopy towards non-invasive monitoring during mechanical ventilation. BIOMEDICAL OPTICS EXPRESS 2021; 12:4147-4162. [PMID: 34457405 PMCID: PMC8367268 DOI: 10.1364/boe.430423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Mechanical ventilation (MV) is used to assist spontaneous breathing in critically ill patients in the intensive care unit (ICU). MV is a cornerstone of critical care medicine but it is now known that inspiratory muscle dysfunction due to injury, disuse, and/or atrophy during MV plays a major role in outcomes for these patients. For example, prolonged MV is strongly correlated with dysfunction of the sternocleidomastoid (SCM), an accessory inspiratory muscle that has been linked to weaning failure from MV. Hemodynamic monitoring of the SCM may provide an important non-invasive and real-time means to monitor MV. In this work, we first conducted multi-layer Monte Carlo simulations to confirm the ability of near infrared light to detect changes in the oxygenation of the SCM over wide ranges of skin tones and adipose layer thicknesses. We then optimized a custom digital frequency domain near-infrared spectroscopy (FD-NIRS) system for continuous 10 Hz measurements of the SCM at 730 nm and 850 nm. A healthy volunteer study was conducted (N=10); subjects performed sets of isometric neck flexions of the SCM. Substantial changes in oxyhemoglobin + oxymyoglobin (oxy[Hb + Mb]), deoxyhemoglobin + deoxymyoglobin (deoxy[Hb + Mb]), and total hemoglobin + myoglobin (total[Hb + Mb]) were observed during sustained and intermittent isometric flexions. There were notable sex differences observed in the magnitude of hemodynamic changes (∼2x larger changes in males for oxy[Hb + Mb] and deoxy[Hb + Mb]). The magnitude of hemodynamic changes when taking into account µs' changes during flexions was ∼ 2-2.5x larger as compared to assuming constant scattering (CS), which is a common assumption used for continuous wave (CW) NIRS methods. This study suggests that FD-NIRS provides improved accuracy for hemodynamic monitoring of the SCM compared to CW-NIRS, and that FD-NIRS may provide value for SCM monitoring during MV.
Collapse
Affiliation(s)
- Raeef Istfan
- Department of Biomedical Engineering, Boston University, Boston, MA 02125, USA
| | - Carlos A. Gómez
- Department of Biomedical Engineering, Boston University, Boston, MA 02125, USA
| | - Matthew Applegate
- Department of Biomedical Engineering, Boston University, Boston, MA 02125, USA
| | - Dmitry Rozenberg
- Department of Medicine, Respirology and Lung Transplantation, University Health Network, University of Toronto, Toronto, ON, Canada
| | - W. Darlene Reid
- Department of Physical Therapy, University of Toronto, Toronto ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, MA 02125, USA
| |
Collapse
|
11
|
Spink SS, Teng F, Pera V, Peterson HM, Cormier T, Sauer-Budge A, Chargin D, Brookfield S, Eggebrecht AT, Ko N, Roblyer D. High optode-density wearable diffuse optical probe for monitoring paced breathing hemodynamics in breast tissue. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200339SSR. [PMID: 34080400 PMCID: PMC8170390 DOI: 10.1117/1.jbo.26.6.062708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Diffuse optical imaging (DOI) provides in vivo quantification of tissue chromophores such as oxy- and deoxyhemoglobin (HbO2 and HHb, respectively). These parameters have been shown to be useful for predicting neoadjuvant treatment response in breast cancer patients. However, most DOI devices designed for the breast are nonportable, making frequent longitudinal monitoring during treatment a challenge. Furthermore, hemodynamics related to the respiratory cycle are currently unexplored in the breast and may have prognostic value. AIM To design, fabricate, and validate a high optode-density wearable continuous wave diffuse optical probe for the monitoring of breathing hemodynamics in breast tissue. APPROACH The probe has a rigid-flex design with 16 dual-wavelength sources and 16 detectors. Performance was characterized on tissue-simulating phantoms, and validation was performed through flow phantom and cuff occlusion measurements. The breasts of N = 4 healthy volunteers were measured while performing a breathing protocol. RESULTS The probe has 512 unique source-detector (S-D) pairs that span S-D separations of 10 to 54 mm. It exhibited good performance characteristics: μa drift of 0.34%/h, μa precision of 0.063%, and mean SNR ≥ 24 dB up to 41 mm S-D separation. Absorption contrast was detected in flow phantoms at depths exceeding 28 mm. A cuff occlusion measurement confirmed the ability of the probe to track expected hemodynamics in vivo. Breast measurements on healthy volunteers during paced breathing revealed median signal-to-motion artifact ratios ranging from 8.1 to 8.7 dB. Median ΔHbO2 and ΔHHb amplitudes ranged from 0.39 to 0.67 μM and 0.08 to 0.12 μM, respectively. Median oxygen saturations at the respiratory rate ranged from 82% to 87%. CONCLUSIONS A wearable diffuse optical probe has been designed and fabricated for the measurement of breast tissue hemodynamics. This device is capable of quantifying breathing-related hemodynamics in healthy breast tissue.
Collapse
Affiliation(s)
- Samuel S. Spink
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Fei Teng
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Vivian Pera
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Hannah M. Peterson
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tim Cormier
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Alexis Sauer-Budge
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - David Chargin
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Sam Brookfield
- Boston University, Fraunhofer Center for Manufacturing Innovation, Boston, Massachusetts, United States
| | - Adam T. Eggebrecht
- Washington University, Department of Radiology, St. Louis, Missouri, United States
| | - Naomi Ko
- Boston Medical Center, Section of Hematology and Oncology, Women’s Health Unit, Boston, Massachusetts, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Robbins CM, Tabassum S, Baumhauer MF, Yang J, Antaki JF, Kainerstorfer JM. Two-layer spatial frequency domain imaging of compression-induced hemodynamic changes in breast tissue. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:056005. [PMCID: PMC8145994 DOI: 10.1117/1.jbo.26.5.056005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/04/2021] [Indexed: 06/15/2023]
Abstract
Significance: Longitudinal tracking of hemodynamic changes in the breast has shown potential for neoadjuvant chemotherapy (NAC) outcome prediction. Spatial frequency domain imaging (SFDI) could be suitable for frequent monitoring of shallow breast tumors, but strong sensitivity to superficial absorbers presents a challenge. Aim: We investigated the efficacy of a two-layer SFDI inverse model that accounts for varying melanin concentration in the skin to improve discrimination of optical properties of deep tissue of the breast. Approach: Hemodynamic changes in response to localized breast compression were measured in 13 healthy volunteers using a handheld SFDI device. Epidermis optical thickness was determined based on spectral fitting of the model output and used to calculate subcutaneous optical properties. Results: Optical properties from a homogeneous model yielded physiologically unreasonable absorption and scattering coefficients for highly pigmented volunteers. The two-layer model compensated for the effect of melanin and yielded properties in the expected range for healthy breast. Extracted epidermal optical thickness was higher for higher Fitzpatrick types. Compression induced a decrease in total hemoglobin consistent with tissue blanching. Conclusions: The handheld SFDI device and two-layer model show potential for imaging hemodynamic responses that potentially could help predict efficacy of NAC in patients of varying skin tones.
Collapse
Affiliation(s)
- Constance M. Robbins
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Syeda Tabassum
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Molly F. Baumhauer
- Carnegie Mellon University, Department of Physics, Pittsburgh, Pennsylvania, United States
| | - Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - James F. Antaki
- Cornell University, School of Biomedical Engineering, Ithaca, New York, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
13
|
Applegate MB, Amelard R, Gomez CA, Roblyer D. Real-Time Handheld Probe Tracking and Image Formation Using Digital Frequency-Domain Diffuse Optical Spectroscopy. IEEE Trans Biomed Eng 2021; 68:3399-3409. [PMID: 33835913 DOI: 10.1109/tbme.2021.3072036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Frequency-domain diffuse optical spectroscopic imaging (FD-DOS) is a non-invasive method for measuring absolute concentrations of tissue chromophores such as oxy- and deoxy-hemoglobin in vivo. The utility of FD-DOS for clinical applications such as monitoring chemotherapy response in breast cancer has previously been demonstrated, but challenges for further clinical translation, such as slow acquisition speed and lack of user feedback, remain. Here, we propose a new high speed FD-DOS instrument that allows users to freely acquire measurements over the tissue surface, and is capable of rapidly imaging large volumes of tissue. METHODS We utilize 3D monocular probe tracking combined with custom digital FD-DOS hardware and a high-speed data processing pipeline for the instrument. Results are displayed during scanning over the surface of the sample using a probabilistic Monte Carlo light propagation model. RESULTS We show this instrument can measure absorption and scattering coefficients with an error of 7% and 1% respectively, with 0.7 mm positional accuracy. We demonstrate the equivalence of our visualization methodology with a standard interpolation approach, and demonstrate two proof-of-concept in vivo results showing superficial vasculature in the human forearm and surface contrast in a healthy human breast. CONCLUSION Our new FD-DOS system is able to compute chromophore concentrations in real-time (1.5 Hz) in vivo. SIGNIFICANCE This method has the potential to improve the quality of FD-DOS image scans while reducing measurement times for a variety of clinical applications.
Collapse
|
14
|
Altoe ML, Kalinsky K, Marone A, Kim HK, Guo H, Hibshoosh H, Tejada M, Crew KD, Accordino MK, Trivedi MS, Hershman DL, Hielscher AH. Changes in Diffuse Optical Tomography Images During Early Stages of Neoadjuvant Chemotherapy Correlate with Tumor Response in Different Breast Cancer Subtypes. Clin Cancer Res 2021; 27:1949-1957. [PMID: 33451976 PMCID: PMC8128376 DOI: 10.1158/1078-0432.ccr-20-1108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE This study's primary objective was to evaluate the changes in optically derived parameters acquired with a diffuse optical tomography breast imaging system (DOTBIS) in the tumor volume of patients with breast carcinoma receiving neoadjuvant chemotherapy (NAC). EXPERIMENTAL DESIGN In this analysis of 105 patients with stage II-III breast cancer, normalized mean values of total hemoglobin ([Formula: see text]), oxyhemoglobin ([Formula: see text]), deoxy-hemoglobin concentration ([Formula: see text]), water, and oxygen saturation ([Formula: see text]) percentages were collected at different timepoints during NAC and compared with baseline measurements. This report compared changes in these optical biomarkers measured in patients who did not achieve a pathologic complete response (non-pCR) and those with a pCR. Differences regarding molecular subtypes were included for hormone receptor-positive and HER2-negative, HER2-positive, and triple-negative breast cancer. RESULTS At baseline, [Formula: see text] was higher for pCR tumors (3.97 ± 2.29) compared with non-pCR tumors (3.00 ± 1.72; P = 0.031). At the earliest imaging point after starting therapy, the mean change of [Formula: see text] compared with baseline ([Formula: see text]) was statistically significantly higher in non-pCR (1.23 ± 0.67) than in those with a pCR (0.87 ± 0.61; P < 0.0005), and significantly correlated to residual cancer burden classification (r = 0.448; P < 0.0005). [Formula: see text] combined with HER2 status was proposed as a two-predictor logistic model, with AUC = 0.891; P < 0.0005; and 95% confidence interval, 0.812-0.969. CONCLUSIONS This study demonstrates that DOTBIS measured features change over time according to tumor pCR status and may predict early in the NAC treatment course whether a patient is responding to NAC.
Collapse
Affiliation(s)
- Mirella L Altoe
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York.
| | - Kevin Kalinsky
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Alessandro Marone
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York
| | - Hyun K Kim
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York
| | - Hua Guo
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Mariella Tejada
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Katherine D Crew
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Melissa K Accordino
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Meghna S Trivedi
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Dawn L Hershman
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Andreas H Hielscher
- Departments of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York.
| |
Collapse
|
15
|
Applegate MB, Gómez CA, Roblyer D. Modulation frequency selection and efficient look-up table inversion for frequency domain diffuse optical spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200393RR. [PMID: 33768742 PMCID: PMC7992233 DOI: 10.1117/1.jbo.26.3.036007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Frequency domain diffuse optical spectroscopy (FD-DOS) uses intensity modulated light to measure the absorption and reduced scattering coefficients of turbid media such as biological tissue. Some FD-DOS instruments utilize a single modulation frequency, whereas others use hundreds of frequencies. The effect of modulation frequency choice and measurement bandwidth on optical property (OP) extraction accuracy has not yet been fully characterized. AIM We aim to assess the effect of modulation frequency selection on OP extraction error and develop a high-speed look-up table (LUT) approach for OP estimation. APPROACH We first used noise-free simulations of light transport in homogeneous media to determine optimized iterative inversion model parameters and developed a new multi-frequency LUT method to increase the speed of inversion. We then used experimentally derived noise models for two FD-DOS instruments to generate realistic simulated data for a broad range of OPs and modulation frequencies to test OP extraction accuracy. RESULTS We found that repeated measurements at a single low-frequency (110 MHz) yielded essentially identical OP errors as a broadband frequency sweep (35 evenly spaced frequencies between 50 and 253 MHz) for these noise models. The inclusion of modulation frequencies >300 MHz diminished overall performance for one of the instruments. Additionally, we developed a LUT inversion algorithm capable of increasing inversion speeds by up to 6 × , with 1000 inversions / s and ∼1 % error when a single modulation frequency was used. CONCLUSION These results suggest that simpler single-frequency systems are likely sufficient for many applications and pave the way for a new generation of simpler digital FD-DOS systems capable of rapid, large-volume measurements with real-time feedback.
Collapse
Affiliation(s)
- Matthew B. Applegate
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Carlos A. Gómez
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Address all correspondence to Darren Roblyer,
| |
Collapse
|
16
|
Tabassum S, Tank A, Wang F, Karrobi K, Vergato C, Bigio IJ, Waxman DJ, Roblyer D. Optical scattering as an early marker of apoptosis during chemotherapy and antiangiogenic therapy in murine models of prostate and breast cancer. Neoplasia 2021; 23:294-303. [PMID: 33578267 PMCID: PMC7881266 DOI: 10.1016/j.neo.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Monitoring of the in vivo tumor state to track therapeutic response in real time may help to evaluate new drug candidates, maximize treatment efficacy, and reduce the burden of overtreatment. Current preclinical tumor imaging methods have largely focused on anatomic imaging (e.g., MRI, ultrasound), functional imaging (e.g., FDG-PET), and molecular imaging with exogenous contrast agents (e.g., fluorescence optical tomography). Here we utalize spatial frequency domain imaging (SFDI), a noninvasive, label-free optical technique, for the wide-field quantification of changes in tissue optical scattering in preclinical tumor models during treatment with chemotherapy and antiangiogenic agents. Optical scattering is particularly sensitive to tissue micro-architectural changes, including those that occur during apoptosis, an early indicator of response to cytotoxicity induced by chemotherapy, thermotherapy, cryotherapy, or radiation therapy. We utilized SFDI to monitor responses of PC3/2G7 prostate tumors and E0771 mammary tumors to treatment with cyclophosphamide or the antiangiogenic agent DC101 for up to 49 days. The SFDI-derived scattering amplitude was highly correlated with cleaved caspase-3, a marker of apoptosis (ρp = 0.75), while the exponent of the scattering wavelength-dependence correlated with the cell proliferation marker PCNA (ρp = 0.69). These optical parameters outperformed tumor volume and several functional parameters (e.g., oxygen saturation and hemoglobin concentration) as an early predictive biomarker of treatment response. Quantitative diffuse optical scattering is thus a promising new early marker of treatment response, which does not require radiation or exogenous contrast agents.
Collapse
Affiliation(s)
- Syeda Tabassum
- Electrical & Computer Engineering, Boston University, Boston, MA, USA
| | - Anup Tank
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Fay Wang
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kavon Karrobi
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cameron Vergato
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Irving J Bigio
- Electrical & Computer Engineering, Boston University, Boston, MA, USA; Biomedical Engineering, Boston University, Boston, MA, USA
| | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Electrical & Computer Engineering, Boston University, Boston, MA, USA; Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
17
|
Pediatric Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Peterson HM, Tank A, Geller DS, Yang R, Gorlick R, Hoang BH, Roblyer D. Characterization of bony anatomic regions in pediatric and adult healthy volunteers using diffuse optical spectroscopic imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-17. [PMID: 32790252 PMCID: PMC7422854 DOI: 10.1117/1.jbo.25.8.086002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Diffuse optical spectroscopic imaging (DOSI) measures quantitative functional and molecular information in thick tissue in a noninvasive manner using near-infrared light. DOSI may be useful for diagnosis and prognosis of bone pathologies including osteosarcoma and Ewing's sarcoma, but little is currently known about DOSI-derived parameters in bony anatomic locations where this disease occurs. AIM Our goal is to quantify the optical characteristics and chromophore content of bony anatomic locations of healthy volunteers and assess differences due to anatomic region, age, sex, ethnicity, race, and body fat. APPROACH Fifty-five healthy volunteers aged 4 to 72 were enrolled in the study. The optical properties and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids were assessed at the distal humerus, distal femur, and proximal tibia. Body fat was assessed using skinfold calipers. One volunteer underwent a more comprehensive body scan from neck to foot to explore chromophore distributions within an individual. Regression analysis was used to identify the most important sources of variation in the measured data set. RESULTS Statistical differences between bony locations were found for scattering, water, and lipids, but not for hemoglobin. All chromophores had statistical differences with sex, but there were no significant age-related correlations. Regression analysis revealed that body fat measured with skinfold calipers was the most important predictor of oxy-, deoxy-, total hemoglobin, and lipids. Hemoglobin and lipid levels were highly correlated (ρ ≥ 0.7) over the subject population and within the single-subject body scan. CONCLUSIONS DOSI can successfully measure bony anatomic sites where osteosarcomas and Ewing's sarcomas commonly occur. Future studies of bone pathology using DOSI should account for the variation caused by anatomic region, sex, race and ethnicity, and body fat as these cause substantial variations in DOSI-derived metrics.
Collapse
Affiliation(s)
- Hannah M. Peterson
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Anup Tank
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - David S. Geller
- Montefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Rui Yang
- Montefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Richard Gorlick
- MD Anderson Cancer Center, Division of Pediatrics, Houston, Texas, United States
| | - Bang H. Hoang
- Montefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Tank A, Peterson HM, Pera V, Tabassum S, Leproux A, O'Sullivan T, Jones E, Cabral H, Ko N, Mehta RS, Tromberg BJ, Roblyer D. Diffuse optical spectroscopic imaging reveals distinct early breast tumor hemodynamic responses to metronomic and maximum tolerated dose regimens. Breast Cancer Res 2020; 22:29. [PMID: 32169100 PMCID: PMC7071774 DOI: 10.1186/s13058-020-01262-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer patients with early-stage disease are increasingly administered neoadjuvant chemotherapy (NAC) to downstage their tumors prior to surgery. In this setting, approximately 31% of patients fail to respond to therapy. This demonstrates the need for techniques capable of providing personalized feedback about treatment response at the earliest stages of therapy to identify patients likely to benefit from changing treatment. Diffuse optical spectroscopic imaging (DOSI) has emerged as a promising functional imaging technique for NAC monitoring. DOSI uses non-ionizing near-infrared light to provide non-invasive measures of absolute concentrations of tissue chromophores such as oxyhemoglobin. In 2011, we reported a new DOSI prognostic marker, oxyhemoglobin flare: a transient increase in oxyhemoglobin capable of discriminating NAC responders within the first day of treatment. In this follow-up study, DOSI was used to confirm the presence of the flare as well as to investigate whether DOSI markers of NAC response are regimen dependent. Methods This dual-center study examined 54 breast tumors receiving NAC measured with DOSI before therapy and the first week following chemotherapy administration. Patients were treated with either a standard of care maximum tolerated dose (MTD) regimen or an investigational metronomic (MET) regimen. Changes in tumor chromophores were tracked throughout the first week and compared to pathologic response and treatment regimen at specific days utilizing generalized estimating equations (GEE). Results Within patients receiving MTD therapy, the oxyhemoglobin flare was confirmed as a prognostic DOSI marker for response appearing as soon as day 1 with post hoc GEE analysis demonstrating a difference of 48.77% between responders and non-responders (p < 0.0001). Flare was not observed in patients receiving MET therapy. Within all responding patients, the specific treatment was a significant predictor of day 1 changes in oxyhemoglobin, showing a difference of 39.45% (p = 0.0010) between patients receiving MTD and MET regimens. Conclusions DOSI optical biomarkers are differentially sensitive to MTD and MET regimens at early timepoints suggesting the specific treatment regimen should be considered in future DOSI studies. Additionally, DOSI may help to identify regimen-specific responses in a more personalized manner, potentially providing critical feedback necessary to implement adaptive changes to the treatment strategy.
Collapse
Affiliation(s)
- Anup Tank
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Hannah M Peterson
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Vivian Pera
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Syeda Tabassum
- Department of Electrical Engineering, Boston University, Boston, MA, USA
| | - Anais Leproux
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, California, USA
| | - Thomas O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Eric Jones
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Howard Cabral
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Naomi Ko
- Department of Hematology and Medical Oncology, Boston Medical Center, Boston, MA, USA
| | - Rita S Mehta
- Department of Medicine, University of California Irvine, Irvine, California, USA
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, California, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Dadgar S, Rajaram N. Optical Imaging Approaches to Investigating Radiation Resistance. Front Oncol 2019; 9:1152. [PMID: 31750246 PMCID: PMC6848224 DOI: 10.3389/fonc.2019.01152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is frequently the first line of treatment for over 50% of cancer patients. While great advances have been made in improving treatment response rates and reducing damage to normal tissue, radiation resistance remains a persistent clinical problem. While hypoxia or a lack of tumor oxygenation has long been considered a key factor in causing treatment failure, recent evidence points to metabolic reprogramming under well-oxygenated conditions as a potential route to promoting radiation resistance. In this review, we present recent studies from our lab and others that use high-resolution optical imaging as well as clinical translational optical spectroscopy to shine light on the biological basis of radiation resistance. Two-photon microscopy of endogenous cellular metabolism has identified key changes in both mitochondrial structure and function that are specific to radiation-resistant cells and help promote cell survival in response to radiation. Optical spectroscopic approaches, such as diffuse reflectance and Raman spectroscopy have demonstrated functional and molecular differences between radiation-resistant and sensitive tumors in response to radiation. These studies have uncovered key changes in metabolic pathways and present a viable route to clinical translation of optical technologies to determine radiation resistance at a very early stage in the clinic.
Collapse
Affiliation(s)
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
21
|
Bess SN, Greening GJ, Muldoon TJ. Efficacy and clinical monitoring strategies for immune checkpoint inhibitors and targeted cytokine immunotherapy for locally advanced and metastatic colorectal cancer. Cytokine Growth Factor Rev 2019; 49:1-9. [PMID: 31679887 DOI: 10.1016/j.cytogfr.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer type and is the second leading cause of cancer deaths annually in the United States. Conventional treatment options include postoperative (adjuvant) and preoperative (neoadjuvant) chemotherapy and radiotherapy. Although these treatment modalities have shown to decrease tumor burden, a major limitation to chemothearpy/radiotherapy is the high recurrence rate in patients. Immune-modulation strategies have emerged as a promising new therapeutic avenue to reduce this recurrence rate while minimizing undesirable systemic side effects. This review will focus specifically on the mechanisms of monoclonal antibodies: immune checkpoint inhibitors and cytokines, as well as current drugs approved by the Food and Drug Administration (FDA) and new clinical/pre-clinical trials. Finally, this review will investigate emerging methods used to monitor tumor response post-treatment.
Collapse
Affiliation(s)
- Shelby N Bess
- University of Arkansas, Department of Biomedical Engineering, 1 University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Gage J Greening
- University of Arkansas, Department of Biomedical Engineering, 1 University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Timothy J Muldoon
- University of Arkansas, Department of Biomedical Engineering, 1 University of Arkansas, Fayetteville, Arkansas, 72701, USA.
| |
Collapse
|
22
|
Karrobi K, Tank A, Tabassum S, Pera V, Roblyer D. Diffuse and nonlinear imaging of multiscale vascular parameters for in vivo monitoring of preclinical mammary tumors. JOURNAL OF BIOPHOTONICS 2019; 12:e201800379. [PMID: 30706695 DOI: 10.1002/jbio.201800379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Diffuse optical imaging (DOI) techniques provide a wide-field or macro assessment of the functional tumor state and have shown substantial promise for monitoring treatment efficacy in cancer. Conversely, intravital microscopy provides a high-resolution view of the tumor state and has played a key role in characterizing treatment response in the preclinical setting. There has been little prior work in investigating how the macro and micro spatial scales can be combined to develop a more comprehensive and translational view of treatment response. To address this, a new multiscale preclinical imaging technique called diffuse and nonlinear imaging (DNI) was developed. DNI combines multiphoton microscopy with spatial frequency domain imaging (SFDI) to provide multiscale data sets of tumor microvascular architecture coregistered within wide-field hemodynamic maps. A novel method was developed to match the imaging depths of both modalities by utilizing informed SFDI spatial frequency selection. An in vivo DNI study of murine mammary tumors revealed multiscale relationships between tumor oxygen saturation and microvessel diameter, and tumor oxygen saturation and microvessel length (|Pearson's ρ| ≥ 0.5, P < 0.05). Going forward, DNI will be uniquely enabling for the investigation of multiscale relationships in tumors during treatment.
Collapse
Affiliation(s)
- Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Anup Tank
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Syeda Tabassum
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | - Vivian Pera
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
23
|
Comparison of Lipid and Water Contents by Time-domain Diffuse Optical Spectroscopy and Dual-energy Computed Tomography in Breast Cancer Patients. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously compared time-domain diffuse optical spectroscopy (TD-DOS) with magnetic resonance imaging (MRI) using various water/lipid phantoms. However, it is difficult to conduct similar comparisons in the breast, because of measurement differences due to modality-dependent differences in posture. Dual-energy computed tomography (DECT) examination is performed in the same supine position as a TD-DOS measurement. Therefore, we first verified the accuracy of the measured fat fraction of fibroglandular tissue in the normal breast on DECT by comparing it with MRI in breast cancer patients (n = 28). Then, we compared lipid and water signals obtained in TD-DOS and DECT from normal and tumor-tissue regions (n = 16). The TD-DOS breast measurements were carried out using reflectance geometry with a source–detector separation of 3 cm. A semicircular region of interest (ROI), with a transverse diameter of 3 cm and a depth of 2 cm that included the breast surface, was set on the DECT image. Although the measurement area differed between the modalities, the correlation coefficients of lipid and water signals between TD-DOS and DECT were rs = 0.58 (p < 0.01) and rs = 0.90 (p < 0.01), respectively. These results indicate that TD-DOS captures the characteristics of the lipid and water contents of the breast.
Collapse
|
24
|
Liang X, Li H, Coussy F, Callens C, Lerebours F. An update on biomarkers of potential benefit with bevacizumab for breast cancer treatment: Do we make progress? Chin J Cancer Res 2019; 31:586-600. [PMID: 31564802 PMCID: PMC6736652 DOI: 10.21147/j.issn.1000-9604.2019.04.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the first monoclonal antibody against vascular endothelial growth factor (VEGF), bevacizumab (BEV) is a definitely controversial antiangiogenic therapy in breast cancer. The initial excitement over improvements in progression-free survival (PFS) with BEV was tempered by an absence of overall survival (OS) benefit and serious adverse effects. Missing targeted population urged us to identify the predictive biomarkers for BEV efficacy. In this review we focus on the research in breast cancer and provide recent investigations on clinical, radiological, molecular and gene profiling markers of BEV efficacy, including the new results from randomized phase III clinical trials evaluating the efficacy of BEV in combination with comprehensive biomarker analyses. Current evidences indicate some predictive values for genetic variants, molecular imaging, VEGF pathway factors or associated factors in peripheral blood and gene profiling. The current challenge is to validate those potential biomarkers and implement them into clinical practice.
Collapse
Affiliation(s)
- Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris 75005, France
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Florence Coussy
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris 75005, France
| | - Celine Callens
- Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris 75005, France
| | - Florence Lerebours
- Department of Medical Oncology, Institut Curie, René Huguenin Hospital, Saint-Cloud 92210, France
| |
Collapse
|
25
|
Tran WT, Childs C, Probst H, Farhat G, Czarnota GJ. Imaging Biomarkers for Precision Medicine in Locally Advanced Breast Cancer. J Med Imaging Radiat Sci 2018; 49:342-351. [DOI: 10.1016/j.jmir.2017.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
|
26
|
Zhao Y, Applegate MB, Istfan R, Pande A, Roblyer D. Quantitative real-time pulse oximetry with ultrafast frequency-domain diffuse optics and deep neural network processing. BIOMEDICAL OPTICS EXPRESS 2018; 9:5997-6008. [PMID: 31065408 PMCID: PMC6491012 DOI: 10.1364/boe.9.005997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 05/02/2023]
Abstract
Pulse oximetry is a ubiquitous optical technology, widely used for diagnosis and treatment guidance. Current pulse oximeters provide indications of arterial oxygen saturation. We present here a new quantitative methodology that extends the capability of pulse oximetry and provides real-time molar concentrations of oxy- and deoxy-hemoglobin at rates of up to 27 Hz by using advanced digital hardware, real-time firmware processing, and ultra-fast optical property calculations with a deep neural network (DNN). The technique utilizes a high-speed frequency domain spectroscopy system with five frequency-multiplexed wavelengths. High-speed demultiplexing and data reduction were performed in firmware. The DNN inversion algorithm was benchmarked as five orders of magnitude faster than conventional iterative methods for optical property extractions. The DNN provided unbiased optical property extractions, with an average error of 0 ± 5.6% in absorption and 0 ± 1.4% in reduced scattering. Together, these improvements enabled the measurement, calculation, and real-time continuous display of hemoglobin concentrations. A proof-of-concept cuff occlusion measurement was performed to demonstrate the ability of the device to track oxy- and deoxy-hemoglobin, and measure quantitative photoplethysmographic changes during the cardiac cycle. This technique substantially extends the capability of pulse oximetry and provides unprecedented real-time non-invasive functional information with broad applicability for cardiopulmonary applications.
Collapse
Affiliation(s)
- Yanyu Zhao
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA
| | - Mattew B. Applegate
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA
| | - Raeef Istfan
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA
| | - Ashvin Pande
- Boston University School of Medicine, Section of Cardiovascular Medicine, Boston, MA 02118, USA
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
27
|
Cochran JM, Busch DR, Leproux A, Zhang Z, O’Sullivan TD, Cerussi AE, Carpenter PM, Mehta RS, Roblyer D, Yang W, Paulsen KD, Pogue B, Jiang S, Kaufman PA, Chung SH, Schnall M, Snyder BS, Hylton N, Carp SA, Isakoff SJ, Mankoff D, Tromberg BJ, Yodh AG. Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-11. [PMID: 30338678 PMCID: PMC6194199 DOI: 10.1117/1.jbo.24.2.021202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 05/20/2023]
Abstract
Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer.
Collapse
Affiliation(s)
- Jeffrey M. Cochran
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: Jeffrey M. Cochran, E-mail:
| | - David R. Busch
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
| | - Anaïs Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Zheng Zhang
- Brown University School of Public Health, Department of Biostatistics and Center for Statistical Sciences, Providence, Rhode Island, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Albert E. Cerussi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Philip M. Carpenter
- University of Southern California, Keck School of Medicine, Department of Pathology, Los Angeles, California, United States
| | - Rita S. Mehta
- University of California Irvine, Department of Medicine, Irvine, California, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wei Yang
- University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Brian Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Peter A. Kaufman
- Dartmouth-Hitchcock Medical Center, Department of Hematology and Oncology, Lebanon, New Hampshire, United States
| | - So Hyun Chung
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Mitchell Schnall
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Bradley S. Snyder
- Brown University School of Public Health, Center for Statistical Sciences, Providence, Rhode Island, United States
| | - Nola Hylton
- University of California, Department of Radiology, San Francisco, California, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Steven J. Isakoff
- Massachusetts General Hospital, Department of Hematology and Oncology, Boston, Massachusetts, United States
| | - David Mankoff
- University of Pennsylvania, Division of Nuclear Medicine, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| |
Collapse
|
28
|
Zhu Q, Tannenbaum S, Kurtzman SH, DeFusco P, Ricci A, Vavadi H, Zhou F, Xu C, Merkulov A, Hegde P, Kane M, Wang L, Sabbath K. Identifying an early treatment window for predicting breast cancer response to neoadjuvant chemotherapy using immunohistopathology and hemoglobin parameters. Breast Cancer Res 2018; 20:56. [PMID: 29898762 PMCID: PMC6001175 DOI: 10.1186/s13058-018-0975-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast cancer pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) varies with tumor subtype. The purpose of this study was to identify an early treatment window for predicting pCR based on tumor subtype, pretreatment total hemoglobin (tHb) level, and early changes in tHb following NAC. METHODS Twenty-two patients (mean age 56 years, range 34-74 years) were assessed using a near-infrared imager coupled with an Ultrasound system prior to treatment, 7 days after the first treatment, at the end of each of the first three cycles, and before their definitive surgery. Pathologic responses were dichotomized by the Miller-Payne system. Tumor vascularity was assessed from tHb; vascularity changes during NAC were assessed from a percentage tHb normalized to the pretreatment level (%tHb). After training the logistic prediction models using the previous study data, we assessed the early treatment window for predicting pathological response according to their tumor subtype (human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), triple-negative (TN)) based on tHb, and %tHb measured at different cycles and evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS In the new study cohort, maximum pretreatment tHb and %tHb changes after cycles 1, 2, and 3 were significantly higher in responder Miller-Payne 4-5 tumors (n = 13) than non-or partial responder Miller-Payne 1-3 tumors (n = 9). However, no significance was found at day 7. The AUC of the predictive power of pretreatment tHb in the cohort was 0.75, which was similar to the performance of the HER2 subtype as a single predictor (AUC of 0.78). A greater predictive power of pretreatment tHb was found within each subtype, with AUCs of 0.88, 0.69, and 0.72, in the HER2, ER, and TN subtypes, respectively. Using pretreatment tHb and cycle 1 %tHb, AUC reached 0.96, 0.91, and 0.90 in HER2, ER, and TN subtypes, respectively, and 0.95 regardless of subtype. Additional cycle 2 %tHb measurements moderately improved prediction for the HER2 subtype but did not improve prediction for the ER and TN subtypes. CONCLUSIONS By combining tumor subtypes with tHb, we predicted the pCR of breast cancer to NAC before treatment. Prediction accuracy can be significantly improved by incorporating cycle 1 and 2 %tHb for the HER2 subtype and cycle 1 %tHb for the ER and TN subtypes. TRIAL REGISTRATION ClinicalTrials.gov, NCT02092636 . Registered in March 2014.
Collapse
Affiliation(s)
- Quing Zhu
- Biomedical Engineering and Radiology, Washington University in St Louis, One Brookings Drive, Mail Box 1097, Whitaker Hall 300D, St. Louis, MO 63130 USA
| | - Susan Tannenbaum
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | | | | | | | | | - Feifei Zhou
- University of Connecticut, Storrs, CT 06269 USA
| | - Chen Xu
- New York City College of Technology, City University of New York (CUNY), New York, USA
| | - Alex Merkulov
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Poornima Hegde
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Mark Kane
- University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Liqun Wang
- Department of Statistics, University of Manitoba, 186 Dysart Road, Winnipeg, Manitoba, R3T 2N2 Canada
| | | |
Collapse
|
29
|
Lee S, Kim JG. Breast tumor hemodynamic response during a breath-hold as a biomarker to predict chemotherapeutic efficacy: preclinical study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-5. [PMID: 29706036 DOI: 10.1117/1.jbo.23.4.048001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Continuous wave diffuse optical tomographic/spectroscopic system does not provide absolute concentrations of chromophores in tissue and monitor only the changes of chromophore concentration. Therefore, it requires a perturbation of physiological signals, such as blood flow and oxygenation. In that sense, a few groups reported that monitoring a relative hemodynamic change during a breast tissue compression or a breath-hold to a patient can provide good contrast between tumor and nontumor. However, no longitudinal study reports the utilization of a breath-hold to predict tumor response during chemotherapy. A continuous wave near-infrared spectroscopy was employed to monitor hemodynamics in rat breast tumor during a hyperoxic to normoxic inhalational gas intervention to mimic a breath-hold during tumor growth and chemotherapy. The reduced oxyhemoglobin concentration during inhalational gas intervention correlated well with tumor growth, and it responded one day earlier than the change of tumor volume after chemotherapy. In conclusion, monitoring tumor hemodynamics during a breath-hold may serve as a biomarker to predict chemotherapeutic efficacy of tumor.
Collapse
Affiliation(s)
- Songhyun Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwang, Republic of Korea
| | - Jae Gwan Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwang, Republic of Korea
- Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science,, Republic of Korea
| |
Collapse
|
30
|
Applegate MB, Roblyer D. Multi-distance diffuse optical spectroscopy with a single optode via hypotrochoidal scanning. OPTICS LETTERS 2018; 43:747-750. [PMID: 29444068 DOI: 10.1364/ol.43.000747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Frequency-domain diffuse optical spectroscopy (FD-DOS) is an established technique capable of determining optical properties and chromophore concentrations in biological tissue. Most FD-DOS systems use either manually positioned, handheld probes or complex arrays of source and detector fibers to acquire data from many tissue locations, allowing for the generation of 2D or 3D maps of tissue. Here, we present a new method to rapidly acquire a wide range of source-detector (SD) separations by mechanically scanning a single SD pair. The source and detector fibers are mounted on a scan head that traces a hypotrochoidal pattern over the sample that, when coupled with a high-speed FD-DOS system, enables the rapid collection of dozens of SD separations for depth-resolved imaging. We demonstrate that this system has an average error of 4±2.6% in absorption and 2±1.8% in scattering across all SD separations. Additionally, by linearly translating the device, the size and location of an absorbing inhomogeneity can be determined through the generation of B-scan images in a manner conceptually analogous to ultrasound imaging. This work demonstrates the potential of single optode diffuse optical scanning for depth resolved visualization of heterogeneous biological tissues at near real-time rates.
Collapse
|
31
|
Sannachi L, Gangeh M, Tadayyon H, Sadeghi-Naini A, Gandhi S, Wright FC, Slodkowska E, Curpen B, Tran W, Czarnota GJ. Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using quantitative ultrasound, texture, and molecular features. PLoS One 2018; 13:e0189634. [PMID: 29298305 PMCID: PMC5751990 DOI: 10.1371/journal.pone.0189634] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Background Pathological response of breast cancer to chemotherapy is a prognostic indicator for long-term disease free and overall survival. Responses of locally advanced breast cancer in the neoadjuvant chemotherapy (NAC) settings are often variable, and the prediction of response is imperfect. The purpose of this study was to detect primary tumor responses early after the start of neoadjuvant chemotherapy using quantitative ultrasound (QUS), textural analysis and molecular features in patients with locally advanced breast cancer. Methods The study included ninety six patients treated with neoadjuvant chemotherapy. Breast tumors were scanned with a clinical ultrasound system prior to chemotherapy treatment, during the first, fourth and eighth week of treatment, and prior to surgery. Quantitative ultrasound parameters and scatterer-based features were calculated from ultrasound radio frequency (RF) data within tumor regions of interest. Additionally, texture features were extracted from QUS parametric maps. Prior to therapy, all patients underwent a core needle biopsy and histological subtypes and biomarker ER, PR, and HER2 status were determined. Patients were classified into three treatment response groups based on combination of clinical and pathological analyses: complete responders (CR), partial responders (PR), and non-responders (NR). Response classifications from QUS parameters, receptors status and pathological were compared. Discriminant analysis was performed on extracted parameters using a support vector machine classifier to categorize subjects into CR, PR, and NR groups at all scan times. Results Of the 96 patients, the number of CR, PR and NR patients were 21, 52, and 23, respectively. The best prediction of treatment response was achieved with the combination mean QUS values, texture and molecular features with accuracies of 78%, 86% and 83% at weeks 1, 4, and 8, after treatment respectively. Mean QUS parameters or clinical receptors status alone predicted the three response groups with accuracies less than 60% at all scan time points. Recurrence free survival (RFS) of response groups determined based on combined features followed similar trend as determined based on clinical and pathology. Conclusions This work demonstrates the potential of using QUS, texture and molecular features for predicting the response of primary breast tumors to chemotherapy early, and guiding the treatment planning of refractory patients.
Collapse
Affiliation(s)
- Lakshmanan Sannachi
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mehrdad Gangeh
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hadi Tadayyon
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Ali Sadeghi-Naini
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sonal Gandhi
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Frances C. Wright
- Division of General Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Elzbieta Slodkowska
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Belinda Curpen
- Division of Breast Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - William Tran
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
32
|
Peterson HM, Hoang BH, Geller D, Yang R, Gorlick R, Berger J, Tingling J, Roth M, Gill J, Roblyer D. In vivo, noninvasive functional measurements of bone sarcoma using diffuse optical spectroscopic imaging. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 29264893 DOI: 10.1117/1.jbo.22.12.121612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/05/2017] [Indexed: 05/18/2023]
Abstract
Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.
Collapse
Affiliation(s)
- Hannah M Peterson
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Bang H Hoang
- Monefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - David Geller
- Monefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Rui Yang
- Monefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Richard Gorlick
- MD Anderson Cancer Center, Division of Pediatrics, Houston, Texas, United States
| | - Jeremy Berger
- Monefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Janet Tingling
- Monefiore Medical Center, Department of Orthopaedic Surgery, Bronx, New York, United States
| | - Michael Roth
- Monefiore Medical Center, Department of Pediatrics, Bronx, New York, United States
| | - Jonathon Gill
- Monefiore Medical Center, Department of Pediatrics, Bronx, New York, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
33
|
Lee S, Jeong H, Seong M, Kim JG. Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:121603. [PMID: 28698890 DOI: 10.1117/1.jbo.22.12.121603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 05/22/2023]
Abstract
Breast cancer is one of the most common cancers in females. To monitor chemotherapeutic efficacy for breast cancer, medical imaging systems such as x-ray mammography, computed tomography, magnetic resonance imaging, and ultrasound imaging have been used. Currently, it can take up to 3 to 6 weeks to see the tumor response from chemotherapy by monitoring tumor volume changes. We used near-infrared spectroscopy (NIRS) to predict breast cancer treatment efficacy earlier than tumor volume changes by monitoring tumor vascular reactivity during inhalational gas interventions. The results show that the amplitude of oxy-hemoglobin changes (vascular reactivity) during hyperoxic gas inhalation is well correlated with tumor growth and responded one day earlier than tumor volume changes after chemotherapy. These results may imply that NIRS with respiratory challenges can be useful in early detection of tumor and in the prediction of tumor response to chemotherapy.
Collapse
Affiliation(s)
- Songhyun Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Hyeryun Jeong
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Myeongsu Seong
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Jae Gwan Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of KoreabGwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science, Gwangju, Republic of Korea
| |
Collapse
|
34
|
Anderson PG, Kalli S, Sassaroli A, Krishnamurthy N, Makim SS, Graham RA, Fantini S. Optical Mammography in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy: Individual Clinical Response Index. Acad Radiol 2017; 24:1240-1255. [PMID: 28532642 DOI: 10.1016/j.acra.2017.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES We present an optical mammography study that aims to develop quantitative measures of pathologic response to neoadjuvant chemotherapy (NAC) in patients with breast cancer. Such quantitative measures are based on the concentrations of oxyhemoglobin ([HbO2]), deoxyhemoglobin ([Hb]), total hemoglobin ([HbT]), and hemoglobin saturation (SO2) in breast tissue at the tumor location and at sequential time points during chemotherapy. MATERIALS AND METHODS Continuous-wave, spectrally resolved optical mammography was performed in transmission and parallel-plate geometry on 10 patients before treatment initiation and at each NAC administration (mean number of optical mammography sessions: 12, range: 7-18). Data on two patients were discarded for technical reasons. The patients were categorized as responders (R, >50% decrease in tumor size), or nonresponders (NR, <50% decrease in tumor size) based on imaging and histopathology results. RESULTS At 50% completion of the NAC regimen (therapy midpoint), R (6/8) demonstrated significant decreases in SO2 (-27% ± 4%) and [HbT] (-35 ± 4 µM) at the tumor location with respect to baseline values. By contrast, NR (2/8) showed nonsignificant changes in SO2 and [HbT] at therapy midpoint. We introduce a cumulative response index as a quantitative measure of the individual patient's response to therapy. At therapy midpoint, the SO2-based cumulative response index had a sensitivity of 100% and a specificity of 100% for the identification of R. CONCLUSIONS These results show that optical mammography is a promising tool to assess individual response to NAC at therapy midpoint to guide further decision making for neoadjuvant therapy.
Collapse
Affiliation(s)
- Pamela G Anderson
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Sirishma Kalli
- Department of Radiology, Tufts Medical Center, Boston, Massachusetts
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Nishanth Krishnamurthy
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Shital S Makim
- Department of Radiology, Tufts Medical Center, Boston, Massachusetts
| | - Roger A Graham
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155.
| |
Collapse
|
35
|
Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian SV, Meier R, Rummeny E, Ntziachristos V. Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer. Clin Cancer Res 2017; 23:6912-6922. [PMID: 28899968 DOI: 10.1158/1078-0432.ccr-16-3200] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
Purpose: In a pilot study, we introduce fast handheld multispectral optoacoustic tomography (MSOT) of the breast at 28 wavelengths, aiming to identify high-resolution optoacoustic (photoacoustic) patterns of breast cancer and noncancerous breast tissue.Experimental Design: We imaged 10 female patients ages 48-81 years with malignant nonspecific breast cancer or invasive lobular carcinoma. Three healthy volunteers ages 31-36 years were also imaged. Fast-MSOT was based on unique single-frame-per-pulse (SFPP) image acquisition employed to improve the accuracy of spectral differentiation over using a small number of wavelengths. Breast tissue was illuminated at the 700-970 nm spectral range over 0.56 seconds total scan time. MSOT data were guided by ultrasonography and X-ray mammography or MRI.Results: The extended spectral range allowed the computation of oxygenated hemoglobin (HBO2), deoxygenated hemoglobin (HB), total blood volume (TBV), lipid, and water contributions, allowing first insights into in vivo high-resolution breast tissue MSOT cancer patterns. TBV and Hb/HBO2 images resolved marked differences between cancer and control tissue, manifested as a vessel-rich tumor periphery with highly heterogeneous spatial appearance compared with healthy tissue. We observe significant TBV variations between different tumors and between tumors over healthy tissues. Water and fat lipid layers appear disrupted in cancer versus healthy tissue; however, offer weaker contrast compared with TBV images.Conclusions: In contrast to optical methods, MSOT resolves physiologic cancer features with high resolution and revealed patterns not offered by other radiologic modalities. The new features relate to personalized and precision medicine potential. Clin Cancer Res; 23(22); 6912-22. ©2017 AACR.
Collapse
Affiliation(s)
- Gael Diot
- Chair of Biological Imaging, Technische Universität München, München, Germany
| | - Stephan Metz
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Aurelia Noske
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbara Schroeder
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Saak V Ovsepian
- Chair of Biological Imaging, Technische Universität München, München, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Reinhard Meier
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Ernst Rummeny
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Technische Universität München, München, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
36
|
Zhao Y, Burger WR, Zhou M, Bernhardt EB, Kaufman PA, Patel RR, Angeles CV, Pogue BW, Paulsen KD, Jiang S. Collagen quantification in breast tissue using a 12-wavelength near infrared spectral tomography (NIRST) system. BIOMEDICAL OPTICS EXPRESS 2017; 8:4217-4229. [PMID: 28966860 PMCID: PMC5611936 DOI: 10.1364/boe.8.004217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 05/20/2023]
Abstract
A portable near infrared spectral tomography (NIRST) system was adapted for breast cancer detection and treatment monitoring with improved speed of acquisition for parallel 12 wavelengths of parallel frequency-domain (FD) and continuous-wavelength (CW) measurement. Using a novel gain adjustment scheme in the Photomultiplier Tube detectors (PMTs), the data acquisition time for simultaneous acquisition involving three FD and three CW wavelengths, has been reduced from 90 to 55 seconds, while signal variation was also reduced from 2.1% to 1.1%. Tomographic images of breast collagen content have been recovered for the first time, and image reconstruction approaches with and without collagen content included have been validated in simulation studies and normal subject exams. Simulations indicate that including collagen content into the reconstruction procedure can significantly reduce the overestimation in total hemoglobin, water and lipid by 8.9μM, 1.8% and 15.8%, respectively, and underestimates in oxygen saturation by 9.5%, given an average 10% background collagen content. A breast cancer patient with invasive ductal carcinoma was imaged and the reconstructed images show that the recovered tumor/background contrast in total hemoglobin increased from 1.5 to 1.7 when collagen was included in reconstruction.
Collapse
Affiliation(s)
- Yan Zhao
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - William R. Burger
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Mingwei Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Erica B. Bernhardt
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Peter A. Kaufman
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover NH 03755, USA
| | - Roshani R. Patel
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Christina V. Angeles
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| |
Collapse
|
37
|
Okamoto Y, Sugisaki S, Suga K, Umakoshi H. Development of Time-course Oxygen Binding Analysis for Hemoglobin-based Oxygen Carriers. ANAL SCI 2017; 33:953-956. [PMID: 28794333 DOI: 10.2116/analsci.33.953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Developing blood substitutes is in urgent demand for chronic blood shortage all over the world. In this connection, the oxygen binding behavior of hemoglobin-based oxygen carriers (HBOCs) is one of the most important characteristics. However, present methods available for estimating oxygen binding behavior have need of expensive apparatus, and also are not suitable for high-throughput and the time-course analysis. To overcome these problems, we proposed a simple analysis method for the time-course oxygen binding behavior of HBOCs, which employs a general UV-Vis microplate reader and a common reagent, sodium dithionite, as a reductant for HBOCs and an oxygen scavenger. Our method enabled time-course oxygen binding behavior analysis of HBOCs in a simple manner, and obtained data corresponding with those by the conventional method. Thus, our developed method will accelerate the development of HBOCs due to easy oxygen binding analysis.
Collapse
Affiliation(s)
- Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Shigenori Sugisaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
38
|
Applegate MB, Roblyer D. High-speed spatial frequency domain imaging with temporally modulated light. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76019. [PMID: 28759675 DOI: 10.1117/1.jbo.22.7.076019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/14/2017] [Indexed: 05/03/2023]
Abstract
Spatial frequency domain imaging (SFDI) is a wide-field diffuse optical technique used to obtain optical properties and chromophore concentrations in highly scattering media, such as biological tissue. Here, we present a method for rapidly acquiring multispectral SFDI data by modulating each illumination wavelength at a different temporal frequency. In the remitted signal, each wavelength is temporally demodulated and processed using conventional SFDI techniques. We demonstrate a proof-of-concept system capable of acquiring wide-field maps (2048×1536 pixels, 8.5×6.4 cm) of optical properties at three wavelengths in under 2.5 s. Data acquired by this method show a good agreement with a commercial SFDI imaging system (with an average error of 13% in absorption and 8% in scattering). Additionally, we show that this strategy is insensitive to ambient lighting conditions, making it more practical for clinical translation. In the future, this technique could be expanded to tens or hundreds of wavelengths without increasing acquisition time.
Collapse
Affiliation(s)
- Matthew B Applegate
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
39
|
Farzam P, Johansson J, Mireles M, Jiménez-Valerio G, Martínez-Lozano M, Choe R, Casanovas O, Durduran T. Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics. BIOMEDICAL OPTICS EXPRESS 2017; 8:2563-2582. [PMID: 28663891 PMCID: PMC5480498 DOI: 10.1364/boe.8.002563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 05/20/2023]
Abstract
The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.
Collapse
Affiliation(s)
- Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129,
USA
| | - Johannes Johansson
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Department of Biomedical Engineering, Linköping University, 58185 Linköping,
Sweden
| | - Miguel Mireles
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
| | - Gabriela Jiménez-Valerio
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Mar Martínez-Lozano
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08015, Barcelona,
Spain
| |
Collapse
|
40
|
Tran WT, Gangeh MJ, Sannachi L, Chin L, Watkins E, Bruni SG, Rastegar RF, Curpen B, Trudeau M, Gandhi S, Yaffe M, Slodkowska E, Childs C, Sadeghi-Naini A, Czarnota GJ. Predicting breast cancer response to neoadjuvant chemotherapy using pretreatment diffuse optical spectroscopic texture analysis. Br J Cancer 2017; 116:1329-1339. [PMID: 28419079 PMCID: PMC5482739 DOI: 10.1038/bjc.2017.97] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Methods: Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller–Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., ‘pretreatment’) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers. Results: Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.
Collapse
Affiliation(s)
- William T Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Centre for Health and Social Care Research, Sheffield Hallam University, 32 Collegiate Crescent, Sheffield S10 2BP, UK
| | - Mehrdad J Gangeh
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Lakshmanan Sannachi
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Lee Chin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Elyse Watkins
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Silvio G Bruni
- Department of Medical Imaging, Sunnybrook Hospital, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Rashin Fallah Rastegar
- Department of Medical Imaging, Sunnybrook Hospital, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Hospital, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Maureen Trudeau
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Sonal Gandhi
- Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Martin Yaffe
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Elzbieta Slodkowska
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Charmaine Childs
- Centre for Health and Social Care Research, Sheffield Hallam University, 32 Collegiate Crescent, Sheffield S10 2BP, UK
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
41
|
Cochran JM, Chung SH, Leproux A, Baker WB, Busch DR, DeMichele AM, Tchou J, Tromberg BJ, Yodh AG. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy. Phys Med Biol 2017; 62:4637-4653. [PMID: 28402286 DOI: 10.1088/1361-6560/aa6cef] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n = 4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.
Collapse
Affiliation(s)
- J M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, Philadelphia, PA 19104, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
OBJECTIVE The objective of this article is to summarize the physical principles, technology features, and first clinical applications of optical imaging techniques to the breast. CONCLUSION Light-breast tissue interaction is expressed as absorption and scattering coefficients, allowing image reconstruction based on endogenous or exogenous contrast. Diffuse optical spectroscopy and imaging, fluorescence molecular tomography, photoacoustic imaging, and multiparametric infrared imaging show potential for clinical application, especially for lesion characterization, estimation of cancer probability, and monitoring the effect of neoadjuvant therapy.
Collapse
|
43
|
Yazdi HS, O’Sullivan TD, Leproux A, Hill B, Durkin A, Telep S, Lam J, Yazdi SS, Police AM, Carroll RM, Combs FJ, Strömberg T, Yodh AG, Tromberg BJ. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:45003. [PMID: 28384703 PMCID: PMC5381696 DOI: 10.1117/1.jbo.22.4.045003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 05/18/2023]
Abstract
Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin ( HbO 2 , HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 ?? mm ? 1 (37%) in ? s ? and 0.003 ?? mm ? 1 (33%) in ? a lead to ? 53 % and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and
Collapse
MESH Headings
- Adult
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/drug therapy
- Diffusion
- Female
- Hemoglobins/analysis
- Humans
- Lipids/blood
- Models, Theoretical
- Neoadjuvant Therapy
- Oxyhemoglobins/analysis
- Phantoms, Imaging
- Spectrophotometry/methods
- Spectroscopy, Near-Infrared/methods
- Tomography, Optical/methods
Collapse
Affiliation(s)
- Hossein S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Anais Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Brian Hill
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Amanda Durkin
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Seraphim Telep
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Jesse Lam
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Siavash S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Alice M. Police
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Robert M. Carroll
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Freddie J. Combs
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Tomas Strömberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
44
|
Chin LCL, Cook EK, Yohan D, Kim A, Niu C, Wilson BC, Liu SK. Early biomarker for radiation-induced wounds: day one post-irradiation assessment using hemoglobin concentration measured from diffuse optical reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:1682-1688. [PMID: 28663856 PMCID: PMC5480571 DOI: 10.1364/boe.8.001682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Normal tissue radiation toxicities are evaluated subjectively and cannot predict the development of severe side-effects. Using a hand-held diffuse reflectance optical spectroscopy probe, we measured optical parameters in mouse skin 1-4 days after irradiation. Using a radiation toxicity model and a therapeutic mitigator described previously [BMC Cancer14, 614 (2014)], we found that hemoglobin (Hb) levels increased sharply 24 h after irradiation only in the irradiated group without the mitigator. This group also had the largest peak wound areas after 14 days. We conclude that increased Hb one day after skin irradiation predicts the severity of the subsequent irradiation-induced wound.
Collapse
Affiliation(s)
- Lee C. L. Chin
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Elina K. Cook
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Darren Yohan
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Anthony Kim
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Carolyn Niu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Ontario Cancer Institute / Campbell Family Institute for Cancer Research, Toronto, ON M5G 2M9, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Ontario Cancer Institute / Campbell Family Institute for Cancer Research, Toronto, ON M5G 2M9, Canada
| | - Stanley K. Liu
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
45
|
Hysi E, Wirtzfeld LA, May JP, Undzys E, Li SD, Kolios MC. Photoacoustic signal characterization of cancer treatment response: Correlation with changes in tumor oxygenation. PHOTOACOUSTICS 2017; 5:25-35. [PMID: 28393017 PMCID: PMC5377014 DOI: 10.1016/j.pacs.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/18/2017] [Accepted: 03/13/2017] [Indexed: 05/20/2023]
Abstract
Frequency analysis of the photoacoustic radiofrequency signals and oxygen saturation estimates were used to monitor the in-vivo response of a novel, thermosensitive liposome treatment. The liposome encapsulated doxorubicin (HaT-DOX) releasing it rapidly (<20 s) when the tumor was exposed to mild hyperthermia (43 °C). Photoacoustic imaging (VevoLAZR, 750/850 nm, 40 MHz) of EMT-6 breast cancer tumors was performed 30 min pre- and post-treatment and up to 7 days post-treatment (at 2/5/24 h timepoints). HaT-DOX-treatment responders exhibited on average a 22% drop in oxygen saturation 2 h post-treatment and a decrease (45% at 750 nm and 73% at 850 nm) in the slope of the normalized PA frequency spectra. The spectral slope parameter correlated with treatment-induced hemorrhaging which increased the optical absorber effective size via interstitial red blood cell leakage. Combining frequency analysis and oxygen saturation estimates differentiated treatment responders from non-responders/control animals by probing the treatment-induced structural changes of blood vessel.
Collapse
Affiliation(s)
- Eno Hysi
- Department of Physics, Ryerson University, Toronto, M5 B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Center, St. Michael’s Hospital, Toronto, M5 B 1T8, Canada
| | - Lauren A. Wirtzfeld
- Department of Physics, Ryerson University, Toronto, M5 B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Center, St. Michael’s Hospital, Toronto, M5 B 1T8, Canada
| | - Jonathan P. May
- Faculty of Pharmaceutical Sciences, The University of British Colombia, Vancouver, V6T 1Z3, Canada
| | - Elijus Undzys
- Drug Delivery and Formulation Group, Ontario Institute for Cancer Research, Toronto, M5G 0A3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Colombia, Vancouver, V6T 1Z3, Canada
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, M5 B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Center, St. Michael’s Hospital, Toronto, M5 B 1T8, Canada
| |
Collapse
|
46
|
Torjesen A, Istfan R, Roblyer D. Ultrafast wavelength multiplexed broad bandwidth digital diffuse optical spectroscopy for in vivo extraction of tissue optical properties. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:36009. [PMID: 28280840 DOI: 10.1117/1.jbo.22.3.036009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/17/2017] [Indexed: 05/02/2023]
Abstract
Frequency-domain diffuse optical spectroscopy (FD-DOS) utilizes intensity-modulated light to characterize optical scattering and absorption in thick tissue. Previous FD-DOS systems have been limited by large device footprints, complex electronics, high costs, and limited acquisition speeds, all of which complicate access to patients in the clinical setting. We have developed a new digital DOS (dDOS) system, which is relatively compact and inexpensive, allowing for simplified clinical use, while providing unprecedented measurement speeds. The dDOS system utilizes hardware-integrated custom board-level direct digital synthesizers and an analog-to-digital converter to generate frequency sweeps and directly measure signals utilizing undersampling at six wavelengths modulated at discrete frequencies from 50 to 400 MHz. Wavelength multiplexing is utilized to achieve broadband frequency sweep measurements acquired at over 97 Hz. When compared to a gold-standard DOS system, the accuracy of optical properties recovered with the dDOS system was within 5.3% and 5.5% for absorption and reduced scattering coefficient extractions, respectively. When tested in vivo, the dDOS system was able to detect physiological changes throughout the cardiac cycle. The new FD-dDOS system is fast, inexpensive, and compact without compromising measurement quality.
Collapse
Affiliation(s)
- Alyssa Torjesen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Raeef Istfan
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
47
|
Sajjadi AY, Isakoff SJ, Deng B, Singh B, Wanyo CM, Fang Q, Specht MC, Schapira L, Moy B, Bardia A, Boas DA, Carp SA. Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI). BIOMEDICAL OPTICS EXPRESS 2017; 8:555-569. [PMID: 28270967 PMCID: PMC5330555 DOI: 10.1364/boe.8.000555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 05/03/2023]
Abstract
We characterize novel breast cancer imaging biomarkers for monitoring neoadjuvant chemotherapy (NACT) and predicting outcome. Specifically, we recruited 30 patients for a pilot study in which NACT patients were imaged using dynamic tomographic optical breast imaging (DTOBI) to quantify the hemodynamic changes due to partial mammographic compression. DTOBI scans were obtained pre-treatment (referred to as day 0), as well as 7 and 30 days into therapy on female patients undergoing NACT. We present data for the 13 patients who participated in both day 0 and 7 measurements and had evaluable data, of which 7 also returned for day 30 measurements. We acquired optical images over 2 minutes following 4-8 lbs (18-36 N) of compression. The timecourses of tissue-volume averaged total hemoglobin (HbT), as well as hemoglobin oxygen saturation (SO2) in the tumor vs. surrounding tissues were compared. Outcome prediction metrics based on the differential behavior in tumor vs. normal areas for responders (>50% reduction in maximum diameter) vs. non-responders were analyzed for statistical significance. At baseline, all patients exhibit an initial decrease followed by delayed recovery in HbT, and SO2 in the tumor area, in contrast to almost immediate recovery in surrounding tissue. At day 7 and 30, this contrast is maintained in non-responders; however, in responders, the contrast in hemodynamic time-courses between tumor and normal tissue starts decreasing at day 7 and substantially disappears at day 30. At day 30 into NACT, responding tumors demonstrate "normalization" of compression induced hemodynamics vs. surrounding normal tissue whereas non-responding tumors did not. This data suggests that DTOBI imaging biomarkers, which are governed by the interplay between tissue biomechanics and oxygen metabolism, may be suitable for guiding NACT by offering early predictions of treatment outcome.
Collapse
Affiliation(s)
- Amir Y Sajjadi
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA; These authors contributed equally to this work;
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; These authors contributed equally to this work;
| | - Bin Deng
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Bhawana Singh
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Christy M Wanyo
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 0211, USA
| | - Michelle C Specht
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Lidia Schapira
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David A Boas
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stefan A Carp
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
48
|
Abstract
Light and optical techniques have made profound impacts on modern
medicine, with numerous lasers and optical devices being currently used in
clinical practice to assess health and treat disease. Recent advances in
biomedical optics have enabled increasingly sophisticated technologies —
in particular those that integrate photonics with nanotechnology, biomaterials
and genetic engineering. In this Review, we revisit the fundamentals of
light–matter interactions, describe the applications of light in
imaging, diagnosis, therapy and surgery, overview their clinical use, and
discuss the promise of emerging light-based technologies.
Collapse
Affiliation(s)
- Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA.,Department of Dermatology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115.,Harvard-MIT Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sheldon J J Kwok
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Teng F, Cormier T, Sauer-Budge A, Chaudhury R, Pera V, Istfan R, Chargin D, Brookfield S, Ko NY, Roblyer DM. Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:14001. [PMID: 28114449 PMCID: PMC5289133 DOI: 10.1117/1.jbo.22.1.014001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/21/2016] [Indexed: 05/04/2023]
Abstract
We present a new continuous-wave wearable diffuse optical probe aimed at investigating the hemodynamic response of locally advanced breast cancer patients during neoadjuvant chemotherapy infusions. The system consists of a flexible printed circuit board that supports an array of six dual wavelength surface-mount LED and photodiode pairs. The probe is encased in a soft silicone housing that conforms to natural breast shape. Probe performance was evaluated using tissue-simulating phantoms and in vivo normal volunteer measurements. High SNR (71 dB), low source-detector crosstalk ( ? 60 ?? dB ), high measurement precision (0.17%), and good thermal stability (0.22% V rms / ° C ) were achieved in phantom studies. A cuff occlusion experiment was performed on the forearm of a healthy volunteer to demonstrate the ability to track rapid hemodynamic changes. Proof-of-principle normal volunteer measurements were taken to demonstrate the ability to collect continuous in vivo breast measurements. This wearable probe is a first of its kind tool to explore prognostic hemodynamic changes during chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Fei Teng
- Boston University, Department of Electrical and Computer Engineering and Photonics Center, 8 Saint Mary’s Street, Boston, Massachusetts 02215, United States
| | - Timothy Cormier
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Alexis Sauer-Budge
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Rachita Chaudhury
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Vivian Pera
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Raeef Istfan
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - David Chargin
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Samuel Brookfield
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Naomi Yu Ko
- Boston Medical Center, Section of Hematology and Oncology, Women’s Health Unit, 801 Massachusetts Avenue, First Floor, Boston, Massachusetts 02118, United States
| | - Darren M. Roblyer
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
- Address all correspondence to: Darren M. Roblyer, E-mail:
| |
Collapse
|
50
|
May JP, Hysi E, Wirtzfeld LA, Undzys E, Li SD, Kolios MC. Photoacoustic Imaging of Cancer Treatment Response: Early Detection of Therapeutic Effect from Thermosensitive Liposomes. PLoS One 2016; 11:e0165345. [PMID: 27788199 PMCID: PMC5082794 DOI: 10.1371/journal.pone.0165345] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022] Open
Abstract
Imaging methods capable of indicating the potential for success of an individualized treatment course, during or immediately following the treatment, could improve therapeutic outcomes. Temperature Sensitive Liposomes (TSLs) provide an effective way to deliver chemotherapeutics to a localized tumoral area heated to mild-hyperthermia (HT). The high drug levels reached in the tumor vasculature lead to increased tumor regression via the cascade of events during and immediately following treatment. For a TSL carrying doxorubicin (DOX) these include the rapid and intense exposure of endothelial cells to high drug concentrations, hemorrhage, blood coagulation and vascular shutdown. In this study, ultrasound-guided photoacoustic imaging was used to probe the changes to tumors following treatment with the TSL, HaT-DOX (Heat activated cytoToxic). Levels of oxygen saturation (sO2) were studied in a longitudinal manner, from 30 min pre-treatment to 7 days post-treatment. The efficacious treatments of HT-HaT-DOX were shown to induce a significant drop in sO2 (>10%) as early as 30 min post-treatment that led to tumor regression (in 90% of cases); HT-Saline and non-efficacious HT-HaT-DOX (10% of cases) treatments did not show any significant change in sO2 at these timepoints. The changes in sO2 were further corroborated with histological data, using the vascular and perfusion markers CD31 and FITC-lectin. These results allowed us to further surmise a plausible mechanism of the cellular events taking place in the TSL treated tumor regions over the first 24 hours post-treatment. The potential for using photoacoustic imaging to measure tumor sO2 as a surrogate prognostic marker for predicting therapeutic outcome with a TSL treatment is demonstrated.
Collapse
Affiliation(s)
- Jonathan P. May
- Drug Discovery and Formulation Group, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Eno Hysi
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Lauren A. Wirtzfeld
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Elijus Undzys
- Drug Discovery and Formulation Group, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Shyh-Dar Li
- Drug Discovery and Formulation Group, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|