1
|
Niault T, Talavera A, Le Cam E, Baconnais S, Skovgaard O, Fournes F, Wagner L, Tamman H, Thompson A, Echemendia-Blanco D, Guzzi N, Garcia-Pino A, Mazel D, Val ME. Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae. Nat Commun 2025; 16:485. [PMID: 39779702 PMCID: PMC11711613 DOI: 10.1038/s41467-024-55598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V. cholerae genome across various cell cycle stages. We find that RctB primarily binds to sites inhibiting replication initiation at the Chr2 origin (ori2). This inhibitory effect is counteracted when crtS is replicated on Chr1, causing a shift in RctB binding to sites that activate replication at ori2. Structural analyzes indicate the formation of diverse oligomeric states of RctB, coupled to the allosteric effect of DNA, which determine ori2 accessibility. We propose a synchronization model where, upon replication, crtS locally destabilizes the RctB inhibition complex, releasing the Chr2 replication origin.
Collapse
Affiliation(s)
- Théophile Niault
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Ole Skovgaard
- Department of Science and Environment, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Florian Fournes
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Léa Wagner
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Andrew Thompson
- SOLEIL Synchrotron, Saint-Aubin - BP48, Gif sur Yvette, France
| | - Dannele Echemendia-Blanco
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Noa Guzzi
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
- WEL Research Institute, Wavre, Belgium.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
| | - Marie-Eve Val
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
| |
Collapse
|
2
|
Malone JG, Thompson CMA. Mechanisms of Plasmid Behavioral Manipulation. DNA Cell Biol 2024; 43:105-107. [PMID: 38294780 DOI: 10.1089/dna.2023.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Affiliation(s)
- Jacob G Malone
- Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
3
|
Doan A, Chatterjee S, Kothapalli R, Khan Z, Sen S, Kedei N, Jha JK, Chattoraj DK, Ramachandran R. The replication enhancer crtS depends on transcription factor Lrp for modulating binding of initiator RctB to ori2 of Vibrio cholerae. Nucleic Acids Res 2024; 52:708-723. [PMID: 38000366 PMCID: PMC10810183 DOI: 10.1093/nar/gkad1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Replication of Vibrio cholerae chromosome 2 (Chr2) initiates when the Chr1 locus, crtS (Chr2 replication triggering site) duplicates. The site binds the Chr2 initiator, RctB, and the binding increases when crtS is complexed with the transcription factor, Lrp. How Lrp increases the RctB binding and how RctB is subsequently activated for initiation by the crtS-Lrp complex remain unclear. Here we show that Lrp bends crtS DNA and possibly contacts RctB, acts that commonly promote DNA-protein interactions. To understand how the crtS-Lrp complex enhances replication, we isolated Tn-insertion and point mutants of RctB, selecting for retention of initiator activity without crtS. Nearly all mutants (42/44) still responded to crtS for enhancing replication, exclusively in an Lrp-dependent manner. The results suggest that the Lrp-crtS controls either an essential function or more than one function of RctB. Indeed, crtS modulates two kinds of RctB binding to the origin of Chr2, ori2, both of which we find to be Lrp-dependent. Some point mutants of RctB that are optimally modulated for ori2 binding without crtS still remained responsive to crtS and Lrp for replication enhancement. We infer that crtS-Lrp functions as a unit, which has an overarching role, beyond controlling initiator binding to ori2.
Collapse
Affiliation(s)
- Alexander Doan
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zaki Khan
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaanit Sen
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Jyoti K Jha
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Revathy Ramachandran
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- College of Medicine, Mohammed Bin Rashid University, Dubai, UAE
| |
Collapse
|
4
|
Niault T, Czarnecki J, Lambérioux M, Mazel D, Val ME. Cell cycle-coordinated maintenance of the Vibrio bipartite genome. EcoSal Plus 2023; 11:eesp00082022. [PMID: 38277776 PMCID: PMC10729929 DOI: 10.1128/ecosalplus.esp-0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.
Collapse
Affiliation(s)
- Théophile Niault
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Jakub Czarnecki
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Morgan Lambérioux
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Mazel
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Leonard AC. Recollections of a Helmstetter Disciple. Life (Basel) 2023; 13:life13051114. [PMID: 37240759 DOI: 10.3390/life13051114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Nearly fifty years ago, it became possible to construct E. coli minichromosomes using recombinant DNA technology. These very small replicons, comprising the unique replication origin of the chromosome oriC coupled to a drug resistance marker, provided new opportunities to study the regulation of bacterial chromosome replication, were key to obtaining the nucleotide sequence information encoded into oriC and were essential for the development of a ground-breaking in vitro replication system. However, true authenticity of the minichromosome model system required that they replicate during the cell cycle with chromosome-like timing specificity. I was fortunate enough to have the opportunity to construct E. coli minichromosomes in the laboratory of Charles Helmstetter and, for the first time, measure minichromosome cell cycle regulation. In this review, I discuss the evolution of this project along with some additional studies from that time related to the DNA topology and segregation properties of minichromosomes. Despite the significant passage of time, it is clear that large gaps in our understanding of oriC regulation still remain. I discuss some specific topics that continue to be worthy of further study.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32952, USA
| |
Collapse
|
6
|
Murase K, Arakawa E, Izumiya H, Iguchi A, Takemura T, Kikuchi T, Nakagawa I, Thomson NR, Ohnishi M, Morita M. Genomic dissection of the Vibrio cholerae O-serogroup global reference strains: reassessing our view of diversity and plasticity between two chromosomes. Microb Genom 2022; 8. [PMID: 35930328 PMCID: PMC9484750 DOI: 10.1099/mgen.0.000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Approximately 200 O-serogroups of Vibrio cholerae have already been identified; however, only 2 serogroups, O1 and O139, are strongly related to pandemic cholera. The study of non-O1 and non-O139 strains has hitherto been limited. Nevertheless, there are other clinically and epidemiologically important serogroups causing outbreaks with cholera-like disease. Here, we report a comprehensive genome analysis of the whole set of V. cholerae O-serogroup reference strains to provide an overview of this important bacterial pathogen. It revealed structural diversity of the O-antigen biosynthesis gene clusters located at specific loci on chromosome 1 and 16 pairs of strains with almost identical O-antigen biosynthetic gene clusters but differing in serological patterns. This might be due to the presence of O-antigen biosynthesis-related genes at secondary loci on chromosome 2.
Collapse
Affiliation(s)
- Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Eiji Arakawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidemasa Izumiya
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Japan
| | - Taichiro Takemura
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Taisei Kikuchi
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Hinxton, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Kothapalli R, Ghirlando R, Khan ZA, Chatterjee S, Kedei N, Chattoraj D. The dimerization interface of initiator RctB governs chaperone and enhancer dependence of Vibrio cholerae chromosome 2 replication. Nucleic Acids Res 2022; 50:4529-4544. [PMID: 35390166 PMCID: PMC9071482 DOI: 10.1093/nar/gkac210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/13/2022] Open
Abstract
Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.
Collapse
Affiliation(s)
- Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Zaki Ali Khan
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Fournes F, Niault T, Czarnecki J, Tissier-Visconti A, Mazel D, Val ME. The coordinated replication of Vibrio cholerae's two chromosomes required the acquisition of a unique domain by the RctB initiator. Nucleic Acids Res 2021; 49:11119-11133. [PMID: 34643717 PMCID: PMC8565311 DOI: 10.1093/nar/gkab903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Vibrio cholerae, the pathogenic bacterium that causes cholera, has two chromosomes (Chr1, Chr2) that replicate in a well-orchestrated sequence. Chr2 initiation is triggered only after the replication of the crtS site on Chr1. The initiator of Chr2 replication, RctB, displays activities corresponding with its different binding sites: initiator at the iteron sites, repressor at the 39m sites, and trigger at the crtS site. The mechanism by which RctB relays the signal to initiate Chr2 replication from crtS is not well-understood. In this study, we provide new insights into how Chr2 replication initiation is regulated by crtS via RctB. We show that crtS (on Chr1) acts as an anti-inhibitory site by preventing 39m sites (on Chr2) from repressing initiation. The competition between these two sites for RctB binding is explained by the fact that RctB interacts with crtS and 39m via the same DNA-binding surface. We further show that the extreme C-terminal tail of RctB, essential for RctB self-interaction, is crucial for the control exerted by crtS. This subregion of RctB is conserved in all Vibrio, but absent in other Rep-like initiators. Hence, the coordinated replication of both chromosomes likely results from the acquisition of this unique domain by RctB.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Binding, Competitive
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Cloning, Molecular
- DNA Replication
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Replication Origin
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Vibrio cholerae/genetics
- Vibrio cholerae/metabolism
Collapse
Affiliation(s)
- Florian Fournes
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Theophile Niault
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris 75005, France
| | - Jakub Czarnecki
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
- University of Warsaw, Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Warsaw 02-096, Poland
| | - Alvise Tissier-Visconti
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Didier Mazel
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Marie-Eve Val
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| |
Collapse
|
9
|
Conjugative plasmid-encoded toxin-antitoxin system PrpT/PrpA directly controls plasmid copy number. Proc Natl Acad Sci U S A 2021; 118:2011577118. [PMID: 33483419 PMCID: PMC7848731 DOI: 10.1073/pnas.2011577118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Since conjugative plasmids are usually large and may carry genes encoding functions that are detrimental to the bacterial host, minimizing plasmid copy number is critical for reducing the host burden. Toxin–antitoxin (TA) systems are one of the conserved modules on conjugative plasmids. Here, we demonstrate the functional significance of a large group of antitoxins on conjugative plasmids: the antitoxin acts as an unexpected player in the negative control of plasmid replication. For the plasmid-encoded PrpT/PrpA TA system, the antitoxin can control toxin production by binding to PrpT and by reducing plasmid copy number. This work shows that the antitoxin can directly regulate plasmid replication, expanding our understanding of the physiological role of TA systems. Toxin–antitoxin (TA) loci were initially identified on conjugative plasmids, and one function of plasmid-encoded TA systems is to stabilize plasmids or increase plasmid competition via postsegregational killing. Here, we discovered that the type II TA system, Pseudoalteromonas rubra plasmid toxin–antitoxin PrpT/PrpA, on a low-copy-number conjugative plasmid, directly controls plasmid replication. Toxin PrpT resembles ParE of plasmid RK2 while antitoxin PrpA (PF03693) shares no similarity with previously characterized antitoxins. Surprisingly, deleting this prpA-prpT operon from the plasmid does not result in plasmid segregational loss, but greatly increases plasmid copy number. Mechanistically, the antitoxin PrpA functions as a negative regulator of plasmid replication, by binding to the iterons in the plasmid origin that inhibits the binding of the replication initiator to the iterons. We also demonstrated that PrpA is produced at a higher level than PrpT to prevent the plasmid from overreplicating, while partial or complete degradation of labile PrpA derepresses plasmid replication. Importantly, the PrpT/PrpA TA system is conserved and is widespread on many conjugative plasmids. Altogether, we discovered a function of a plasmid-encoded TA system that provides new insights into the physiological significance of TA systems.
Collapse
|
10
|
Abstract
Chromosome replication is an essential process for cell division. The mode of chromosome replication has important impacts on the structure of the chromosome and replication speed. As typical bacterial replicons, circular chromosomes replicate bidirectionally and circular plasmids replicate either bidirectionally or unidirectionally. Whereas the finding of chromids (plasmid-derived chromosomes) in multiple bacterial lineages provides circumstantial evidence that chromosomes likely evolved from plasmids, all experimentally assayed chromids were shown to use bidirectional replication. Here, we employed a model system, the marine bacterial genus Pseudoalteromonas, members of which consistently carry a chromosome and a chromid. We provide experimental and bioinformatic evidence that while chromids in a few strains replicate bidirectionally, most replicate unidirectionally. This is the first experimental demonstration of the unidirectional replication mode in bacterial chromids. Phylogenomic and comparative genomic analyses showed that the bidirectional replication evolved only once from a unidirectional ancestor and that this transition was associated with insertions of exogenous DNA and relocation of the replication terminus region (ter2) from near the origin site (ori2) to a position roughly opposite it. This process enables a plasmid-derived chromosome to increase its size and expand the bacterium’s metabolic versatility while keeping its replication synchronized with that of the main chromosome. A major implication of our study is that the uni- and bidirectionally replicating chromids may represent two stages on the evolutionary trajectory from unidirectionally replicating plasmids to bidirectionally replicating chromosomes in bacteria. Further bioinformatic analyses predicted unidirectionally replicating chromids in several unrelated bacterial phyla, suggesting that evolution from unidirectionally to bidirectionally replicating replicons occurred multiple times in bacteria.
Collapse
|
11
|
Chatterjee S, Jha JK, Ciaccia P, Venkova T, Chattoraj DK. Interactions of replication initiator RctB with single- and double-stranded DNA in origin opening of Vibrio cholerae chromosome 2. Nucleic Acids Res 2020; 48:11016-11029. [PMID: 33035310 DOI: 10.1093/nar/gkaa826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Studies of bacterial chromosomes and plasmids indicate that their replication initiator proteins bind to origins of replication at many double-stranded sites and also at AT-rich regions where single-stranded DNA is exposed during origin opening. Single-strand binding apparently promotes origin opening by stabilizing an open structure, but how the initiator participates in this process and the contributions of the several binding sites remain unclear. Here, we show that the initiator protein of Vibrio cholerae specific to chromosome 2 (Chr2) also has single-strand binding activity in the AT-rich region of its origin. Binding is strand specific, depends on repeats of the sequence 5'ATCA and is greatly stabilized in vitro by specific double-stranded sites of the origin. The stability derives from the formation of ternary complexes of the initiator with the single- and double-stranded sites. An IHF site lies between these two kinds of sites in the Chr2 origin and an IHF-induced looping out of the intervening DNA mediates their interaction. Simultaneous binding to two kinds of sites in the origin appears to be a common mechanism by which bacterial replication initiators stabilize an open origin.
Collapse
Affiliation(s)
- Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Jyoti K Jha
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Peter Ciaccia
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Tatiana Venkova
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| |
Collapse
|
12
|
Sozhamannan S, Waldminghaus T. Exception to the exception rule: synthetic and naturally occurring single chromosome Vibrio cholerae. Environ Microbiol 2020; 22:4123-4132. [PMID: 32237026 DOI: 10.1111/1462-2920.15002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022]
Abstract
The genome of Vibrio cholerae, the etiological agent of cholera, is an exception to the single chromosome rule found in the vast majority of bacteria and has its genome partitioned between two unequally sized chromosomes. This unusual two-chromosome arrangement in V. cholerae has sparked considerable research interest since its discovery. It was demonstrated that the two chromosomes could be fused by deliberate genome engineering or forced to fuse spontaneously by blocking the replication of Chr2, the secondary chromosome. Recently, natural isolates of V. cholerae with chromosomal fusion have been found. Here, we summarize the pertinent findings on this exception to the exception rule and discuss the potential utility of single-chromosome V. cholerae to address fundamental questions on chromosome biology in general and DNA replication in particular.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, CBRND-Enabling Biotechnologies, 110 Thomas Johnson Drive, Frederick, MD, 21702, USA.,Logistics Management Institute, Tysons, VA, 22102, USA
| | - Torsten Waldminghaus
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
13
|
Bruhn M, Schindler D, Kemter FS, Wiley MR, Chase K, Koroleva GI, Palacios G, Sozhamannan S, Waldminghaus T. Functionality of Two Origins of Replication in Vibrio cholerae Strains With a Single Chromosome. Front Microbiol 2018; 9:2932. [PMID: 30559732 PMCID: PMC6284228 DOI: 10.3389/fmicb.2018.02932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
Chromosomal inheritance in bacteria usually entails bidirectional replication of a single chromosome from a single origin into two copies and subsequent partitioning of one copy each into daughter cells upon cell division. However, the human pathogen Vibrio cholerae and other Vibrionaceae harbor two chromosomes, a large Chr1 and a small Chr2. Chr1 and Chr2 have different origins, an oriC-type origin and a P1 plasmid-type origin, respectively, driving the replication of respective chromosomes. Recently, we described naturally occurring exceptions to the two-chromosome rule of Vibrionaceae: i.e., Chr1 and Chr2 fused single chromosome V. cholerae strains, NSCV1 and NSCV2, in which both origins of replication are present. Using NSCV1 and NSCV2, here we tested whether two types of origins of replication can function simultaneously on the same chromosome or one or the other origin is silenced. We found that in NSCV1, both origins are active whereas in NSCV2 ori2 is silenced despite the fact that it is functional in an isolated context. The ori2 activity appears to be primarily determined by the copy number of the triggering site, crtS, which in turn is determined by its location with respect to ori1 and ori2 on the fused chromosome.
Collapse
Affiliation(s)
- Matthias Bruhn
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Schindler
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Franziska S Kemter
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Michael R Wiley
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kitty Chase
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Galina I Koroleva
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, Frederick, MD, United States.,The Tauri Group, LLC, Alexandria, VA, United States
| | - Torsten Waldminghaus
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
14
|
de Lemos Martins F, Fournes F, Mazzuoli MV, Mazel D, Val ME. Vibrio cholerae chromosome 2 copy number is controlled by the methylation-independent binding of its monomeric initiator to the chromosome 1 crtS site. Nucleic Acids Res 2018; 46:10145-10156. [PMID: 30184118 PMCID: PMC6212839 DOI: 10.1093/nar/gky790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteria contain a primary chromosome and, frequently, either essential secondary chromosomes or dispensable megaplasmids of plasmid origin. Incoming plasmids are often poorly adapted to their hosts and their stabilization requires integration with the host's cellular mechanisms in a process termed domestication. All Vibrio, including pathogenic species, carry a domesticated secondary chromosome (Chr2) where replication is coordinated with that of the primary chromosome (Chr1). Chr2 replication is triggered by the replication of an intergenic sequence (crtS) located on Chr1. Yet, the molecular mechanisms by which crtS replication controls the initiation of Chr2 replication are still largely unknown. In this study, we show that crtS not only regulates the timing of Chr2 initiation but also controls Chr2 copy number. We observed and characterized the direct binding of the Chr2 initiator (RctB) on crtS. RctB binding to crtS is independent of its methylation state. RctB molecules, which naturally form dimers, preferentially bind to crtS as monomers, with DnaK/J protein chaperones shown to stimulate binding of additional RctB monomers on crtS. In this study, we addressed various hypothesis of how replication of crtS could trigger Chr2 replication and provide new insights into its mode of action.
Collapse
Affiliation(s)
- Francisco de Lemos Martins
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Florian Fournes
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Maria-Vittoria Mazzuoli
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Didier Mazel
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| |
Collapse
|
15
|
Fournes F, Val ME, Skovgaard O, Mazel D. Replicate Once Per Cell Cycle: Replication Control of Secondary Chromosomes. Front Microbiol 2018; 9:1833. [PMID: 30131796 PMCID: PMC6090056 DOI: 10.3389/fmicb.2018.01833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Faithful vertical transmission of genetic information, especially of essential core genes, is a prerequisite for bacterial survival. Hence, replication of all the replicons is tightly controlled to ensure that all daughter cells get the same genome copy as their mother cell. Essential core genes are very often carried by the main chromosome. However they can occasionally be found on secondary chromosomes, recently renamed chromids. Chromids have evolved from non-essential megaplasmids, and further acquired essential core genes and a genomic signature closed to that of the main chromosome. All chromids carry a plasmidic replication origin, belonging so far to either the iterons or repABC type. Based on these differences, two categories of chromids have been distinguished. In this review, we focus on the replication initiation controls of these two types of chromids. We show that the sophisticated mechanisms controlling their replication evolved from their plasmid counterparts to allow a timely controlled replication, occurring once per cell cycle.
Collapse
Affiliation(s)
- Florian Fournes
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
16
|
Ramachandran R, Ciaccia PN, Filsuf TA, Jha JK, Chattoraj DK. Chromosome 1 licenses chromosome 2 replication in Vibrio cholerae by doubling the crtS gene dosage. PLoS Genet 2018; 14:e1007426. [PMID: 29795553 PMCID: PMC5991422 DOI: 10.1371/journal.pgen.1007426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Initiation of chromosome replication in bacteria is precisely timed in the cell cycle. Bacteria that harbor multiple chromosomes face the additional challenge of orchestrating replication initiation of different chromosomes. In Vibrio cholerae, the smaller of its two chromosomes, Chr2, initiates replication after Chr1 such that both chromosomes terminate replication synchronously. The delay is due to the dependence of Chr2 initiation on the replication of a site, crtS, on Chr1. The mechanism by which replication of crtS allows Chr2 replication remains unclear. Here, we show that blocking Chr1 replication indeed blocks Chr2 replication, but providing an extra crtS copy in replication-blocked Chr1 permitted Chr2 replication. This demonstrates that unreplicated crtS copies have significant activity, and suggests that a role of replication is to double the copy number of the site that sufficiently increases its activity for licensing Chr2 replication. We further show that crtS activity promotes the Chr2-specific initiator function and that this activity is required in every cell cycle, as would be expected of a cell-cycle regulator. This study reveals how increase of gene dosage through replication can be utilized in a critical regulatory switch.
Collapse
Affiliation(s)
- Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter N. Ciaccia
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tara A. Filsuf
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jyoti K. Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Myka KK, McGlynn P, Ferguson GP. Insights into the initiation of chromosome II replication of the pressure-loving deep-sea bacterium Photobacterium profundum SS9. MICROBIOLOGY-SGM 2018; 164:920-933. [PMID: 29757128 DOI: 10.1099/mic.0.000663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
How DNA metabolism is adapted to survival of organisms such as the bacterium Photobacterium profundum SS9 at high pressure is unknown. Previously, a high pressure-sensitive P. profundum SS9 transposon mutant (FL31) was identified, with an insertion in a putative rctB gene. The Vibrio cholerae RctB protein is essential for replication initiation at the origin of chromosome II, oriCII. Using a plasmid-based system in E. coli we have identified the replication origin of chromosome II from P. profundum SS9 and have shown that the putative rctB gene, disrupted in FL31, is essential for oriCII function. Moreover, we found that a region corresponding to the V. cholerae oriCII incompatibility region (incII) exerts an inhibitory effect on P. profundum oriCII. The truncated rctB gene in FL31 confers insensitivity to incII inhibition, indicating that the C-terminus of RctB is important for the negative regulation of replication. The RctB proteins of V. cholerae and P. profundum are partially interchangeable, but full functionality is achieved only with the cognate origin. Our findings provide the first characterization of the replication origin of chromosome II in a deep-sea bacterium.
Collapse
Affiliation(s)
- Kamila K Myka
- Present address: Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter McGlynn
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,Present address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Gail P Ferguson
- School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
18
|
Kemter FS, Messerschmidt SJ, Schallopp N, Sobetzko P, Lang E, Bunk B, Spröer C, Teschler JK, Yildiz FH, Overmann J, Waldminghaus T. Synchronous termination of replication of the two chromosomes is an evolutionary selected feature in Vibrionaceae. PLoS Genet 2018; 14:e1007251. [PMID: 29505558 PMCID: PMC5854411 DOI: 10.1371/journal.pgen.1007251] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such that termination of chromosomal replication occurs in synchrony. We investigated these two models and revealed that the two chromosomes of various Vibrionaceae species terminate in synchrony while Chr2-initiation timing relative to Chr1 is variable. Moreover, the sequence and function of the Chr2-triggering crtS site recently discovered in V. cholerae were found to be conserved, explaining the observed timing mechanism. Our results suggest that it is beneficial for bacterial cells with multiple chromosomes to synchronize their replication termination, potentially to optimize chromosome related processes as dimer resolution or segregation.
Collapse
Affiliation(s)
- Franziska S. Kemter
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Sonja J. Messerschmidt
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Elke Lang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner Site Hannover–Braunschweig, Braunschweig, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Establishing a System for Testing Replication Inhibition of the Vibrio cholerae Secondary Chromosome in Escherichia coli. Antibiotics (Basel) 2017; 7:antibiotics7010003. [PMID: 29295515 PMCID: PMC5872114 DOI: 10.3390/antibiotics7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 12/29/2022] Open
Abstract
Regulators of DNA replication in bacteria are an attractive target for new antibiotics, as not only is replication essential for cell viability, but its underlying mechanisms also differ from those operating in eukaryotes. The genetic information of most bacteria is encoded on a single chromosome, but about 10% of species carry a split genome spanning multiple chromosomes. The best studied bacterium in this context is the human pathogen Vibrio cholerae, with a primary chromosome (Chr1) of 3 M bps, and a secondary one (Chr2) of about 1 M bps. Replication of Chr2 is under control of a unique mechanism, presenting a potential target in the development of V. cholerae-specific antibiotics. A common challenge in such endeavors is whether the effects of candidate chemicals can be focused on specific mechanisms, such as DNA replication. To test the specificity of antimicrobial substances independent of other features of the V. cholerae cell for the replication mechanism of the V. cholerae secondary chromosome, we establish the replication machinery in the heterologous E. coli system. We characterize an E. coli strain in which chromosomal replication is driven by the replication origin of V. cholerae Chr2. Surprisingly, the E. coli ori2 strain was not inhibited by vibrepin, previously found to inhibit ori2-based replication.
Collapse
|
20
|
diCenzo GC, Finan TM. The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiol Mol Biol Rev 2017; 81:e00019-17. [PMID: 28794225 PMCID: PMC5584315 DOI: 10.1128/mmbr.00019-17] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella, Vibrio, and Burkholderia. The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome. Int J Genomics 2017; 2017:8724304. [PMID: 28951866 PMCID: PMC5603330 DOI: 10.1155/2017/8724304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 11/18/2022] Open
Abstract
The genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition to large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as are recA and mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.
Collapse
|
22
|
Orlova N, Gerding M, Ivashkiv O, Olinares PDB, Chait BT, Waldor MK, Jeruzalmi D. The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 2017; 45:3724-3737. [PMID: 28031373 PMCID: PMC5397143 DOI: 10.1093/nar/gkw1288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/18/2016] [Indexed: 01/23/2023] Open
Abstract
The conserved DnaA-oriC system is used to initiate replication of primary chromosomes throughout the bacterial kingdom; however, bacteria with multipartite genomes evolved distinct systems to initiate replication of secondary chromosomes. In the cholera pathogen, Vibrio cholerae, and in related species, secondary chromosome replication requires the RctB initiator protein. Here, we show that RctB consists of four domains. The structure of its central two domains resembles that of several plasmid replication initiators. RctB contains at least three DNA binding winged-helix-turn-helix motifs, and mutations within any of these severely compromise biological activity. In the structure, RctB adopts a head-to-head dimeric configuration that likely reflects the arrangement in solution. Therefore, major structural reorganization likely accompanies complex formation on the head-to-tail array of binding sites in oriCII. Our findings support the hypothesis that the second Vibrionaceae chromosome arose from an ancestral plasmid, and that RctB may have evolved additional regulatory features.
Collapse
Affiliation(s)
- Natalia Orlova
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA
| | - Matthew Gerding
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Olha Ivashkiv
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
| | - Paul Dominic B Olinares
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, NY 10021, USA
| | - Brian T Chait
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, NY 10021, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA.,Ph.D. Program in Biology, The Graduate Center of the City University of New York, NY 10016, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, NY 10016, USA
| |
Collapse
|
23
|
Jha JK, Li M, Ghirlando R, Miller Jenkins LM, Wlodawer A, Chattoraj D. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2. mBio 2017; 8:e00427-17. [PMID: 28420739 PMCID: PMC5395669 DOI: 10.1128/mbio.00427-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in rctB that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid-the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication of Vibrio cholerae Chr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that promotes initiation by reducing the initiator's propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mi Li
- Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland, USA
| | | | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA
| | - Dhruba Chattoraj
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Control of bacterial chromosome replication by non-coding regions outside the origin. Curr Genet 2016; 63:607-611. [PMID: 27942832 DOI: 10.1007/s00294-016-0671-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Chromosome replication in Eubacteria is initiated by initiator protein(s) binding to specific sites within the replication origin, oriC. Recently, initiator protein binding to chromosomal regions outside the origin has attracted renewed attention; as such binding sites contribute to control the frequency of initiations. These outside-oriC binding sites function in several different ways: by steric hindrances of replication fork assembly, by titration of initiator proteins away from the origin, by performing a chaperone-like activity for inactivation- or activation of initiator proteins or by mediating crosstalk between chromosomes. Here, we discuss initiator binding to outside-oriC sites in a broad range of different taxonomic groups, to highlight the significance of such regions for regulation of bacterial chromosome replication. For Escherichia coli, it was recently shown that the genomic positions of regulatory elements are important for bacterial fitness, which, as we discuss, could be true for several other organisms.
Collapse
|
25
|
Random versus Cell Cycle-Regulated Replication Initiation in Bacteria: Insights from Studying Vibrio cholerae Chromosome 2. Microbiol Mol Biol Rev 2016; 81:81/1/e00033-16. [PMID: 27903655 DOI: 10.1128/mmbr.00033-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chromosomes initiate replication at a fixed time in the cell cycle, whereas there is generally no particular time for plasmid replication initiation or chromosomal replication initiation from integrated plasmids. In bacteria with divided genomes, the replication system of one of the chromosomes typically resembles that of bacteria with undivided genomes, whereas the remaining chromosomes have plasmid-like replication systems. For example, in Vibrio cholerae, a bacterium with two chromosomes (chromosome 1 [Chr1] and Chr2), the Chr1 system resembles that of the Escherichia coli chromosome, and the Chr2 system resembles that of iteron-based plasmids. However, Chr2 still initiates replication at a fixed time in the cell cycle and thus offers an opportunity to understand the molecular basis for the difference between random and cell cycle-regulated modes of replication. Here we review studies of replication control in Chr2 and compare it to those of plasmids and chromosomes. We argue that although the Chr2 control mechanisms in many ways are reminiscent of those of plasmids, they also appear to combine more regulatory features than are found on a typical plasmid, including some that are more typical of chromosomes. One of the regulatory mechanisms is especially novel, the coordinated timing of replication initiation of Chr1 and Chr2, providing the first example of communication between chromosomes for replication initiation.
Collapse
|
26
|
Orderly Replication and Segregation of the Four Replicons of Burkholderia cenocepacia J2315. PLoS Genet 2016; 12:e1006172. [PMID: 27428258 PMCID: PMC4948915 DOI: 10.1371/journal.pgen.1006172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of the cell cycle. Unlike higher organisms, bacteria typically carry their genetic information on a single chromosome. But in a few bacterial families the genome includes one to three additional chromosome-like DNA molecules. Because these families are rich in pathogenic and environmentally versatile species, it is important to understand how their split genomes evolved and how their maintenance is managed without confusion. We find that mitotic segregation (partition) of all three chromosomes of the cystic fibrosis type strain, Burkholderia cenocepacia J2315, proceeds from mid-cell to cell quarter positions, but that it occurs in a sequential manner, from largest chromosome to smallest. Positioning of each chromosome is specified solely by its own partition proteins. Nevertheless, the partition system of the largest chromosome appears also to play a global role in the cell cycle, by modulating the timing of initiation of replication. In addition, disrupting the partition systems of all three chromosomes induced specific cell abnormalities. Hence, although such bacteria are governed mainly by the largest, housekeeping chromosome, all the Par systems have insinuated themselves into cell cycle regulation to become indispensable for normal growth. Exploration of the underlying mechanisms should allow us to understand their full importance to bacterial life.
Collapse
|
27
|
Val ME, Marbouty M, de Lemos Martins F, Kennedy SP, Kemble H, Bland MJ, Possoz C, Koszul R, Skovgaard O, Mazel D. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. SCIENCE ADVANCES 2016; 2:e1501914. [PMID: 27152358 PMCID: PMC4846446 DOI: 10.1126/sciadv.1501914] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 05/04/2023]
Abstract
Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication-mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria.
Collapse
Affiliation(s)
- Marie-Eve Val
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Martial Marbouty
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Francisco de Lemos Martins
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | | | - Harry Kemble
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Michael J. Bland
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Christophe Possoz
- Department of Genome Biology, Institute of Integrative Biology of the Cell (I2BC), Paris-Sud University, CEA, CNRS, Gif-sur-Yvette 91190, France
| | - Romain Koszul
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, Roskilde DK-4000, Denmark
- Corresponding author. E-mail: (D.M.); (O.S.)
| | - Didier Mazel
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
- Corresponding author. E-mail: (D.M.); (O.S.)
| |
Collapse
|
28
|
Val ME, Soler-Bistué A, Bland MJ, Mazel D. Management of multipartite genomes: the Vibrio cholerae model. Curr Opin Microbiol 2015; 22:120-6. [PMID: 25460805 DOI: 10.1016/j.mib.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
A minority of bacterial species has been found to carry a genome divided among several chromosomes. Among these, all Vibrio species harbor a genome split into two chromosomes of uneven size, with distinctive replication origins whose replication firing involves common and specific factors. Most of our current knowledge on replication and segregation in multi-chromosome bacteria has come from the study of Vibrio cholerae, which is now the model organism for this field. It has been firmly established that replication of the two V. cholerae chromosomes is temporally regulated and coupled to the cell cycle, but the mediators of these processes are as yet mostly unknown. The two chromosomes are also organized along different patterns within the cell and occupy different subcellular domains. The selective advantages provided by this partitioning into two replicons are still unclear and are a key motivation for these studies.
Collapse
Affiliation(s)
- Marie-Eve Val
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | | | | | | |
Collapse
|
29
|
Molecular Dissection of the Essential Features of the Origin of Replication of the Second Vibrio cholerae Chromosome. mBio 2015. [PMID: 26220967 PMCID: PMC4551981 DOI: 10.1128/mbio.00973-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vibrionaceae family members are interesting models for studying DNA replication initiation, as they contain two circular chromosomes. Chromosome II (chrII) replication is governed by two evolutionarily unique yet highly conserved elements, the origin DNA sequence oriCII and the initiator protein RctB. The minimum functional region of oriCII, oriCII-min, contains multiple elements that are bound by RctB in vitro, but little is known about the specific requirements for individual elements during oriCII initiation. We utilized undirected and site-specific mutagenesis to investigate the functionality of mutant forms of oriCII-min and assessed binding to various mutant forms by RctB. Our analyses showed that deletions, point mutations, and changes in RctB target site spacing or methylation all impaired oriCII-min-based replication. RctB displayed a reduced affinity for most of the low-efficacy origins tested, although its characteristic cooperative binding was generally maintained. Mutations that removed or altered the relative positions of origin components other than RctB binding sites (e.g., AT-rich sequence, DnaA target site) also abolished replicative capacity. Comprehensive mutagenesis and deep-sequencing-based screening (OriSeq) allowed the identification of a previously uncharacterized methylated domain in oriCII that is required for origin function. Together, our results reveal the remarkable evolutionary honing of oriCII and provide new insight into the complex interplay between RctB and oriCII. The genome of the enteric pathogen Vibrio cholerae consists of two chromosomes. While the chromosome I replication origin and its cognate replication initiator protein resemble those of Escherichia coli, the factors responsible for chromosome II replication initiation display no similarity to any other known initiation systems. Here, to enhance our understanding of how this DNA sequence, oriCII, and its initiator protein, RctB, function, we used both targeted mutagenesis and a new random-mutagenesis approach (OriSeq) to finely map the oriCII structural features and sequences required for RctB-mediated DNA replication. Collectively, our findings reveal the extraordinary evolutionary honing of the architecture and motifs that constitute oriCII and reveal a new role for methylation in oriCII-based replication. Finally, our findings suggest that the OriSeq approach is likely to be widely applicable for defining critical bases in cis-acting sequences.
Collapse
|
30
|
Messerschmidt SJ, Kemter FS, Schindler D, Waldminghaus T. Synthetic secondary chromosomes in Escherichia coli based on the replication origin of chromosome II in Vibrio cholerae. Biotechnol J 2014; 10:302-14. [PMID: 25359671 DOI: 10.1002/biot.201400031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 01/25/2023]
Abstract
Recent developments in DNA-assembly methods make the synthesis of synthetic chromosomes a reachable goal. However, the redesign of primary chromosomes bears high risks and still requires enormous resources. An alternative approach is the addition of synthetic chromosomes to the cell. The natural secondary chromosome of Vibrio cholerae could potentially serve as template for a synthetic secondary chromosome in Escherichia coli. To test this assumption we constructed a replicon named synVicII based on the replication module of V. cholerae chromosome II (oriII). A new assay for the assessment of replicon stability was developed based on flow-cytometric analysis of unstable GFP variants. Application of this assay to cells carrying synVicII revealed an improved stability compared to a secondary replicon based on E. coli oriC. Cell cycle analysis and determination of cellular copy numbers of synVicII indicate that replication timing of the synthetic replicon in E. coli is comparable to the natural chromosome II (ChrII) in V. cholerae. The presented synthetic biology work provides the basis to use secondary chromosomes in E. coli to answer basic research questions as well as for several biotechnological applications.
Collapse
Affiliation(s)
- Sonja J Messerschmidt
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
31
|
Jha JK, Ghirlando R, Chattoraj DK. Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2. Nucleic Acids Res 2014; 42:10538-49. [PMID: 25159619 PMCID: PMC4176361 DOI: 10.1093/nar/gku771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RctB, the initiator of replication of Vibrio cholerae chromosome 2 (chr2), binds to the origin of replication to specific 12-mer sites both as a monomer and a dimer. Binding to 12-mers is essential for initiation. The monomers also bind to a second kind of site, 39-mers, which inhibits initiation. Mutations in rctB that reduce dimer binding increase monomer binding to 12-mers but decrease monomer binding to 39-mers. The mechanism of this paradoxical binding behavior has been unclear. Using deletion and alanine substitution mutants of RctB, we have now localized to a 71 amino acid region residues important for binding to the two kinds of DNA sites and for RctB dimerization. We find that the dimerization domain overlaps with both the DNA binding domains, explaining how changes in the dimerization domain can alter both kinds of DNA binding. Moreover, dimerization-defective mutants could be initiation-defective without apparent DNA binding defect. These results suggest that dimerization might be important for initiation beyond its role in controlling DNA binding. The finding that determinants of crucial initiator functions reside in a small region makes the region an attractive target for anti-V. cholerae drugs.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Baek JH, Chattoraj DK. Chromosome I controls chromosome II replication in Vibrio cholerae. PLoS Genet 2014; 10:e1004184. [PMID: 24586205 PMCID: PMC3937223 DOI: 10.1371/journal.pgen.1004184] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Control of chromosome replication involves a common set of regulators in eukaryotes, whereas bacteria with divided genomes use chromosome-specific regulators. How bacterial chromosomes might communicate for replication is not known. In Vibrio cholerae, which has two chromosomes (chrI and chrII), replication initiation is controlled by DnaA in chrI and by RctB in chrII. DnaA has binding sites at the chrI origin of replication as well as outside the origin. RctB likewise binds at the chrII origin and, as shown here, to external sites. The binding to the external sites in chrII inhibits chrII replication. A new kind of site was found in chrI that enhances chrII replication. Consistent with its enhancing activity, the chrI site increased RctB binding to those chrII origin sites that stimulate replication and decreased binding to other sites that inhibit replication. The differential effect on binding suggests that the new site remodels RctB. The chaperone-like activity of the site is supported by the finding that it could relieve the dependence of chrII replication on chaperone proteins DnaJ and DnaK. The presence of a site in chrI that specifically controls chrII replication suggests a mechanism for communication between the two chromosomes for replication. Genome maintenance in dividing cells requires that the chromosomes replicate reliably once per cell cycle, and that this replication be timed to allow for proper segregation of the daughter chromosomes before cell division. In organisms with divided genomes, eukaryotes and a significant class of bacteria, the chromosomes must avoid interference with one another. They exhibit disciplined chromosome choreography, involving several regulators and control circuits that, even in the simplest organisms, are poorly understood. Here we examine the regulatory processes involved in maintaining the two chromosomes of the well-studied and medically important pathogen Vibrio cholerae. We provide evidence that a site in chromosome I can control the frequency and timing of replication of chromosome II. The mechanism involves a DNA-mediated remodeling of the chromosome II-specific initiator of replication by the chromosome I site. The site enhances the activity of the protein by differentially affecting its affinity for inhibitory and stimulatory sites on chromosome II. Our results provide the groundwork for determining whether coordination of replication might be a conserved feature that maintains chromosomes in proliferating cells of higher organisms.
Collapse
Affiliation(s)
- Jong Hwan Baek
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Val ME, Kennedy SP, Soler-Bistué AJ, Barbe V, Bouchier C, Ducos-Galand M, Skovgaard O, Mazel D. Fuse or die: how to survive the loss of Dam inVibrio cholerae. Mol Microbiol 2014; 91:665-78. [DOI: 10.1111/mmi.12483] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Marie-Eve Val
- Department of Genomes and Genetics; Institut Pasteur; F-75015 Paris France
- CNRS; UMR3525 F-75015 Paris France
| | | | - Alfonso J. Soler-Bistué
- Department of Genomes and Genetics; Institut Pasteur; F-75015 Paris France
- CNRS; UMR3525 F-75015 Paris France
| | | | | | - Magaly Ducos-Galand
- Department of Genomes and Genetics; Institut Pasteur; F-75015 Paris France
- CNRS; UMR3525 F-75015 Paris France
| | - Ole Skovgaard
- Department of Science, Systems and Models; Roskilde University; DK-4000 Roskilde Denmark
| | - Didier Mazel
- Department of Genomes and Genetics; Institut Pasteur; F-75015 Paris France
- CNRS; UMR3525 F-75015 Paris France
| |
Collapse
|
34
|
Venkova-Canova T, Baek JH, FitzGerald PC, Blokesch M, Chattoraj DK. Evidence for two different regulatory mechanisms linking replication and segregation of vibrio cholerae chromosome II. PLoS Genet 2013; 9:e1003579. [PMID: 23818869 PMCID: PMC3688505 DOI: 10.1371/journal.pgen.1003579] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/06/2013] [Indexed: 11/27/2022] Open
Abstract
Understanding the mechanisms that coordinate replication initiation with subsequent segregation of chromosomes is an important biological problem. Here we report two replication-control mechanisms mediated by a chromosome segregation protein, ParB2, encoded by chromosome II of the model multichromosome bacterium, Vibrio cholerae. We find by the ChIP-chip assay that ParB2, a centromere binding protein, spreads beyond the centromere and covers a replication inhibitory site (a 39-mer). Unexpectedly, without nucleation at the centromere, ParB2 could also bind directly to a related 39-mer. The 39-mers are the strongest inhibitors of chromosome II replication and they mediate inhibition by binding the replication initiator protein. ParB2 thus appears to promote replication by out-competing initiator binding to the 39-mers using two mechanisms: spreading into one and direct binding to the other. We suggest that both these are novel mechanisms to coordinate replication initiation with segregation of chromosomes. Replication and segregation are the two main processes that maintain chromosomes in growing cells. In eukaryotes, the two processes are restricted to distinct phases of the cell cycle. In bacteria, segregation follows replication initiation with a modest lag. Influences of one process on the other have been postulated. The act of replication has been suggested to provide a motive force in chromosome segregation. Moreover, segregation proteins (ParA) have been found to interact with and control the replication initiator, DnaA. Here we show that in V. cholerae chromosome II, which is believed to have originated from a plasmid, a centromere binding protein (ParB) could control replication by two distinct mechanisms: spreading from a centromeric site into the replication-control region, and direct binding to the primary replication-control site, which has limited homology to the centromeric site. These studies establish that Par proteins can influence replication by at least three mechanisms. Homologous Par proteins participate in plasmid segregation but they are not known to influence plasmid replication. The expanded role of Par proteins appears likely to have been warranted to coordinate chromosomal replication and segregation with the cell cycle, which appears less of an issue in plasmid maintenance.
Collapse
Affiliation(s)
- Tatiana Venkova-Canova
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jong Hwan Baek
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter C. FitzGerald
- Genome Analysis Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melanie Blokesch
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
In dividing cells, chromosome duplication once per generation must be coordinated with faithful segregation of newly replicated chromosomes and with cell growth and division. Many of the mechanistic details of bacterial replication elongation are well established. However, an understanding of the complexities of how replication initiation is controlled and coordinated with other cellular processes is emerging only slowly. In contrast to eukaryotes, in which replication and segregation are separate in time, the segregation of most newly replicated bacterial genetic loci occurs sequentially soon after replication. We compare the strategies used by chromosomes and plasmids to ensure their accurate duplication and segregation and discuss how these processes are coordinated spatially and temporally with growth and cell division. We also describe what is known about the three conserved families of ATP-binding proteins that contribute to chromosome segregation and discuss their inter-relationships in a range of disparate bacteria.
Collapse
|
36
|
Kadoya R, Chattoraj DK. Insensitivity of chromosome I and the cell cycle to blockage of replication and segregation of Vibrio cholerae chromosome II. mBio 2012; 3:e00067-12. [PMID: 22570276 PMCID: PMC3350373 DOI: 10.1128/mbio.00067-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Vibrio cholerae has two chromosomes (chrI and chrII) whose replication and segregation are under different genetic controls. The region covering the replication origin of chrI resembles that of the Escherichia coli chromosome, and both origins are under control of the highly conserved initiator, DnaA. The origin region of chrII resembles that of plasmids that have iterated initiator-binding sites (iterons) and is under control of the chrII-specific initiator, RctB. Both chrI and chrII encode chromosome-specific orthologs of plasmid partitioning proteins, ParA and ParB. Here, we have interfered with chrII replication, segregation, or both, using extra copies of sites that titrate RctB or ParB. Under these conditions, replication and segregation of chrI remain unaffected for at least 1 cell cycle. In this respect, chrI behaves similarly to the E. coli chromosome when plasmid maintenance is disturbed in the same cell. Apparently, no checkpoint exists to block cell division before the crippled chromosome is lost by a failure to replicate or to segregate. Whether blocking chrI replication can affect chrII replication remains to be tested. IMPORTANCE Chromosome replication, chromosome segregation, and cell division are the three main events of the cell cycle. They occur in an orderly fashion once per cell cycle. How the sequence of events is controlled is only beginning to be answered in bacteria. The finding of bacteria that possess more than one chromosome raises the important question: how are different chromosomes coordinated in their replication and segregation? It appears that in the evolution of the two-chromosome genome of V. cholerae, either the secondary chromosome adapted to the main chromosome to ensure its maintenance or it is maintained independently, as are bacterial plasmids. An understanding of chromosome coordination is expected to bear on the evolutionary process of chromosome acquisition and on the efficacy of possible strategies for selective elimination of a pathogen by targeting a specific chromosome.
Collapse
Affiliation(s)
- Ryosuke Kadoya
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
37
|
Koch B, Ma X, Løbner-Olesen A. rctB mutations that increase copy number of Vibrio cholerae oriCII in Escherichia coli. Plasmid 2012; 68:159-69. [PMID: 22487081 DOI: 10.1016/j.plasmid.2012.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/21/2012] [Accepted: 03/25/2012] [Indexed: 11/28/2022]
Abstract
RctB serves as the initiator protein for replication from oriCII, the origin of replication of Vibrio cholerae chromosome II. RctB is conserved between members of Vibrionaceae but shows no homology to known replication initiator proteins and has no recognizable sequence motifs. We used an oriCII based minichromosome to isolate copy-up mutants in Escherichia coli. Three point mutations rctB(R269H), rctB(L439H) and rctB(Y381N) and one IS10 insertion in the 3'-end of the rctB gene were obtained. We determined the maximal C-terminal deletion that still gave rise to a functional RctB protein to be 165 amino acids. All rctB mutations led to decreased RctB-RctB interaction indicating that the monomer is the active form of the initiator protein. All mutations also showed various defects in rctB autoregulation. Loss of the C-terminal part of RctB led to overinitiation by reducing binding of RctB to both rctA and inc regions that normally serve to limit initiation from oriCII. Overproduction of RctB(R269H) and RctB(L439H) led to a rapid increase in oriCII copy number. This suggests that the initiator function of the two mutant proteins is increased relative to the wild-type.
Collapse
Affiliation(s)
- Birgit Koch
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
38
|
Jha JK, Demarre G, Venkova-Canova T, Chattoraj DK. Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer. Nucleic Acids Res 2012; 40:6026-38. [PMID: 22447451 PMCID: PMC3401445 DOI: 10.1093/nar/gks260] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The origin region of Vibrio cholerae chromosome II (chrII) resembles plasmid origins that have repeated initiator-binding sites (iterons). Iterons are essential for initiation as well as preventing over-initiation of plasmid replication. In chrII, iterons are also essential for initiation but over-initiation is prevented by sites called 39-mers. Both iterons and 39-mers are binding sites of the chrII specific initiator, RctB. Here, we have isolated RctB mutants that permit over-initiation in the presence of 39-mers. Characterization of two of the mutants showed that both are defective in 39-mer binding, which helps to explain their over-initiation phenotype. In vitro, RctB bound to 39-mers as monomers, and to iterons as both monomers and dimers. Monomer binding to iterons increased in both the mutants, suggesting that monomers are likely to be the initiators. We suggest that dimers might be competitive inhibitors of monomer binding to iterons and thus help control replication negatively. ChrII replication was found to be dependent on chaperones DnaJ and DnaK in vivo. The chaperones preferentially improved dimer binding in vitro, further suggesting the importance of dimer binding in the control of chrII replication.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, NCI, 37 Convent Drive, NIH, Bethesda, MD 20892-4260, USA
| | | | | | | |
Collapse
|
39
|
Jha JK, Baek JH, Venkova-Canova T, Chattoraj DK. Chromosome dynamics in multichromosome bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:826-9. [PMID: 22306663 DOI: 10.1016/j.bbagrm.2012.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 12/23/2022]
Abstract
On the basis of limited information, bacteria were once assumed to have no more than one chromosome. In the era of genomics, it has become clear that some, like eukaryotes, have more than one chromosome. Multichromosome bacteria provide opportunities to investigate how split genomes emerged, whether the individual chromosomes communicate to coordinate their replication and segregation, and what selective advantages split genomes might provide. Our current knowledge of these topics comes mostly from studies in Vibrio cholerae, which has two chromosomes, chr1 and chr2. Chr1 carries out most of the house-keeping functions and is considered the main chromosome, whereas chr2 appears to have originated from a plasmid and has acquired genes of mostly unknown origin and function. Nevertheless, unlike plasmids, chr2 replicates once and only once per cell cycle, like a bona fide chromosome. The two chromosomes replicate and segregate using separate programs, unlike eukaryotic chromosomes. They terminate replication synchronously, suggesting that there might be communication between them. Replication of the chromosomes is affected by segregation genes but in a chromosome specific fashion, a new development in the field of DNA replication control. The split genome allows genome duplication to complete in less time and with fewer replication forks, which could be beneficial for genome maintenance during rapid growth, which is the norm for V. cholerae in broth cultures and in the human host. In the latter, the expression of chr2 genes increases preferentially. Studies of chromosome maintenance in multichromosomal bacteria, although in their infancy, are already broadening our view of chromosome biology. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Molecular Biology and Biochemistry, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
40
|
A 29-mer site regulates transcription of the initiator gene as well as function of the replication origin of Vibrio cholerae chromosome II. Plasmid 2012; 67:102-10. [PMID: 22248922 DOI: 10.1016/j.plasmid.2011.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 12/23/2011] [Accepted: 12/24/2011] [Indexed: 11/20/2022]
Abstract
The region responsible for replication of Vibrio cholerae chromosome II (chrII) resembles those of plasmids that have repeated initiator binding sites (iterons) and an autorepressed initiator gene. ChrII has additional features: Its iterons require full methylation for initiator (RctB) binding, which makes them inactive for a part of the cell cycle when they are hemi-methylated. RctB also binds to a second kind of site, called 39-mers, in a methylation independent manner. This binding is inhibitory to chrII replication. The site that RctB uses for autorepression has not been identified. Here we show that a 29-mer sequence, similar to the 39-mers, serves as that site, as we find that it binds RctB in vitro and suffices to repress the rctB promoter in vivo. The site is not subject to methylation and is likely to be active throughout the cell cycle. The 29-mer, like the 39-mers, could inhibit RctB-dependent mini-chrII replication in Escherichia coli, possibly by coupling with iterons via RctB bridges, as was seen in vitro. The 29-mer thus appears to play a dual role in regulating chrII replication: one independent of the cell cycle, the other dependent upon iteron methylation, hence responsive to the cell cycle.
Collapse
|
41
|
ParA ATPases can move and position DNA and subcellular structures. Curr Opin Microbiol 2011; 14:712-8. [PMID: 21963112 DOI: 10.1016/j.mib.2011.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Prokaryotic chromosomes and plasmids can be actively segregated by partitioning (par) loci. The common ParA-encoding par loci segregate plasmids by arranging them in regular arrays over the nucleoid by an unknown mechanism. Recent observations indicate that ParA moves plasmids and chromosomes by a pulling mechanism. Even though ParAs form filaments in vitro it is not known whether similar structures are present in vivo. ParA of P1 forms filaments in vitro at very high concentrations only and filament-like structures have not been observed in vivo. Consequently, a 'diffusion-ratchet' mechanism was suggested to explain plasmid movement by ParA of P1. We compare this mechanism with our previously proposed filament model for plasmid movement by ParA. Remarkably, ParA homologues have been discovered to arrange subcellular structures such as carboxysomes and chemotaxis sensory receptors in a regular manner very similar to those of the plasmid arrays.
Collapse
|
42
|
Mierzejewska J, Jagura-Burdzy G. Prokaryotic ParA-ParB-parS system links bacterial chromosome segregation with the cell cycle. Plasmid 2011; 67:1-14. [PMID: 21924286 DOI: 10.1016/j.plasmid.2011.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/17/2022]
Abstract
While the essential role of episomal par loci in plasmid DNA partitioning has long been appreciated, the function of chromosomally encoded par loci is less clear. The chromosomal parA-parB genes are conserved throughout the bacterial kingdom and encode proteins homologous to those of the plasmidic Type I active partitioning systems. The third conserved element, the centromere-like sequence called parS, occurs in several copies in the chromosome. Recent studies show that the ParA-ParB-parS system is a key player of a mitosis-like process ensuring proper intracellular localization of certain chromosomal regions such as oriC domain and their active and directed segregation. Moreover, the chromosomal par systems link chromosome segregation with initiation of DNA replication and the cell cycle.
Collapse
Affiliation(s)
- Jolanta Mierzejewska
- The Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | | |
Collapse
|