1
|
Sosnick TR, Baxa MC. Collapse and Protein Folding: Should We Be Surprised That Biothermodynamics Works So Well? Annu Rev Biophys 2025; 54:17-34. [PMID: 39689264 DOI: 10.1146/annurev-biophys-080124-123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions. Despite some variability in the degree of collapse and structure in the DSE, stability measurements are remarkably consistent between two standard methods, calorimetry and chemical denaturation, as well as with hydrogen-deuterium exchange. This robustness is due in part to the DSEs obtained with different perturbations being thermodynamically equivalent and hence able to serve as a common reference state. An examination of the properties of the DSE points to it as being a highly expanded ensemble with minimal amounts of stable hydrogen bonded structure. These two features are likely to be critical in the broad and successful application of thermodynamics to protein folding. Our review concludes with a discussion of the impact of these findings on folding mechanisms and pathways.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Institute for Biophysical Dynamics and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; ,
| | - Michael C Baxa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; ,
| |
Collapse
|
2
|
Breimann S, Kamp F, Steiner H, Frishman D. AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning. J Mol Biol 2024; 436:168717. [PMID: 39053689 DOI: 10.1016/j.jmb.2024.168717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations. AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block to link amino acid properties with protein function and dysfunctions as well as aid informed decision-making in mutation analysis or protein drug design.
Collapse
Affiliation(s)
- Stephan Breimann
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany; Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Frits Kamp
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany
| | - Harald Steiner
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Rasool M, Pushparaj PN, Haque A, Shorbaji AM, Mira LS, Bakhashab S, Alama MN, Farooq M, Karim S, Larsen LA. Discovery of a novel mutation F184S (c.551T>C) in GATA4 gene causing congenital heart disease in a consanguineous Saudi family. Heliyon 2024; 10:e37177. [PMID: 39286212 PMCID: PMC11403501 DOI: 10.1016/j.heliyon.2024.e37177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Background & aim Congenital heart disease (CHD) is the most common cause of non-infectious deaths in infants worldwide. However, the molecular mechanisms underlying CHD remain unclear. Approximately 30 % of the causes are believed to be genetic mutations and chromosomal abnormalities. In this study, we aimed to identify the genetic causes of CHD in consanguineous families. Methods Fourth-generation pedigrees with CHD were recruited. The main cardiac features of the patient included absence of the right pulmonary artery and a large dilated left pulmonary artery. To determine the underlying genetic cause, whole-exome sequencing was performed and subsequently confirmed using Sanger sequencing and different online databases to study the pathogenesis of the identified gene mutation. An in-silico homology model was created using the Alphafold homology model structure of GATA4 (AF-P43694-F1). The missense3D online program was used to evaluate the structural alterations. Results We identified a deleterious mutation c.551T > C (p.Phe184Ser) in GATA4. GATA4 is a highly conserved zinc-finger transcription factor, and its continuous expression is essential for cardiogenesis during embryogenesis. The in-silico model suggested a compromised binding efficiency with other proteins. Several variant interpretation algorithms indicated that the F184S missense variant in GATA4 is damaging, whereas HOPE analysis indicated the functional impairment of DNA binding of transcription factors and zinc-ion binding activities of GATA4. Conclusion The variant identified in GATA4 appears to cause recessive CHD in the family. In silico analysis suggested that this variant was damaging and caused multiple structural and functional aberrations. This study may support prenatal screening of the fetus in this family to prevent diseases in new generations.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Center, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Mohammed Shorbaji
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loubna Siraj Mira
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Nabil Alama
- Department of Cardiology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Muhammad Farooq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Zhao G, Richaud AD, Williamson RT, Feig M, Roche SP. De Novo Synthesis and Structural Elucidation of CDR-H3 Loop Mimics. ACS Chem Biol 2024; 19:1583-1592. [PMID: 38916527 PMCID: PMC11299430 DOI: 10.1021/acschembio.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The binding affinity of antibodies to specific antigens stems from a remarkably broad repertoire of hypervariable loops known as complementarity-determining regions (CDRs). While recognizing the pivotal role of the heavy-chain 3 CDRs (CDR-H3s) in maximizing antibody-antigen affinity and specificity, the key structural determinants responsible for their adaptability to diverse loop sequences, lengths, and noncanonical structures are hitherto unknown. To address this question, we achieved a de novo synthesis of bulged CDR-H3 mimics excised from their full antibody context. CD and NMR data revealed that these stable standalone β-hairpin scaffolds are well-folded and retain many of the native bulge CDR-H3 features in water. In particular, the tryptophan residue, highly conserved across CDR-H3 sequences, was found to extend the kinked base of these β-bulges through a combination of stabilizing intramolecular hydrogen bond and CH/π interaction. The structural ensemble consistent with our NMR observations exposed the dynamic nature of residues at the base of the loop, suggesting that β-bulges act as molecular hinges connecting the rigid stem to the more flexible loops of CDR-H3s. We anticipate that this deeper structural understanding of CDR-H3s will lay the foundation to inform the design of antibody drugs broadly and engineer novel CDR-H3 peptide scaffolds as therapeutics.
Collapse
Affiliation(s)
- Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Alexis D. Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - R. Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Stéphane P. Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| |
Collapse
|
5
|
Dong X, Wu S, Rao Z, Xiao Y, Long Y, Xie Z. Insight into the High-Efficiency Benzo(a)pyrene Degradation Ability of Pseudomonas benzopyrenica BaP3 and Its Application in the Complete Bioremediation of Benzo(a)pyrene. Int J Mol Sci 2023; 24:15323. [PMID: 37895002 PMCID: PMC10607497 DOI: 10.3390/ijms242015323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common carcinogens. Benzo(a)pyrene is one of the most difficult high-molecular-weight (HMW) PAHs to remove. Biodegradation has become an ideal method to eliminate PAH pollutants from the environment. The existing research is mostly limited to low-molecular-weight PAHs; there is little understanding of HMW PAHs, particularly benzo(a)pyrene. Research into the biodegradation of HMW PAHs contributes to the development of microbial metabolic mechanisms and also provides new systems for environmental treatments. Pseudomonas benzopyrenica BaP3 is a highly efficient benzo(a)pyrene-degrading strain that is isolated from soil samples, but its mechanism of degradation remains unknown. In this study, we aimed to clarify the high degradation efficiency mechanism of BaP3. The genes encoding Rhd1 and Rhd2 in strain BaP3 were characterized, and the results revealed that rhd1 was the critical factor for high degradation efficiency. Molecular docking and enzyme activity determinations confirmed this conclusion. A recombinant strain that could completely mineralize benzo(a)pyrene was also proposed for the first time. We explained the mechanism of the high-efficiency benzo(a)pyrene degradation ability of BaP3 to improve understanding of the degradation mechanism of highly toxic PAHs and to provide new solutions to practical applications via synthetic biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (X.D.); (S.W.); (Z.R.); (Y.X.); (Y.L.)
| |
Collapse
|
6
|
Jin J, Shi Y, Zhang B, Wan D, Zhang Q. An integrated method for studying the biodegradation of benzo[a]pyrene by Citrobacter sp. HJS-1 and interaction mechanism based on the structural model of the initial dioxygenase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85558-85568. [PMID: 37389752 DOI: 10.1007/s11356-023-28505-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
A bacterial strain Citrobacter sp. HJS-1 was discovered from the sludge in a drainage canal of a coal mine. Firstly, its biodegradation capacity for benzo[a]pyrene (BaP) was detected under different concentrations. The results proved that the strain possessed excellent biodegradation capacity for BaP with high-efficiency degradation rates ranging from 78.9 to 86.8%. The highest degradation rate was observed in the low-concentration sample, and the high-concentration BaP had a slight influence on the biodegradation capacity due to the potential toxicity of BaP and its oxygen-containing derivatives. Meanwhile, the degradation test for the other five aromatic hydrocarbons (2- to 4-ring) proved that the strain had a comprehensive degradation potential. To clarify the biodegradation mechanism of BaP, a dioxygenase structure was constructed by homology modeling. Then, the interactions between dioxygenase and BaP were researched by molecular simulation. Combined with the identification of the vital BaP-cis-7,8-dihydrodiol intermediate and the interaction analysis, the initial oxidation mode and the binding site of BaP were revealed in the dioxygenase. Taken together, this study has offered a way to understand the biodegradation process of BaP and its interaction mechanism based on experimental and theoretical analysis.
Collapse
Affiliation(s)
- Jingnan Jin
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, No. 100 Lianhua Street, High-tech Industrial Development District, Zhengzhou, 450001, Henan, China.
| | - Yahui Shi
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, No. 100 Lianhua Street, High-tech Industrial Development District, Zhengzhou, 450001, Henan, China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, No. 100 Lianhua Street, High-tech Industrial Development District, Zhengzhou, 450001, Henan, China
| | - Dongjin Wan
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, No. 100 Lianhua Street, High-tech Industrial Development District, Zhengzhou, 450001, Henan, China
| | - Qingye Zhang
- College of informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Park SW, Lee BH, Song SH, Kim MK. Revisiting the Ramachandran plot based on statistical analysis of static and dynamic characteristics of protein structures. J Struct Biol 2023; 215:107939. [PMID: 36707040 DOI: 10.1016/j.jsb.2023.107939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Ramachandran plots, which describe protein structures by plotting the dihedral angle pairs of the backbone on a two-dimensional plane, have played an important role in structural biology over the past few decades. However, despite continued discovery of new protein structures to date, the Ramachandran plot is still constructed by only a small number of data points, and further it cannot reflect the steric information of proteins. Here, we investigated the secondary structure of proteins in terms of static and dynamic characteristics. As for static feature, the Ramachandran plot was revisited for the dataset consisting of 9,148 non-redundant high-resolution protein structures released in the protein data bank until April 1, 2022. By calculating amino acid propensities, it was found that the proportion of secondary structures with respect to residue depth is directly related to their hydrophobicity. As for dynamic feature, normal mode analysis (NMA) based on an elastic network model (ENM) was carried out for the dataset using our KOSMOS web server (http://bioengineering.skku.ac.kr/kosmos/). All ENM-based NMA results were stored in the KOSMOS database, allowing researchers to use them in various ways. In this process, it was commonly found that high B-factors appeared at the edge of the alpha helix region, which was elucidated by introducing residue depth. In addition, by investigating the change in dihedral angle, it was possible to quantitatively survey the contribution of structural change of protein on the Ramachandran plot. In conclusion, our statistical analysis of protein characteristics will provide insight into a range of protein structural studies.
Collapse
Affiliation(s)
- Soon Woo Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byung Ho Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hun Song
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moon Ki Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
8
|
Smith M, Li P. Molecular Insights into the Calcium Binding in Troponin C through a Molecular Dynamics Study. J Chem Inf Model 2023; 63:354-361. [PMID: 36507851 DOI: 10.1021/acs.jcim.2c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium-binding proteins play critical roles in various biological processes such as signal transduction, cell growth, and transcription factor regulation. Ion binding and target binding of Ca2+-binding proteins are highly related. Therefore, understanding the ion binding mechanism will benefit the relevant inhibitor design toward the Ca2+-binding proteins. The EF-hand is the typical ion binding motif in Ca2+-binding proteins. Previous studies indicate that the ion binding affinity of the EF-hand increases with the peptide length, but this mechanism has not been fully understood. Herein, using molecular dynamics simulations, thermodynamic integration calculations, and molecular mechanics Poisson-Boltzmann surface area analysis, we systematically investigated four Ca2+-binding peptides containing the EF-hand loop in site III of rabbit skeletal troponin C. These four peptides have 13, 21, 26, and 34 residues. Our simulations reproduced the observed trend that the ion binding affinity increases with the peptide length. Our results implied that the E-helix motif preceding the EF-hand loop, likely the Phe99 residue in particular, plays a significant role in this regulation. The E-helix has a significant impact on the backbone and side-chain conformations of the Asp103 residue, rigidifying important hydrogen bonds in the EF-hand and decreasing the solvent exposure of the Ca2+ ion, hence leading to more favorable Ca2+ binding in longer peptides. The present study provides molecular insights into the ion binding in the EF-hand and establishes an important step toward elucidating the responses of Ca2+-binding proteins toward the ion and target availability.
Collapse
Affiliation(s)
- Madelyn Smith
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660, United States
| |
Collapse
|
9
|
Venkat A, Tehrani D, Taujale R, Yeung W, Gravel N, Moremen KW, Kannan N. Modularity of the hydrophobic core and evolution of functional diversity in fold A glycosyltransferases. J Biol Chem 2022; 298:102212. [PMID: 35780833 PMCID: PMC9364030 DOI: 10.1016/j.jbc.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Hydrophobic cores are fundamental structural properties of proteins typically associated with protein folding and stability; however, how the hydrophobic core shapes protein evolution and function is poorly understood. Here, we investigated the role of conserved hydrophobic cores in fold-A glycosyltransferases (GT-As), a large superfamily of enzymes that catalyze formation of glycosidic linkages between diverse donor and acceptor substrates through distinct catalytic mechanisms (inverting versus retaining). Using hidden Markov models and protein structural alignments, we identify similarities in the phosphate-binding cassette (PBC) of GT-As and unrelated nucleotide-binding proteins, such as UDP-sugar pyrophosphorylases. We demonstrate that GT-As have diverged from other nucleotide-binding proteins through structural elaboration of the PBC and its unique hydrophobic tethering to the F-helix, which harbors the catalytic base (xED-Asp). While the hydrophobic tethering is conserved across diverse GT-A fold enzymes, some families, such as B3GNT2, display variations in tethering interactions and core packing. We evaluated the structural and functional impact of these core variations through experimental mutational analysis and molecular dynamics simulations and find that some of the core mutations (T336I in B3GNT2) increase catalytic efficiency by modulating the conformational occupancy of the catalytic base between “D-in” and acceptor-accessible “D-out” conformation. Taken together, our studies support a model of evolution in which the GT-A core evolved progressively through elaboration upon an ancient PBC found in diverse nucleotide-binding proteins, and malleability of this core provided the structural framework for evolving new catalytic and substrate-binding functions in extant GT-A fold enzymes.
Collapse
Affiliation(s)
- Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Daniel Tehrani
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA; Complex Carbohydrate Research Center (CCRC), Athens, GA, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA; Complex Carbohydrate Research Center (CCRC), Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Rudnev VR, Kulikova LI, Nikolsky KS, Malsagova KA, Kopylov AT, Kaysheva AL. Current Approaches in Supersecondary Structures Investigation. Int J Mol Sci 2021; 22:11879. [PMID: 34769310 PMCID: PMC8584461 DOI: 10.3390/ijms222111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Proteins expressed during the cell cycle determine cell function, topology, and responses to environmental influences. The development and improvement of experimental methods in the field of structural biology provide valuable information about the structure and functions of individual proteins. This work is devoted to the study of supersecondary structures of proteins and determination of their structural motifs, description of experimental methods for their detection, databases, and repositories for storage, as well as methods of molecular dynamics research. The interest in the study of supersecondary structures in proteins is due to their autonomous stability outside the protein globule, which makes it possible to study folding processes, conformational changes in protein isoforms, and aberrant proteins with high productivity.
Collapse
Affiliation(s)
- Vladimir R. Rudnev
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Liudmila I. Kulikova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kirill S. Nikolsky
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| |
Collapse
|
11
|
Xue SW, Tian YX, Pan JC, Liu YN, Ma YL. Binding interaction of a ring-hydroxylating dioxygenase with fluoranthene in Pseudomonas aeruginosa DN1. Sci Rep 2021; 11:21317. [PMID: 34716364 PMCID: PMC8556375 DOI: 10.1038/s41598-021-00783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
Pseudomonas aeruginosa DN1 can efficiently utilize fluoranthene as its sole carbon source, and the initial reaction in the biodegradation process is catalyzed by a ring-hydroxylating dioxygenase (RHD). To clarify the binding interaction of RHD with fluoranthene in the strain DN1, the genes encoding alpha subunit (RS30940) and beta subunit (RS05115) of RHD were functionally characterized through multi-technique combination such as gene knockout and homology modeling as well as molecular docking analysis. The results showed that the mutants lacking the characteristic alpha subunit and/or beta subunit failed to degrade fluoranthene effectively. Based on the translated protein sequence and Ramachandran plot, 96.5% of the primary amino-acid sequences of the alpha subunit in the modeled structure of the RHD were in the permitted region, 2.3% in the allowed region, but 1.2% in the disallowed area. The catalytic mechanism mediated by key residues was proposed by the simulations of molecular docking, wherein the active site of alpha subunit constituted a triangle structure of the mononuclear iron atom and the two oxygen atoms coupled with the predicted catalytic ternary of His217-His222-Asp372 for the dihydroxylation reaction with fluoranthene. Those amino acid residues adjacent to fluoranthene were nonpolar groups, and the C7-C8 positions on the fluoranthene ring were estimated to be the best oxidation sites. The distance of C7-O and C8-O was 3.77 Å and 3.04 Å respectively, and both of them were parallel. The results of synchronous fluorescence and site-directed mutagenesis confirmed the roles of the predicted residues during catalysis. This binding interaction could enhance our understanding of the catalytic mechanism of RHDs and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Shu-Wen Xue
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yue-Xin Tian
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Jin-Cheng Pan
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Ya-Ni Liu
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yan-Ling Ma
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| |
Collapse
|
12
|
Milorey B, Schwalbe H, O'Neill N, Schweitzer-Stenner R. Repeating Aspartic Acid Residues Prefer Turn-like Conformations in the Unfolded State: Implications for Early Protein Folding. J Phys Chem B 2021; 125:11392-11407. [PMID: 34619031 DOI: 10.1021/acs.jpcb.1c06472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding can be described as a motion of the polypeptide chain in a potential energy funnel, where the conformational manifold is narrowed as the chain traverses from a completely unfolded state until it reaches the folded (native) state. The initial folding stages set the tone for this process by substantially narrowing the manifold of accessible conformations. In an ideally unfolded state with no long-range stabilizing forces, local conformations (i.e., residual structures) are likely to drive the folding process. While most amino acid residues tend to predominantly adopt extended structures in unfolded proteins and peptides, aspartic acid exhibits a relatively high intrinsic preference for turn-forming conformations. Regions in an unfolded polypeptide or protein that are rich in aspartic acid residues may therefore be crucial sites for protein folding steps. By combining NMR and vibrational spectroscopies, we observed that the conformational sampling of multiple sequentially neighbored aspartic acid residues in the model peptides GDDG and GDDDG even show an on average higher propensity for turn-forming structures than the intrinsic reference system D in GDG, which suggests that nearest neighbor interactions between adjacent aspartic acid residues stabilize local turn-forming structures. In the presence of the unlike neighbor phenylalanine, nearest neighbor interactions are of a totally different nature in that it they decrease the turn-forming propensities and mutually increase the sampling of polyproline II (pPII) conformations. We hypothesize the structural role of aspartic residues in intrinsically disordered proteins in general, and particularly in small linear motifs, that are very much determined by their respective neighbors.
Collapse
Affiliation(s)
- Bridget Milorey
- Deparment of Chemistry, Drexel University, Philadelphia, Pennsylvania 19026, United States
| | - Harald Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe Universität, Max von Laue Strasse 7, 60438 Frankfurt, Germany
| | - Nichole O'Neill
- Deparment of Chemistry, Drexel University, Philadelphia, Pennsylvania 19026, United States
| | | |
Collapse
|
13
|
Zhang R, Stahr MC, Kennedy MA. Introduction of a new scheme for classifying β-turns in protein structures. Proteins 2021; 90:110-122. [PMID: 34322903 DOI: 10.1002/prot.26190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/11/2021] [Indexed: 11/09/2022]
Abstract
Protein β-turn classification remains an area of ongoing development in structural biology research. While the commonly used nomenclature defining type I, type II and type IV β-turns was introduced in the 1970s and 1980s, refinements of β-turn type definitions have been introduced as recently as 2019 by Dunbrack, Jr and co-workers who expanded the number of β-turn types to 18 (Shapovalov et al, PLOS Computat. Biol., 15, e1006844, 2019). Based on their analysis of 13 030 turns from 1074 ultrahigh resolution (≤1.2 Å) protein structures, they used a new clustering algorithm to expand the definitions used to classify protein β-turns and introduced a new nomenclature system. We recently encountered a specific problem when classifying β-turns in crystal structures of pentapeptide repeat proteins (PRPs) determined in our lab that are largely composed of β-turns that often lie close to, but just outside of, canonical β-turn regions. To address this problem, we devised a new scheme that merges the Klyne-Prelog stereochemistry nomenclature and definitions with the Ramachandran plot. The resulting Klyne-Prelog-modified Ramachandran plot scheme defines 1296 distinct potential β-turn classifications that cover all possible protein β-turn space with a nomenclature that indicates the stereochemistry of i + 1 and i + 2 backbone dihedral angles. The utility of the new classification scheme was illustrated by re-classification of the β-turns in all known protein structures in the PRP superfamily and further assessed using a database of 16 657 high-resolution protein structures (≤1.5 Å) from which 522 776 β-turns were identified and classified.
Collapse
Affiliation(s)
- Ruojing Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Michael C Stahr
- Department of Computer Science and Software Engineering, Miami University, Oxford, Ohio, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
14
|
Tsao CW, Fang MJ, Hsu YJ. Modulation of interfacial charge dynamics of semiconductor heterostructures for advanced photocatalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213876] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Identification of a G-Protein-Independent Activator of GIRK Channels. Cell Rep 2021; 31:107770. [PMID: 32553165 DOI: 10.1016/j.celrep.2020.107770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
G-protein-gated inwardly rectifying K+ (GIRK) channels are essential effectors of inhibitory neurotransmission in the brain. GIRK channels have been implicated in diseases with abnormal neuronal excitability, including epilepsy and addiction. GIRK channels are tetramers composed of either the same subunit (e.g., homotetramers) or different subunits (e.g., heterotetramers). Compounds that specifically target subsets of GIRK channels in vivo are lacking. Previous studies have shown that alcohol directly activates GIRK channels through a hydrophobic pocket located in the cytoplasmic domain of the channel. Here, we report the identification and functional characterization of a GIRK1-selective activator, termed GiGA1, that targets the alcohol pocket. GiGA1 activates GIRK1/GIRK2 both in vitro and in vivo and, in turn, mitigates the effects of a convulsant in an acute epilepsy mouse model. These results shed light on the structure-based development of subunit-specific GIRK modulators that could provide potential treatments for brain disorders.
Collapse
|
16
|
Hayward S, Milner-White EJ. Determination of amino acids that favour the α L region using Ramachandran propensity plots. Implications for α-sheet as the possible amyloid intermediate. J Struct Biol 2021; 213:107738. [PMID: 33838226 DOI: 10.1016/j.jsb.2021.107738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/28/2022]
Abstract
In amyloid diseases an insoluble amyloid fibril forms via a soluble oligomeric intermediate. It is this intermediate that mediates toxicity and it has been suggested, somewhat controversially, that it has the α-sheet structure. Nests and α-strands are similar peptide motifs in that alternate residues lie in the αR and γL regions of the Ramachandran plot for nests, or αR and αL regions for α-strands. In nests a concavity is formed by the main chain NH atoms whereas in α-strands the main chain is almost straight. Using "Ramachandran propensity plots" to focus on the αL/γL region, it is shown that glycine favours γL (82% of amino acids are glycine), but disfavours αL (3% are glycine). Most charged and polar amino acids favour αL with asparagine having by far the highest propensity. Thus, glycine favours nests but, contrary to common expectation, should not favour α-sheet. By contrast most charged or polar amino acids should favour α-sheet by their propensity for the αL conformation, which is more discriminating amongst amino acids than the αR conformation. Thus, these results suggest the composition of sequences that favour α-sheet formation and point towards effective prediction of α-sheet from sequence.
Collapse
Affiliation(s)
- Steven Hayward
- Computational Biology Laboratory, School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - E James Milner-White
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
17
|
Ma XF, Zhang YY, Guo FY, Luo JX, Ding W, Zhang YQ. Molecular characterization of a voltage-gated calcium channel and its potential role in the acaricidal action of scopoletin against Tetranychus cinnabarinus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104618. [PMID: 32711759 DOI: 10.1016/j.pestbp.2020.104618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/18/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a polyphagous agricultural pest with an extensive host plant range. Scopoletin is a promising acaricidal compound whose acaricidal mechanism may occur by disrupting intracellular Ca2+ homeostasis and calcium signaling pathways. However, the underlying mechanism of scopoletin for specific target locations of T. cinnabarinus remains unclear. In this study, a full-length cDNA of the L-type voltage-gated calcium channel (TcLTCC) subunit gene from T. cinnabarinus was cloned and characterized. The expression pattern of the TcLTCC gene in all developmental stages of T. cinnabarinus was analyzed. The gene was highly expressed in larval and nymphal stages and was significantly upregulated after treatment with scopoletin. Knocking down the TcLTCC transcript reduced the sensitivity of T. cinnabarinus to scopoletin. Homology modeling and molecular docking were also conducted. The interaction between scopoletin and TcLTCC showed that scopoletin inserted into the cavity bound to the site of the TcLTCC protein by the driving force of hydrogen bonding. This study provides insights into the mechanism by which scopoletin interacts with TcLTCC. Results can improve the understanding of the toxicity of scopoletin to T. cinnabarinus and provide valuable information for the design of new LTCC inhibitors.
Collapse
Affiliation(s)
- Xiao-Feng Ma
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fu-You Guo
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Xiang Luo
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land Southwest University, Chongqing 400715, China
| | - Yong-Qiang Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Ravnik Z, Muthiah I, Dhanaraj P. Computational studies on bacterial secondary metabolites against breast cancer. J Biomol Struct Dyn 2020; 39:7056-7064. [PMID: 32779523 DOI: 10.1080/07391102.2020.1805361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbes exist in the human body provide more benefits by modulating metabolic processes, immunity, and signal transduction. However, microbial dysbiosis with harmful bacterial species can cause chronic inflammation and cancers. Hence human probiotics were recently paid more attention to immune responses, therapy, and diagnosis. Breast cancer is the second leading cancer worldwide and causes more death in women. The role of breast microbiome secondary metabolites in breast cancer is poorly studied. Research shows that breast has a specific microbiome inhabited with particular bacterial species. More significantly probiotics produced from breast microbiomes may act as a potential biomarker for breast cancer diagnosis. Hence this computational research aimed at the effect of chosen metabolites on breast cancer cell receptor G-protein-coupled bile acid receptor, Gpbar1 (TGR5). The current research suggested that cadaverine, succinate, p-cresol, and its derivatives could be used as a molecular marker in the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Zina Ravnik
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Indiraleka Muthiah
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - Premnath Dhanaraj
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| |
Collapse
|
19
|
Ravikumar A, Ramakrishnan C, Srinivasan N. Stereochemical Assessment of (φ,ψ) Outliers in Protein Structures Using Bond Geometry-Specific Ramachandran Steric-Maps. Structure 2019; 27:1875-1884.e2. [PMID: 31607615 DOI: 10.1016/j.str.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/23/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Ramachandran validation of protein structures is commonly performed using developments, such as MolProbity. We suggest tailoring such analyses by position-wise, geometry-specific steric-maps, which show (φ,ψ) regions with steric-clash at every residue position. These maps are different from the classical steric-map because they are highly sensitive to bond length and angle values that are used, in our steric-maps, as observed in the residue positions in super-high-resolution peptide and protein structures. (φ,ψ) outliers observed in such structures seldom have steric-clash. Therefore, we propose that a (φ,ψ) outlier is unacceptable if it is located within the steric-clash region of a bond geometry-specific steric-map for a residue position. These steric-maps also suggest position-specific accessible (φ,ψ) space. The PARAMA web resource performs in-depth position-wise analysis of protein structures using bond geometry-specific steric-maps.
Collapse
Affiliation(s)
- Ashraya Ravikumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
20
|
Balasco N, Smaldone G, Vigorita M, Del Vecchio P, Graziano G, Ruggiero A, Vitagliano L. The characterization of Thermotoga maritima Arginine Binding Protein variants demonstrates that minimal local strains have an important impact on protein stability. Sci Rep 2019; 9:6617. [PMID: 31036855 PMCID: PMC6488590 DOI: 10.1038/s41598-019-43157-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
The Ramachandran plot is a versatile and valuable tool that provides fundamental information for protein structure determination, prediction, and validation. The structural/thermodynamic effects produced by forcing a residue to adopt a conformation predicted to be forbidden were here explored using Thermotoga maritima Arginine Binding Protein (TmArgBP) as model. Specifically, we mutated TmArgBP Gly52 that assumes a conformation believed to be strictly disallowed for non-Gly residues. Surprisingly, the crystallographic characterization of Gly52Ala TmArgBP indicates that the structural context forces the residue to adopt a non-canonical conformation never observed in any of the high-medium resolution PDB structures. Interestingly, the inspection of this high resolution structure demonstrates that only minor alterations occur. Nevertheless, experiments indicate that Gly52 replacements in TmArgBP produce destabilizations comparable to those observed upon protein truncation or dissection in domains. Notably, we show that force-fields commonly used in computational biology do not reproduce this non-canonical state. Using TmArgBP as model system we here demonstrate that the structural context may force residues to adopt conformations believed to be strictly forbidden and that barely detectable alterations produce major destabilizations. Present findings highlight the role of subtle strains in governing protein stability. A full understanding of these phenomena is essential for an exhaustive comprehension of the factors regulating protein structures.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy
| | | | - Marilisa Vigorita
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, Benevento, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, Benevento, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, Italy.
| |
Collapse
|
21
|
Rose GD. Ramachandran maps for side chains in globular proteins. Proteins 2019; 87:357-364. [PMID: 30629766 DOI: 10.1002/prot.25656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 12/30/2018] [Indexed: 11/05/2022]
Abstract
The Ramachandran plot for backbone ϕ,ψ-angles in a blocked monopeptide has played a central role in understanding protein structure. Curiously, a similar analysis for side chain χ-angles has been comparatively neglected. Instead, efforts have focused on compiling various types of side chain libraries extracted from proteins of known structure. Departing from this trend, the following analysis presents backbone-based maps of side chains in blocked monopeptides. As in the original ϕ,ψ-plot, these maps are derived solely from hard-sphere steric repulsion. Remarkably, the side chain biases exhibit marked similarities to corresponding biases seen in high-resolution protein structures. Consequently, some of the entropic cost for side chain localization in proteins is prepaid prior to the onset of folding events because conformational bias is built into the chain at the covalent level. Furthermore, side chain conformations are seen to experience fewer steric restrictions for backbone conformations in either the α or β basins, those map regions where repetitive ϕ,ψ-angles result in α-helices or strands of β-sheet, respectively. Here, these α and β basins are entropically favored for steric reasons alone; a blocked monopeptide is too short to accommodate the peptide hydrogen bonds that stabilize repetitive secondary structure. Thus, despite differing energetics, α/β-basins are favored for both monopeptides and repetitive secondary structure, underpinning an energetically unfrustrated compatibility between these two levels of protein structure.
Collapse
Affiliation(s)
- George D Rose
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
22
|
Wang H, Avnir D, Tuvi-Arad I. Chiral Ramachandran Plots II: General Trends and Protein Chirality Spectra. Biochemistry 2018; 57:6395-6403. [PMID: 30346734 DOI: 10.1021/acs.biochem.8b00974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The degree of chirality of protein backbone residues is used to enrich the Ramachandran plot (RP) and create three-dimensional chiral RPs with much more structural information. Detailed comparative analysis of the four classical RPs (general, glycine, proline, and pre-proline) is provided, including statistical analysis of quantitative chirality distributions in the maps and in the secondary structures. Our results show that points with outlier chirality levels represent special transitional points in the folded protein such as α-helix kinks, twists of β-strands, and transition points between secondary structures. A protein chirality spectrum in which the degree of chirality of each residue is plotted against the sequence number explores these special points. More than 65000 residues extracted from 200 high-quality proteins are used for this study, which shows that quantitative chirality is a general and useful structural parameter for protein conformational studies.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel.,Department of Natural Science , The Open University of Israel , Raanana 4353701 , Israel
| | - David Avnir
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| | - Inbal Tuvi-Arad
- Department of Natural Science , The Open University of Israel , Raanana 4353701 , Israel
| |
Collapse
|
23
|
Okamura TA. Crystal Structures of Expanded Poly(l-leucine) Isomers Containing Bis(pyridine)silver(I) Moieties: Precise Formation of Secondary Structure Depending on the Side Chain. Chemistry 2018; 24:13437-13440. [PMID: 30070737 DOI: 10.1002/chem.201803636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 02/02/2023]
Abstract
Precise construction of a three-dimensional molecular structure is key for functional macromolecules, such as enzymes or proteins. Previously, a new concept, "expanded poly(α-amino acid)s" containing rigid spacers, was proposed for strategic construction of chiral helices. Herein, expanded poly(l-leucine) isomers containing bis(pyridine)silver(I) moieties were synthesized, and their crystal structures were determined by X-ray analysis. Each expanded polypeptide forms a unique secondary structure, a left-handed 61 helix or zigzag chain (21 helix), precisely depending on the chemical structure of the side chain, that is, slight branching. Distinct conformations were indicated by two main areas in the Ramachandran plot. These results suggest that the appropriate selection of the amino acid sequence and rigid spacers will lead to a new expanded protein with a tailor-made three-dimensional structure and desired functions.
Collapse
Affiliation(s)
- Taka-Aki Okamura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
24
|
Ligabue-Braun R, Borguesan B, Verli H, Krause MJ, Dorn M. Everyone Is a Protagonist: Residue Conformational Preferences in High-Resolution Protein Structures. J Comput Biol 2017; 25:451-465. [PMID: 29267011 DOI: 10.1089/cmb.2017.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In many structural bioinformatics problems, there is a broad range of unanswered questions about protein dynamics and amino acid properties. Proteins are not strictly static objects, but rather populate ensembles of conformations. One way to understand these particularities is to analyze the information available in experimental databases. The Ramachandran plot, despite being more than half a century old, remains an utterly useful tool in the study of protein conformation. Based on its assumptions, we inspected a large data set (11,130 protein structures, amounting to 5,255,768 residues) and discriminated the conformational preferences of each residue type regarding their secondary structure participation. These data were studied for phi [Formula: see text], psi [Formula: see text], and side chain chi [Formula: see text] angles, being presented in non-Ramachandranian plots. In the largest analysis of protein conformation made so far, we propose an original plot to depict conformational preferences in relation to different secondary structure elements. Despite confirming previous observations, our results strongly support a unique character for each residue type, whereas also reinforcing the observation that side chains have a major contribution to secondary structure and, by consequence, on protein conformation. This information can be further used in the development of more robust methods and computational strategies for structural bioinformatics problems.
Collapse
Affiliation(s)
- Rodrigo Ligabue-Braun
- 1 Center for Biotechnology, PPGBCM, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Bruno Borguesan
- 2 Institute of Informatics, PPGC, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Hugo Verli
- 1 Center for Biotechnology, PPGBCM, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
| | - Mathias J Krause
- 3 Institute for Mechanical Process Engineering and Mechanics (MVM), Institute for Applied and Numerical Mathematics (IANM), Karlsruhe Institute of Technology (KIT) , Karlsruhe, Germany
| | - Márcio Dorn
- 1 Center for Biotechnology, PPGBCM, Federal University of Rio Grande do Sul , Porto Alegre, Brazil .,2 Institute of Informatics, PPGC, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
| |
Collapse
|
25
|
Gaines JC, Clark AH, Regan L, O'Hern CS. Packing in protein cores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:293001. [PMID: 28557791 DOI: 10.1088/1361-648x/aa75c2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of [Formula: see text], which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.
Collapse
Affiliation(s)
- J C Gaines
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, United States of America. Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, CT 06520, United States of America
| | | | | | | |
Collapse
|
26
|
Hou QL, Luo JX, Zhang BC, Jiang GF, Ding W, Zhang YQ. 3D-QSAR and Molecular Docking Studies on the TcPMCA1-Mediated Detoxification of Scopoletin and Coumarin Derivatives. Int J Mol Sci 2017; 18:E1380. [PMID: 28653986 PMCID: PMC5535873 DOI: 10.3390/ijms18071380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is an economically important agricultural pest that is difficult to prevent and control. Scopoletin is a botanical coumarin derivative that targets Ca2+-ATPase to exert a strong acaricidal effect on carmine spider mites. In this study, the full-length cDNA sequence of a plasma membrane Ca2+-ATPase 1 gene (TcPMCA1) was cloned. The sequence contains an open reading frame of 3750 bp and encodes a putative protein of 1249 amino acids. The effects of scopoletin on TcPMCA1 expression were investigated. TcPMCA1 was significantly upregulated after it was exposed to 10%, 30%, and 50% of the lethal concentration of scopoletin. Homology modeling, molecular docking, and three-dimensional quantitative structure-activity relationships were then studied to explore the relationship between scopoletin structure and TcPMCA1-inhibiting activity of scopoletin and other 30 coumarin derivatives. Results showed that scopoletin inserts into the binding cavity and interacts with amino acid residues at the binding site of the TcPMCA1 protein through the driving forces of hydrogen bonds. Furthermore, CoMFA (comparative molecular field analysis)- and CoMSIA (comparative molecular similarity index analysis)-derived models showed that the steric and H-bond fields of these compounds exert important influences on the activities of the coumarin compounds.Notably, the C3, C6, and C7 positions in the skeletal structure of the coumarins are the most suitable active sites. This work provides insights into the mechanism underlying the interaction of scopoletin with TcPMCA1. The present results can improve the understanding on plasma membrane Ca2+-ATPase-mediated (PMCA-mediated) detoxification of scopoletin and coumarin derivatives in T. cinnabarinus, as well as provide valuable information for the design of novel PMCA-inhibiting acaricides.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Xiang Luo
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Bing-Chuan Zhang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Gao-Fei Jiang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Yong-Qiang Zhang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
27
|
Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures. Biophys J 2017; 110:1967-79. [PMID: 27166805 DOI: 10.1016/j.bpj.2016.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 01/08/2023] Open
Abstract
Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.
Collapse
|
28
|
Saravanan KM, Selvaraj S. Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. J Biol Phys 2017; 43:265-278. [PMID: 28577238 PMCID: PMC5471173 DOI: 10.1007/s10867-017-9451-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
In theory, a polypeptide chain can adopt a vast number of conformations, each corresponding to a set of backbone rotation angles. Many of these conformations are excluded due to steric overlaps. Ramachandran and coworkers were the first to look into this problem by plotting backbone dihedral angles in a two-dimensional plot. The conformational space in the Ramachandran map is further refined by considering the energetic contributions of various non-bonded interactions. Alternatively, the conformation adopted by a polypeptide chain may also be examined by investigating interactions between the residues. Since the Ramachandran map essentially focuses on local interactions (residues closer in sequence), out of interest, we have analyzed the dihedral angle preferences of residues that make non-local interactions (residues far away in sequence and closer in space) in the folded structures of proteins. The non-local interactions have been grouped into different types such as hydrogen bond, van der Waals interactions between hydrophobic groups, ion pairs (salt bridges), and ππ-stacking interactions. The results show the propensity of amino acid residues in proteins forming local and non-local interactions. Our results point to the vital role of different types of non-local interactions and their effect on dihedral angles in forming secondary and tertiary structural elements to adopt their native fold.
Collapse
Affiliation(s)
- Konda Mani Saravanan
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - Samuel Selvaraj
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India.
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
29
|
Fadouloglou VE, Balomenou S, Aivaliotis M, Kotsifaki D, Arnaouteli S, Tomatsidou A, Efstathiou G, Kountourakis N, Miliara S, Griniezaki M, Tsalafouta A, Pergantis SA, Boneca IG, Glykos NM, Bouriotis V, Kokkinidis M. Unusual α-Carbon Hydroxylation of Proline Promotes Active-Site Maturation. J Am Chem Soc 2017; 139:5330-5337. [DOI: 10.1021/jacs.6b12209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Stavroula Balomenou
- Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
- Department
of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
| | - Dina Kotsifaki
- Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
| | - Sofia Arnaouteli
- Department
of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece
| | - Anastasia Tomatsidou
- Department
of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece
| | - Giorgos Efstathiou
- Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
| | - Nikos Kountourakis
- Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
| | - Sofia Miliara
- Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
| | - Marianna Griniezaki
- Department
of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece
| | - Aleka Tsalafouta
- Department
of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece
| | - Spiros A. Pergantis
- Department
of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece
| | - Ivo G. Boneca
- Biology
and Genetics of the Bacterial Cell Wall Unit, Institut Pasteur, 75015 Paris, France
- INSERM, Equipe Avenir, Paris, France
| | - Nicholas M. Glykos
- Department
of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, 68100 Alexandroupolis, Greece
| | - Vassilis Bouriotis
- Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
- Department
of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
- Department
of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece
| |
Collapse
|
30
|
Ru X, Song C, Lin Z. Structural Information-Based Method for the Efficient and Reliable Prediction of Oligopeptide Conformations. J Phys Chem B 2017; 121:2525-2533. [DOI: 10.1021/acs.jpcb.6b12415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiao Ru
- Hefei National Laboratory for Physical Sciences at Microscales & CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ce Song
- Hefei National Laboratory for Physical Sciences at Microscales & CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
- Department
of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Zijing Lin
- Hefei National Laboratory for Physical Sciences at Microscales & CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
31
|
Esipova NG, Tumanyan VG. Omnipresence of the polyproline II helix in fibrous and globular proteins. Curr Opin Struct Biol 2017; 42:41-49. [DOI: 10.1016/j.sbi.2016.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
32
|
Ponnuraj K, Saravanan KM. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins. Int J Biol Macromol 2017; 97:434-439. [PMID: 28099891 DOI: 10.1016/j.ijbiomac.2017.01.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/30/2022]
Abstract
A protein can interact with DNA or RNA molecules to perform various cellular processes. Identifying or analyzing DNA/RNA binding site amino acid residues is important to understand molecular recognition process. It is quite possible to accurately model DNA/RNA binding amino acid residues in experimental protein-DNA/RNA complex by using the electron density map whereas, locating/modeling the binding site amino acid residues in the predicted three dimensional structures of DNA/RNA binding proteins is still a difficult task. Considering the above facts, in the present work, we have carried out a comprehensive analysis of dihedral angle preferences of DNA and RNA binding site amino acid residues by using a classical Ramachandran map. We have computed backbone dihedral angles of non-DNA/RNA binding residues and used as control dataset to make a comparative study. The dihedral angle preference of DNA and RNA binding site residues of twenty amino acid type is presented. Our analysis clearly revealed that the dihedral angles (φ, ψ) of DNA/RNA binding amino acid residues prefer to occupy (-89° to -60°, -59° to -30°) bins. The results presented in this paper will help to model/locate DNA/RNA binding amino acid residues with better accuracy.
Collapse
Affiliation(s)
- Karthe Ponnuraj
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | - Konda Mani Saravanan
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India.
| |
Collapse
|
33
|
Haimov B, Srebnik S. A closer look into the α-helix basin. Sci Rep 2016; 6:38341. [PMID: 27917894 PMCID: PMC5137006 DOI: 10.1038/srep38341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022] Open
Abstract
α-Helices are the most abundant structures found within proteins and play an important role in the determination of the global structure of proteins and their function. Representation of α-helical structures with the common (φ, ψ) dihedrals, as in Ramachandran maps, does not provide informative details regarding the helical structure apart for the abstract geometric meaning of the dihedrals. We present an alternative coordinate system that describes helical conformations in terms of residues per turn (ρ) and angle (ϑ) between backbone carbonyls relative to the helix direction through an approximate linear transformation between the two coordinates system (φ, ψ and ρ, ϑ). In this way, valuable information on the helical structure becomes directly available. Analysis of α-helical conformations acquired from the Protein Data Bank (PDB) demonstrates that a conformational energy function of the α-helix backbone can be harmonically approximated on the (ρ, ϑ) space, which is not applicable to the (φ, ψ) space due to the diagonal distribution of the conformations. The observed trends of helical conformations obtained from the PDB are captured by four conceptual simulations that theoretically examine the effects of residue bulkiness, external electric field, and externally applied mechanical forces. Flory’s isolated pair hypothesis is shown to be partially correct for α-helical conformations.
Collapse
Affiliation(s)
- Boris Haimov
- Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Simcha Srebnik
- Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 32000, Israel.,Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
34
|
Lu YC, Luo F, Pu ZJ, Zhang S, Huang MT, Yang H. Enhanced detoxification and degradation of herbicide atrazine by a group of O-methyltransferases in rice. CHEMOSPHERE 2016; 165:487-496. [PMID: 27677124 DOI: 10.1016/j.chemosphere.2016.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Atrazine (ATR) as a toxic herbicide has become one of the seriously environmental contaminants worldwide due to its long-term intensive use in crop production. This study identified novel methyltransferases (MTs) involved in detoxification and degradation of ATR residues in rice plants. From a subset of MTs differentially expressed in ATR-exposed rice, forty-four O-methyltransferase genes were investigated. Total activities were significantly enhanced by ATR in rice tissues. To prove detoxifying capacity of the MTs in rice plants, two rice O-MTs (LOC_Os04g09604 and LOC_Os11g15040) were selected and transformed into yeast cells (Pichia pastoris X-33). The positive transformants accumulated less ATR and showed less toxicity. Using UPLC-TOF-MS/MS, ATR-degraded products in rice and yeast cells were characterized. A novel O-methylated-modified metabolite (atraton) and six other ATR-derivatives were detected. The topological interaction between LOC_Os04g09604 enzyme and its substrate was specially analyzed by homology modeling programs, which was well confirmed by the molecular docking analysis. The significance of the study is to provide a better understanding of mechanisms for the specific detoxification and degradation of ATR residues in rice growing in environmentally relevant ATR-contaminated soils and may hold a potential engineering perspective for generating ATR-resistant rice that helps to minimize ATR residues in crops.
Collapse
Affiliation(s)
- Yi Chen Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China
| | - Fang Luo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhong Ji Pu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Shuang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Meng Tian Huang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
35
|
Abstract
Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence-a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure.
Collapse
|
36
|
Jin J, Yao J, Zhang Q. Biodegradation of Phenanthrene by Pseudomonas sp. JPN2 and Structure-Based Degrading Mechanism Study. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:689-694. [PMID: 27631505 DOI: 10.1007/s00128-016-1917-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
The strain Pseudomonas sp. JPN2 had a high potential to degrade phenanthrene degrading 98.52 % of the initial amount of 100 mg L-1 after 10 days incubation. The analysis of metabolites demonstrated that the cleavage of phenanthrene started at the C9 and C10 positions on the aromatic ring by the dioxygenation reaction, and then further degraded via a phthalate pathway. To understand the interaction between phenanthrene and the amino acid residues in the active site of the target enzyme, a molecular docking simulation was performed. The results showed that the distances of C9-O1 and C10-O2 atoms were 3.47 and 3.67 Å, respectively. The C9 and C10 positions of the phenanthrene ring are much closer to the dioxygen molecule in the active site relative to the other atoms. Therefore, the C9 and C10 positions are vulnerable to attack in the initial oxygenation process.
Collapse
Affiliation(s)
- Jingnan Jin
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Qingye Zhang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
37
|
Extension of the classical classification of β-turns. Sci Rep 2016; 6:33191. [PMID: 27627963 PMCID: PMC5024104 DOI: 10.1038/srep33191] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/22/2016] [Indexed: 11/29/2022] Open
Abstract
The functional properties of a protein primarily depend on its three-dimensional (3D) structure. These properties have classically been assigned, visualized and analysed on the basis of protein secondary structures. The β-turn is the third most important secondary structure after helices and β-strands. β-turns have been classified according to the values of the dihedral angles φ and ψ of the central residue. Conventionally, eight different types of β-turns have been defined, whereas those that cannot be defined are classified as type IV β-turns. This classification remains the most widely used. Nonetheless, the miscellaneous type IV β-turns represent 1/3rd of β-turn residues. An unsupervised specific clustering approach was designed to search for recurrent new turns in the type IV category. The classical rules of β-turn type assignment were central to the approach. The four most frequently occurring clusters defined the new β-turn types. Unexpectedly, these types, designated IV1, IV2, IV3 and IV4, represent half of the type IV β-turns and occur more frequently than many of the previously established types. These types show convincing particularities, in terms of both structures and sequences that allow for the classical β-turn classification to be extended for the first time in 25 years.
Collapse
|
38
|
Hollingsworth SA, Lewis MC, Karplus PA. Beyond basins: φ,ψ preferences of a residue depend heavily on the φ,ψ values of its neighbors. Protein Sci 2016; 25:1757-62. [PMID: 27342939 PMCID: PMC5338229 DOI: 10.1002/pro.2973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/10/2022]
Abstract
The Ramachandran plot distributions of nonglycine residues from experimentally determined structures are routinely described as grouping into one of six major basins: β, PII , α, αL , ξ and γ'. Recent work describing the most common conformations adopted by pairs of residues in folded proteins [i.e., (φ,ψ)2 -motifs] showed that commonly described major basins are not true single thermodynamic basins, but are composed of distinct subregions that are associated with various conformations of either the preceding or following neighbor residue. Here, as documentation of the extent to which the conformational preferences of a central residue are influenced by the conformations of its two neighbors, we present a set of φ,ψ-plots that are delimited simultaneously by the φ,ψ-angles of its neighboring residues on both sides. The level of influence seen here is typically greater than the influence associated with considering the identities of neighboring residues, implying that the use of this heretofore untapped information can improve the accuracy of structure prediction algorithms and low resolution protein structure refinement.
Collapse
Affiliation(s)
- Scott A. Hollingsworth
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCalifornia92697
| | - Matthew C. Lewis
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregon97331
- Present address: Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCalifornia92697
| | - P. Andrew Karplus
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregon97331
| |
Collapse
|
39
|
A novel secondary structure based on fused five-membered rings motif. Sci Rep 2016; 6:31483. [PMID: 27511362 PMCID: PMC4980606 DOI: 10.1038/srep31483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
An analysis of protein structures indicates the existence of a novel, fused five-membered rings motif, comprising of two residues (i and i + 1), stabilized by interresidue Ni+1–H∙∙∙Ni and intraresidue Ni+1–H∙∙∙O=Ci+1 hydrogen bonds. Fused-rings geometry is the common thread running through many commonly occurring motifs, such as β-turn, β-bulge, Asx-turn, Ser/Thr-turn, Schellman motif, and points to its structural robustness. A location close to the beginning of a β-strand is rather common for the motif. Devoid of side chain, Gly seems to be a key player in this motif, occurring at i, for which the backbone torsion angles cluster at ~(−90°, −10°) and (70°, 20°). The fused-rings structures, distant from each other in sequence, can hydrogen bond with each other, and the two segments aligned to each other in a parallel fashion, give rise to a novel secondary structure, topi, which is quite common in proteins, distinct from two major secondary structures, α-helix and β-sheet. Majority of the peptide segments making topi are identified as aggregation-prone and the residues tend to be conserved among homologous proteins.
Collapse
|
40
|
Childers MC, Towse CL, Daggett V. The effect of chirality and steric hindrance on intrinsic backbone conformational propensities: tools for protein design. Protein Eng Des Sel 2016; 29:271-80. [PMID: 27284086 DOI: 10.1093/protein/gzw023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/30/2023] Open
Abstract
The conformational propensities of amino acids are an amalgamation of sequence effects, environmental effects and underlying intrinsic behavior. Many have attempted to investigate neighboring residue effects to aid in our understanding of protein folding and improve structure prediction efforts, especially with respect to difficult to characterize states, such as disordered or unfolded states. Host-guest peptide series are a useful tool in examining the propensities of the amino acids free from the surrounding protein structure. Here, we compare the distributions of the backbone dihedral angles (φ/ψ) of the 20 proteogenic amino acids in two different sequence contexts using the AAXAA and GGXGG host-guest pentapeptide series. We further examine their intrinsic behaviors across three environmental contexts: water at 298 K, water at 498 K, and 8 M urea at 298 K. The GGXGG systems provide the intrinsic amino acid propensities devoid of any conformational context. The alanine residues in the AAXAA series enforce backbone chirality, thereby providing a model of the intrinsic behavior of amino acids in a protein chain. Our results show modest differences in φ/ψ distributions due to the steric constraints of the Ala side chains, the magnitudes of which are dependent on the denaturing conditions. One of the strongest factors modulating φ/ψ distributions was the protonation of titratable side chains, and the largest differences observed were in the amino acid propensities for the rarely sampled αL region.
Collapse
Affiliation(s)
| | - Clare-Louise Towse
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| |
Collapse
|
41
|
Gaines JC, Smith WW, Regan L, O'Hern CS. Random close packing in protein cores. Phys Rev E 2016; 93:032415. [PMID: 27078398 DOI: 10.1103/physreve.93.032415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/07/2022]
Abstract
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈ 0.75, a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈ 0.56, which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.
Collapse
Affiliation(s)
- Jennifer C Gaines
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA.,Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut 06520, USA
| | - W Wendell Smith
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Lynne Regan
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA.,Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut 06520, USA.,Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Corey S O'Hern
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA.,Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut 06520, USA.,Department of Physics, Yale University, New Haven, Connecticut 06520, USA.,Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
42
|
Ru X, Song C, Lin Z. A genetic algorithm encoded with the structural information of amino acids and dipeptides for efficient conformational searches of oligopeptides. J Comput Chem 2016; 37:1214-22. [DOI: 10.1002/jcc.24311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/19/2015] [Accepted: 01/06/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Xiao Ru
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China; Hefei 230026 China
| | - Ce Song
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China; Hefei 230026 China
| | - Zijing Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China; Hefei 230026 China
- Department of Physics; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
43
|
Thukral L, Schwarze S, Daidone I, Neuweiler H. β-Structure within the Denatured State of the Helical Protein Domain BBL. J Mol Biol 2015; 427:3166-76. [PMID: 26281710 DOI: 10.1016/j.jmb.2015.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 01/23/2023]
Abstract
Protein denatured states are the origin of both healthy and toxic conformational species. Denatured states of ultrafast folding proteins are of interest in mechanistic studies because they are energetically close to the kinetic bottleneck of folding. However, their transient nature makes them elusive to experiment. Here, we generated the denatured state of the helical domain BBL that is poised to fold in microseconds by a single-point mutation and combined circular dichroism spectroscopy, single-molecule fluorescence fluctuation analysis, and computer simulation to characterize its structure and dynamics. Circular dichroism showed a largely unfolded ensemble with marginal helix but significant β-sheet content. Main-chain structure and dynamics were unaffected by side-chain interactions that stabilize the native state, as revealed by site-directed mutagenesis and nanosecond loop closure kinetics probed by fluorescence correlation spectroscopy. Replica-exchange and constant-temperature molecular dynamics simulations showed a highly collapsed, hydrogen-bonded denatured state containing turn and β-sheet structure and few nucleating helices in an otherwise unfolded ensemble. An irregular β-hairpin element that connects helices in the native fold was poised to be formed. The surprising observation of β-structure in regions that form helices in the native state is reconciled by a generic low-energy pathway from the northwest quadrant of Ramachandran space to the helical basin present under folding conditions, proposed recently. Our results show that, indeed, rapid nucleation of helix emanates from β-structure formed early within a collapsed ensemble of unfolded conformers.
Collapse
Affiliation(s)
- Lipi Thukral
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, South Campus, Mathura Road, New Delhi 110020, India
| | - Simone Schwarze
- Department of Biotechnology and Biophysics, Julius Maximilians University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010 L'Aquila, Italy.
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, Julius Maximilians University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
44
|
DasGupta D, Kaushik R, Jayaram B. From Ramachandran Maps to Tertiary Structures of Proteins. J Phys Chem B 2015; 119:11136-45. [DOI: 10.1021/acs.jpcb.5b02999] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debarati DasGupta
- Department of Chemistry, ‡Supercomputing Facility for Bioinformatics & Computational Biology, and §Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Rahul Kaushik
- Department of Chemistry, ‡Supercomputing Facility for Bioinformatics & Computational Biology, and §Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - B. Jayaram
- Department of Chemistry, ‡Supercomputing Facility for Bioinformatics & Computational Biology, and §Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| |
Collapse
|
45
|
Jin JN, Yao J, Zhang QY, Yu C, Chen P, Liu WJ, Peng DN, Choi MMF. An integrated approach of bioassay and molecular docking to study the dihydroxylation mechanism of pyrene by naphthalene dioxygenase in Rhodococcus sp. ustb-1. CHEMOSPHERE 2015; 128:307-13. [PMID: 25747183 DOI: 10.1016/j.chemosphere.2015.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 12/26/2014] [Accepted: 02/03/2015] [Indexed: 05/02/2023]
Abstract
Naphthalene dioxygenase (NDO) is the initial enzyme catalyzing the biodegradation of aromatic compounds, and it plays a key role in microbial remediation of polluting sites. In this study, Rhodococcus sp. ustb-1 derived from crude oil was selected to investigate the biodegradation characters and dihydroxylation mechanism of pyrene by an integrated approach of bioassay and molecular docking. The biodegradation experiment proved that the strain ustb-1 shows high effective biodegradability to pyrene with a 70.8% degradation on the 28th day and the metabolite pyrene cis-4,5-dihydrodiol was found. The results of molecular docking indicated that the regions surrounding pyrene are defined by hydrophobic amino acids which are favorable for the binding of dioxygen molecule at C4 and C5 positions of pyrene in a side-on mode. The binding positions of dioxygen are in agreement with the mass spectral analysis of the metabolite pyrene cis-4,5-dihydrodiol. In summary, this study provides a promising explanation for the possible binding behavior between pyrene and active site of NDO.
Collapse
Affiliation(s)
- Jing-Nan Jin
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Yao
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geoscience, Wuhan 430074, China.
| | - Qing-Ye Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chan Yu
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Chen
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wen-Juan Liu
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dan-Ning Peng
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Martin M F Choi
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
46
|
Zheng F, Zhang J, Grigoryan G. Tertiary Structural Propensities Reveal Fundamental Sequence/Structure Relationships. Structure 2015; 23:961-971. [DOI: 10.1016/j.str.2015.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/02/2015] [Accepted: 03/22/2015] [Indexed: 02/08/2023]
|
47
|
Kumar P, Bansal M. Identification of local variations within secondary structures of proteins. ACTA ACUST UNITED AC 2015; 71:1077-86. [DOI: 10.1107/s1399004715003144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022]
Abstract
Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method,ASSP(Assignment ofSecondaryStructure inProteins), using only the path traversed by the Cαatoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely α-helices, 310-helices, π-helices, extended β-strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended β-strands, 310-helices and π-helices were also found to occur in substantial numbers.ASSPwas able to discriminate non-α-helical segments from flanking α-helices, which were often identified as part of α-helices by other algorithms.ASSPcan also lead to the identification of novel SSEs. It is believed thatASSPcould provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.php.
Collapse
|
48
|
Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, Patarroyo MA. IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. PLoS One 2015; 10:e0123249. [PMID: 25879751 PMCID: PMC4400017 DOI: 10.1371/journal.pone.0123249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/28/2015] [Indexed: 01/14/2023] Open
Abstract
Determining immune protection-inducing protein structures (IMPIPS) involves defining the stereo-electron and topochemical characteristics which are essential in MHC-p-TCR complex formation. Modified high activity binding peptides (mHABP) were thus synthesised to produce a large panel of IMPIPS measuring 26.5 ±3.5Å between the farthest atoms fitting into Pockets 1 to 9 of HLA-DRβ1* structures. They displayed a polyproline II-like (PPIIL) structure with their backbone O and N atoms orientated to establish H-bonds with specific residues from HLA-DRβ1*-peptide binding regions (PBR). Residues having specific charge and gauche+ orientation regarding p3χ1, p5χ2, and p7χ1 angles determined appropriate rotamer orientation for perfectly fitting into the TCR to induce an appropriate immune response. Immunological assays in Aotus monkeys involving IMPIPS mixtures led to promising results; taken together with the aforementioned physicochemical principles, non-interfering, long-lasting, protection-inducing, multi-epitope, multistage, minimal subunit-based chemically-synthesised peptides can be designed against diseases scourging humankind.
Collapse
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Martha Patricia Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | | | | | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
49
|
Mechelke M, Habeck M. Bayesian weighting of statistical potentials in NMR structure calculation. PLoS One 2014; 9:e100197. [PMID: 24956116 PMCID: PMC4067304 DOI: 10.1371/journal.pone.0100197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/23/2014] [Indexed: 11/24/2022] Open
Abstract
The use of statistical potentials in NMR structure calculation improves the accuracy of the final structure but also raises issues of double counting and possible bias. Because statistical potentials are averaged over a large set of structures, they may not reflect the preferences of a particular structure or data set. We propose a Bayesian method to incorporate a knowledge-based backbone dihedral angle potential into an NMR structure calculation. To avoid bias exerted through the backbone potential, we adjust its weight by inferring it from the experimental data. We demonstrate that an optimally weighted potential leads to an improvement in the accuracy and quality of the final structure, especially with sparse and noisy data. Our findings suggest that no universally optimal weight exists, and that the weight should be determined based on the experimental data. Other knowledge-based potentials can be incorporated using the same approach.
Collapse
Affiliation(s)
- Martin Mechelke
- Institute for Mathematical Stochastics, Georg August University Göttingen, Göttingen, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael Habeck
- Institute for Mathematical Stochastics, Georg August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
50
|
Lanza G, Chiacchio MA. Ab Initio MP2 and Density Functional Theory Computational Study of AcAlaNH2Peptide Hydration: A Bottom-Up Approach. Chemphyschem 2014; 15:2785-93. [DOI: 10.1002/cphc.201402222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 01/15/2023]
|