1
|
Li H, Chen X, Xu J, Zhu L, Li C, Sun X, Li X, Guo J, Li J, Wang S, He Y, Wang H, Huang C, Meng XM, Li J. GRP/GRPR enhances alcohol-associated liver injury through the IRF1-mediated Caspase-1 inflammasome and NOX2-dependent ROS pathway. Hepatology 2024; 79:392-408. [PMID: 37409771 DOI: 10.1097/hep.0000000000000531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS The common characteristics of alcohol-associated liver injury (ALI) include abnormal liver function, infiltration of inflammatory cells, and generation of oxidative stress. The gastrin-releasing peptide receptor (GRPR) is activated by its neuropeptide ligand, gastrin-releasing peptide (GRP). GRP/GRPR appears to induce the production of cytokines in immune cells and promotes neutrophil migration. However, the effects of GRP/GRPR in ALI are unknown. APPROACH AND RESULTS We found high GRPR expression in the liver of patients with alcohol-associated steatohepatitis and increased pro-GRP levels in peripheral blood mononuclear cells of these patients compared with that of the control. Increased expression of GRP may be associated with histone H3 lysine 27 acetylation induced by alcohol, which promotes the expression of GRP and then GRPR binding. Grpr-/- and Grprflox/floxLysMCre mice alleviated ethanol-induced liver injury with relieved steatosis, lower serum alanine aminotransferase, aspartate aminotransferase, triglycerides, malondialdehyde, and superoxide dismutase levels, reduced neutrophil influx, and decreased expression and release of inflammatory cytokines and chemokines. Conversely, the overexpression of GRPR showed opposite effects. The pro-inflammatory and oxidative stress roles of GRPR might be dependent on IRF1-mediated Caspase-1 inflammasome and NOX2-dependent reactive oxygen species pathway, respectively. In addition, we verified the therapeutic and preventive effects of RH-1402, a novel GRPR antagonist, for ALI. CONCLUSIONS A knockout or antagonist of GRPR during excess alcohol intake could have anti-inflammatory and antioxidative roles, as well as provide a platform for histone modification-based therapy for ALI.
Collapse
Affiliation(s)
- Haidi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiejie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lin Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiaolong Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jianbo Guo
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Juanjuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Sheng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Center for Scientific Research, Anhui Medical University, Hefei, China
| | - Yong He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Li C, Ma QY, Liu XQ, Li HD, Yu MJ, Xie SS, Ma WX, Chen Y, Wang JN, He RB, Bian HG, He Y, Gao L, Deng SS, Zang HM, Gong Q, Wen JG, Liu MM, Yang C, Chen HY, Li J, Lan HY, Jin J, Yao RS, Meng XM. Genetic and pharmacological inhibition of GRPR protects against acute kidney injury via attenuating renal inflammation and necroptosis. Mol Ther 2023; 31:2734-2754. [PMID: 37415332 PMCID: PMC10492025 DOI: 10.1016/j.ymthe.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Ying Ma
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei 230012, China
| | - Xue-Qi Liu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Jun Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - He-Ge Bian
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Li Gao
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sheng-Song Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hong-Mei Zang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chen Yang
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Road, Zhanjiang 524001, China
| | - Hai-Yong Chen
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, The University of Hong Kong, Shenzhen 518009, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Liu Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| | - Ri-Sheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Meng Z, Chen H, Deng C, Meng S. Potential cellular endocrinology mechanisms underlying the effects of Chinese herbal medicine therapy on asthma. Front Endocrinol (Lausanne) 2022; 13:916328. [PMID: 36051395 PMCID: PMC9424672 DOI: 10.3389/fendo.2022.916328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.
Collapse
Affiliation(s)
- Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Shengxi Meng,
| |
Collapse
|
4
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
5
|
Biodata Mining of Differentially Expressed Genes between Acute Myocardial Infarction and Unstable Angina Based on Integrated Bioinformatics. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5584681. [PMID: 34568491 PMCID: PMC8456013 DOI: 10.1155/2021/5584681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Acute coronary syndrome (ACS) is a complex syndrome of clinical symptoms. In order to accurately diagnose the type of disease in ACS patients, this study is aimed at exploring the differentially expressed genes (DEGs) and biological pathways between acute myocardial infarction (AMI) and unstable angina (UA). The GSE29111 and GSE60993 datasets containing microarray data from AMI and UA patients were downloaded from the Gene Expression Omnibus (GEO) database. DEG analysis of these 2 datasets is performed using the “limma” package in R software. DEGs were also analyzed using protein-protein interaction (PPI), Molecular Complex Detection (MCODE) algorithm, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Correlation analysis and “cytoHubba” were used to analyze the hub genes. A total of 286 DEGs were obtained from GSE29111 and GSE60993, including 132 upregulated genes and 154 downregulated genes. Subsequent comprehensive analysis identified 20 key genes that may be related to the occurrence and development of AMI and UA and were involved in the inflammatory response, interaction of neuroactive ligand-receptor, calcium signaling pathway, inflammatory mediator regulation of TRP channels, viral protein interaction with cytokine and cytokine receptor, human cytomegalovirus infection, and cytokine-cytokine receptor interaction pathway. The integrated bioinformatical analysis could improve our understanding of DEGs between AMI and UA. The results of this study might provide a new perspective and reference for the early diagnosis and treatment of ACS.
Collapse
|
6
|
Abstract
Birch pollen allergy is a common cause of spring pollinosis in China. However, there is little research on birch pollen allergen in China and only the major allergen (Bet v 1) has been fully characterized. Chinese birch pollen-induced airway inflammation models in BALB/c mice were developed and administered subcutaneous immunotherapy (SCIT). BALB/c mice were sensitized subcutaneously on days 1, 8, and 15 with 25 μg/μL birch pollen extract. On days 24-26, the mice were challenged with 0.1% birch pollen aerosol. To investigate the efficacy of SCIT, mice were subcutaneously injected 0.3 mg birch pollen extract (BPE) with or without being adsorbed to alum. Airway hyper-responsiveness (AHR) to methacholine and immunological parameters was detected. Western blot analysis was applied with mice serum and mass spectrometry was used to identify the IgE-binding bands in birch pollen. Compared with PBS group, birch pollen sensitization and challenge BALB/c mice developed AHR, and IL4, IL5, IL6, IL10, and IL17 were significantly higher. Mice sensitized by birch pollen showed increased plasma levels of anti-BPE IgE, IgG1, and IgG2a. Histologic analyses showed that mice had peribranchial infiltration of inflammatory cells and mucosal hyperplasia. After SCIT, allergic symptoms effectively alleviated and kept for a long time. Interestingly, mice serum pool showed strong reactions to 70-kDa proteins. Mass spectrometry data suggests that the 70-kDa protein belongs to the HSP 70 family. SCIT inhibited the inflammatory response in the long term and a 70-kDa protein potentially belonging to the HSP 70 family plays a significant role in Chinese birch pollen-induced mice model.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Wang Fu Jing Street, Beijing, 100730, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Wang Fu Jing Street, Beijing, 100730, China.
| |
Collapse
|
7
|
Yao S, Wei B, Yu M, Meng X, He M, Yao R. Design, synthesis and evaluation of PD176252 analogues for ameliorating cisplatin-induced nephrotoxicity. MEDCHEMCOMM 2019; 10:757-763. [PMID: 31191866 PMCID: PMC6533884 DOI: 10.1039/c8md00632f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/19/2019] [Indexed: 11/21/2022]
Abstract
Cisplatin is a clinical chemotherapy drug for cancers; however, its remarkably high kidney toxicity and other toxicities pose a danger to patients. As the small molecule inhibitor of GRPR, PD176252 can inhibit the growth and proliferation of various cancer cells, but the characteristics of high toxicity and poor water solubility has limited its use as a drug. When we studied PD176252 for the reduction of toxicity of cisplatin, we modified its structure to synthesize 16 analogues. Surprisingly, the analogues showed reduced cisplatin-induced renal toxicity, and unlike PD176252, the analogues 5d and 5m were almost non-toxic to the normal HK2 cells. Furthermore, the analogue 5d and PD176252 were subjected to cisplatin-induced inflammatory response in vitro. The results showed that 5d was able to better prevent this condition by effectively inhibiting its inflammatory response. Thus, this study will help in clinically reducing the side effects of cisplatin.
Collapse
Affiliation(s)
- Sen Yao
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230000 , China .
| | - Biao Wei
- School of Pharmacy , Anhui Medical University , Hefei , 230032 , China
| | - Mingjun Yu
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230000 , China .
| | - Xiaoming Meng
- School of Pharmacy , Anhui Medical University , Hefei , 230032 , China
| | - Meng He
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230000 , China .
| | - Risheng Yao
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230000 , China .
- Engineering Research Center of Bioprocess , Ministry of Education , PRC , Hefei University of Technology , Hefei 230009 , China
| |
Collapse
|
8
|
Guo L, Wu X, Zhang Y, Wang F, Li J, Zhu J. Protective effects of gastrin-releasing peptide receptor antagonist RC-3095 in an animal model of hepatic ischemia/reperfusion injury. Hepatol Res 2019; 49:247-255. [PMID: 30656798 DOI: 10.1111/hepr.13315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
AIM We aimed to evaluate effects of RC-3095 on mice with hepatic ischemia followed by reperfusion (I/R) injury and further explore the possible underlying mechanism. METHODS Mice were subjected to partial hepatic ischemia for 60 min followed by different durations of reperfusion. Levels of gastrin-releasing peptide (GRP) and GRP receptor (GRPR) in the blood and liver were detected by enzyme-linked immunosorbent assay (ELISA) or western blotting (WB) after 3, 6, 12, or 24 h of reperfusion. RC-3095 or normal saline (control) was given i.p. at the time of reperfusion. Expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 in blood and liver samples were examined with ELISA. Neutrophil influx into the liver was assessed by flow cytometry and myeloperoxidase assay. Hematoxylin-eosin staining of the liver and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling assay were used to determine hepatic injury and hepatocellular necrosis. Activation of nuclear factor (NF)-κB and p38/extracellular regulated protein kinase (ERK) mitogen activated protein kinase (MAPK) was investigated with WB. RESULTS The expression of GRP was upregulated within 3 h after reperfusion and remained elevated for up to 24 h in the liver, whereas GRPR was also upregulated after 3 or 6 h of reperfusion, but returned to baseline levels within 24 h. RC-3095 significantly reduced the inflammatory hepatic injury, liver neutrophil accumulation, and hepatocellular apoptosis, probably by inhibiting activation of NF-κB or p38/ERK MAPK. CONCLUSION These findings supported that GRP-GRPR played an important role in hepatic I/R injury, and RC-3095 ameliorated liver damage by suppressing the inflammatory response and hepatocellular necrosis.
Collapse
Affiliation(s)
- Long Guo
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwan Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Anesthesiology, Central Hospital of Jiading District, Shanghai, China
| | - Fang Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Matsumoto Y, Yokoi H, Kimura T, Matsumoto Y, Kawada M, Arae K, Nakae S, Ikeda T, Matsumoto K, Sakurai H, Saito K. Gastrin-Releasing Peptide Is Involved in the Establishment of Allergic Rhinitis in Mice. Laryngoscope 2018; 128:E377-E384. [PMID: 30151920 DOI: 10.1002/lary.27394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Gastrin-releasing peptide (GRP) is a neuropeptide that targets transmembrane-type receptors. Its role in allergic rhinitis (AR) has yet to be investigated. The present study utilized the nasal mucosa of AR model mice to examine GRP and GRP receptor (GRPR) expression levels, localization, and other factors to evaluate their role in AR pathology. STUDY DESIGN In vivo study in an animal model. METHODS GRP and GRPR expression levels were examined in three different AR models established in BALB/c mice. In addition, a GRPR antagonist (RC-3095) was administered to AR mice to investigate its effect. The distribution of GRPR expression on mast cells in the nasal mucosa with AR was examined. Finally, we investigated the inhibitory effect of RC-3095 on allergy symptoms induced by histamine. RESULTS GRP and GRPR were highly expressed in the nasal mucosal epithelium and interstitial tissues surrounding the nasal glands in AR groups according to immunostaining. GRP and GRPR expression as determined by western blotting increased in the nasal mucosa as the degree of nasal sensitization increased. In addition, the average counts of sneezing and nasal rubbing after treatment in the AR + RC-3095 group were significantly lower than those in the AR + nasal saline group. Mast cells often colocalized with GRPR around nasal glands. Moreover, RC-3095 was effective in reducing sneezing induced by histamine. CONCLUSION The GRP-GRPR system is likely to be involved in allergic inflammation. This system may represent a novel therapeutic target for refractory AR. LEVEL OF EVIDENCE NA. Laryngoscope, E377-E384, 2018.
Collapse
Affiliation(s)
- Yuma Matsumoto
- Department of Otorhinolaryngology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hidenori Yokoi
- Department of Otorhinolaryngology, Kyorin University School of Medicine, Tokyo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshifumi Matsumoto
- Department of Otorhinolaryngology, Kyorin University School of Medicine, Tokyo, Japan
| | - Michitsugu Kawada
- Department of Otorhinolaryngology, Kyorin University School of Medicine, Tokyo, Japan
| | - Ken Arae
- Department of Immunology, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Ikeda
- Department of Otorhinolaryngology, Kyorin University School of Medicine, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Koichiro Saito
- Department of Otorhinolaryngology, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Kaczyńska K, Zając D, Wojciechowski P, Kogut E, Szereda-Przestaszewska M. Neuropeptides and breathing in health and disease. Pulm Pharmacol Ther 2017; 48:217-224. [PMID: 29223509 DOI: 10.1016/j.pupt.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
Abstract
Regulatory neuropeptides control and regulate breathing in physiological and pathophysiological conditions. While they have been identified in the neurons of major respiratory areas, they can be active not only at the central level, but also at the periphery via chemoreceptors, vagal afferents, or locally within lungs and airways. Some neuropeptides, such as leptin or substance P, are respiratory stimulants; others, such as neurotensin, produce variable effects on respiration depending on the site of application. Some neuropeptides have been implicated in pathological states, such as obstructive sleep apnea or asthma. This article provides a concise review of the possible role and functions of several selected neuropeptides in the process of breathing in health and disease and in lung pathologies.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| | - Dominika Zając
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Wojciechowski
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Kogut
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
11
|
Jaeger N, Czepielewski RS, Bagatini M, Porto BN, Bonorino C. Neuropeptide gastrin-releasing peptide induces PI3K/reactive oxygen species-dependent migration in lung adenocarcinoma cells. Tumour Biol 2017; 39:1010428317694321. [PMID: 28351312 DOI: 10.1177/1010428317694321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nerve fibers and neurotransmitters have increasingly been shown to have a role in tumor progression. Gastrin-releasing peptide is a neuropeptide linked to tumor aggressiveness, acting as an autocrine tumor growth factor by binding to its receptor, gastrin-releasing peptide receptor, expressed by many tumors. Although neuropeptides have been previously linked to tumor cell proliferation, more recent studies have uncovered roles for neuropeptides in chemotaxis and metastasis. Understanding the precise roles of such peptides in cancer is crucial to optimizing targeted therapy design. We have previously described that gastrin-releasing peptide acts directly as a chemotactic factor for neutrophils, dependent on PI3K, ERK, and p38. In this study, we investigated roles for gastrin-releasing peptide in lung adenocarcinoma. We asked if gastrin-releasing peptide would act as a proliferative and/or chemotactic stimulus for gastrin-releasing peptide receptor-expressing tumor cells. In A549 cells, a non-small cell lung carcinoma line, the treatment with gastrin-releasing peptide leads to activation of AKT and ERK1/2, and production of reactive oxygen species. Gastrin-releasing peptide induced migration of A549 cells, dependent on gastrin-releasing peptide receptor and PI3K, but not ERK. However, no proliferation was observed in these cells in response to gastrin-releasing peptide, and gastrin-releasing peptide did not promote resistance to treatment with a chemotherapy drug. Our results suggest that, similar to what happens in neutrophils, gastrin-releasing peptide is a migratory, rather than a proliferative, stimulus, for non-small cell lung carcinoma cells, indicating a putative role for gastrin-releasing peptide and gastrin-releasing peptide receptor in metastasis.
Collapse
Affiliation(s)
- Natália Jaeger
- 1 Laboratório de Imunologia Celular e Molecular, Hospital São Lucas, Instituto de Pesquisas Biomédicas (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,2 Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rafael Sanguinetti Czepielewski
- 1 Laboratório de Imunologia Celular e Molecular, Hospital São Lucas, Instituto de Pesquisas Biomédicas (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,2 Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maira Bagatini
- 1 Laboratório de Imunologia Celular e Molecular, Hospital São Lucas, Instituto de Pesquisas Biomédicas (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bárbara N Porto
- 3 Laboratório de Imunologia Clínica e Experimental, Hospital São Lucas, Instituto de Pesquisas Biomédicas (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Cristina Bonorino
- 1 Laboratório de Imunologia Celular e Molecular, Hospital São Lucas, Instituto de Pesquisas Biomédicas (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,2 Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
12
|
Czepielewski RS, Jaeger N, Marques PE, Antunes MM, Rigo MM, Alvarenga DM, Pereira RV, da Silva RD, Lopes TG, da Silva VD, Porto BN, Menezes GB, Bonorino C. GRPR antagonist protects from drug-induced liver injury by impairing neutrophil chemotaxis and motility. Eur J Immunol 2017; 47:646-657. [DOI: 10.1002/eji.201646394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 01/03/2017] [Accepted: 03/08/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Rafael S. Czepielewski
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
| | - Natália Jaeger
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
| | - Pedro E. Marques
- Departamento de Bioquímica e Imunologia; Laboratório de Imunofarmacologia, UFMG; Belo Horizonte MG Brazil
| | - Maísa M. Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; MG Brazil
| | - Maurício M. Rigo
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
| | - Débora M. Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; MG Brazil
| | - Rafaela V. Pereira
- Center for Gastrointestinal Biology, Departamento de Morfologia; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; MG Brazil
| | - Rodrigo D. da Silva
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
| | - Tiago G. Lopes
- Laboratório de Anatomia Patológica do Hospital São Lucas da PUCRS; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre RS Brazil
| | - Vinícius D. da Silva
- Laboratório de Anatomia Patológica do Hospital São Lucas da PUCRS; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre RS Brazil
| | - Bárbara N. Porto
- Laboratório de Imunologia Clínica e Experimental; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre RS Brazil
| | - Gustavo B. Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; MG Brazil
| | - Cristina Bonorino
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
- Department of Surgery, School of Medicine; University of California at San Diego; La Jolla California
| |
Collapse
|
13
|
Trisolini R, Valentini I, Tinelli C, Ferrari M, Guiducci GM, Parri SNF, Dalpiaz G, Cancellieri A. DIPNECH: Association Between Histopathology and Clinical Presentation. Lung 2016; 194:243-7. [PMID: 26880164 DOI: 10.1007/s00408-016-9854-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/05/2016] [Indexed: 02/01/2023]
Abstract
Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) is a rare disorder which can be an incidental finding in imaging tests performed during the investigation of another condition, or is the final diagnosis in patients evaluated for chronic obstructive complaints. To explore the possible association between specific histopathology features and the mode of clinical presentation, we retrieved the clinical, functional, radiological, and pathological data of all 13 patients diagnosed with DIPNECH at our Institution over a 14-year period (2000-2014). As compared to patients with incidental disease (6/13, 46 %), patients with symptomatic disease were younger [mean (SD): 57.7 vs. 68.7 years, p = 0.046], were more likely to have mosaic attenuation (100 vs. 0 %, p = 0.001) and small multiple nodules (100 vs. 17 %, p = 0.005) at CT, and showed a significantly higher number of foci of linear neuroendocrine proliferation [median (IQR): 28 (13-37) vs. 6 (5-13), p = 0.018] and of tumorlets [median (IQR): 10 (8-20) vs. 1 (1-1), p = 0.002] at histology. Incidental disease was found in association with pulmonary adenocarcinoma in five out of six patients (83.3 %). The results of our study provide preliminary evidence that symptomatic patients with DIPNECH represent a specific subset characterized by younger age and a higher burden of foci of neuroendocrine proliferation.
Collapse
Affiliation(s)
- Rocco Trisolini
- Interventional Pulmonology Unit, Policlinico Sant'Orsola-Malpighi, via Albertoni 15, 40138, Bologna, Italy.
- Thoracic Endoscopy and Pulmonology Unit, Maggiore Hospital, Bologna, Italy.
| | | | - Carmine Tinelli
- Clinical Epidemiology & Biometry Service, IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Kim KS, Cho DH, Yang HJ, Choi EK, Shin MH, Kim KH, Ahn KS, Ha IJ, Na YC, Um JY, Chung WS, Jung HJ, Jung SK, Jang HJ. Effects of the inhaled treatment of liriope radix on an asthmatic mouse model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:425-41. [PMID: 25967662 DOI: 10.1142/s0192415x15500275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As a treatment for allergic asthma, inhaled treatments such as bronchodilators that contain β2-agonists have an immediate effect, which attenuates airway obstructions and decreases airway hypersensitivity. However, bronchodilators only perform on a one off basis, but not consistently. Asthma is defined as a chronic inflammatory disease of the airways accompanying the overproduction of mucus, airway wall remodeling, bronchial hyperreactivity and airway obstruction. Liriope platyphylla radix extract (LPP), a traditional Korean medicine, has been thoroughly studied and found to be an effective anti-inflammatory medicine. Here, we demonstrate that an inhaled treatment of LPP can attenuate airway hyperresponsiveness (AHR) in an ovalbumin-induced asthmatic mouse model, compared to the saline-treated group (p < 0.01). Moreover, LPP decreases inflammatory cytokine levels, such as eotaxin (p < 0.05), IL-5 (p < 0.05), IL-13 (p < 0.001), RANTES (p < 0.01), and TNF-α (p < 0.05) in the bronchoalveolar lavage (BAL) fluid of asthmatic mice. A histopathological study was carried out to determine the effects of LPP inhalation on mice lung tissue. We performed UPLC/ESI-QTOF-MS, LC/MS, and GC/MS analyses to analyze the chemical constituents of LPP, finding that these are ophiopogonin D, spicatoside A, spicatoside B, benzyl alcohol, and 5-hydroxymethylfurfural. This study demonstrates the effect of an inhaled LPP treatment both on airway AHR and on the inflammatory response in an asthmatic mouse model. Hence, LPP holds significant promise as a nasal inhalant for the treatment of asthmatic airway disease.
Collapse
Affiliation(s)
- Ki-Suk Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lambert JA, Song W. Ozone-induced airway hyperresponsiveness: roles of ROCK isoforms. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1394-7. [PMID: 26519207 DOI: 10.1152/ajplung.00353.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022] Open
Abstract
Acute ozone (O3) inhalation has been shown to cause airway and pulmonary epithelial injury with accompanying inflammation responses. Robust evidence exists that O3 induces airway hyperresponsiveness (AHR) in humans and in animal models. Several pathways exist that culminate in airway smooth muscle contraction, but the mechanism(s) by which O3 elicits AHR are unclear. Here, we review the recent report by Kasahara et al. (Kasahara DI, Mathews JA, Park CY, Cho Y, Hunt G, Wurmbrand AP, Liao JK, Shore SA. Am J Physiol Lung Cell Mol Physiol 309: L736-L746, 2015.) describing the role of two Rho kinase (ROCK) isoforms in O3-induced AHR utilizing a murine haploinsufficiency model. Compared with wild-type (WT) mice, the authors report that ROCK1(+/-) and ROCK2(+/-) mice exhibited significantly reduced AHR following acute exposure to O3. Additionally, WT mice treated with fasudil, an FDA-approved ROCK1/2 inhibitor, recapitulated reduction in AHR as seen in ROCK haplotypes. It was suggested that, although the two ROCK isoforms are both induced by Rho, they have different mechanisms by which they mediate O3-induced AHR: ROCK1 via hyaluronan signaling vs. ROCK2 acting downstream of inflammation at the level of airway smooth muscle contraction. These observations provide an important framework to develop novel ROCK-targeting therapies for acute O3-induced AHR.
Collapse
Affiliation(s)
- James A Lambert
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Weifeng Song
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Kasahara DI, Mathews JA, Park CY, Cho Y, Hunt G, Wurmbrand AP, Liao JK, Shore SA. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L736-46. [PMID: 26276827 DOI: 10.1152/ajplung.00372.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 08/09/2015] [Indexed: 11/22/2022] Open
Abstract
Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction.
Collapse
Affiliation(s)
- David I Kasahara
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Joel A Mathews
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Chan Y Park
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Youngji Cho
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Gabrielle Hunt
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Allison P Wurmbrand
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - James K Liao
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Stephanie A Shore
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| |
Collapse
|
17
|
RC-3095, a selective gastrin-releasing peptide receptor antagonist, does not protect the lungs in an experimental model of lung ischemia-reperfusion injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:496378. [PMID: 25893195 PMCID: PMC4393930 DOI: 10.1155/2015/496378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/31/2015] [Accepted: 02/01/2015] [Indexed: 11/23/2022]
Abstract
RC-3095, a selective GRPR antagonist, has been shown to have anti-inflammatory properties in different models of inflammation. However, its protective effect on lungs submitted to lung ischemia-reperfusion injury has not been addressed before. Then, we administrated RC-3095 intravenously before and after lung reperfusion using an animal model of lung ischemia-reperfusion injury (LIRI) by clamping the pulmonary hilum. Twenty Wistar rats were subjected to an experimental model in four groups: SHAM, ischemia-reperfusion (IR), RC-Pre, and RC-Post. The final mean arterial pressure significantly decreased in IR and RC-Pre compared to their values before reperfusion (P < 0.001). The RC-Post group showed significant decrease of partial pressure of arterial oxygen at the end of the observation when compared to baseline (P = 0.005). Caspase-9 activity was significantly higher in the RC-Post as compared to the other groups (P < 0.013). No significant differences were observed in eNOS activity among the groups. The groups RC-Pre and RC-Post did not show any significant decrease in IL-1β (P = 0.159) and TNF-α (P = 0.260), as compared to IR. The histological score showed no significant differences among the groups. In conclusion, RC-3095 does not demonstrate a protective effect in our LIRI model. Additionally, its use after reperfusion seems to potentiate cell damage, stimulating apoptosis.
Collapse
|
18
|
Bao A, Li F, Zhang M, Chen Y, Zhang P, Zhou X. Impact of ozone exposure on the response to glucocorticoid in a mouse model of asthma: involvements of p38 MAPK and MKP-1. Respir Res 2014; 15:126. [PMID: 25287866 PMCID: PMC4196074 DOI: 10.1186/s12931-014-0126-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 10/02/2014] [Indexed: 11/12/2022] Open
Abstract
Background Molecular mechanisms involved in the oxidative stress induced glucocorticoids insensitivity remain elusive. The mitogen-activated protein kinase phosphatase (MKP) 1 mediates a part of glucocorticoids action and can be modified by exogenous oxidants. Whether oxidant ozone (O3) can affect the function of MKP-1 and hence blunt the response to corticotherapy is not clear. Methods Here we employed a murine model of asthma established with ovalbumin (OVA) sensitization and challenge to evaluate the influence of O3 on the inhibitory effect of dexamethasone on AHR and airway inflammation, and by administration of SB239063, a selective p38 MAPK inhibitor, to explore the underlying involvements of the activation of p38 MAPK and the expression of MKP-1. Results Ozone exposure not only aggravated the pulmonary inflammation and AHR, but also decreased the inhibitory effects of dexamethasone, accompanied by the elevated oxidative stress, airway neutrophilia, enhanced phosphorylation of p38 MAPK, and upregulated expression of IL-17. Administration of SB239063 caused significant inhibition of the p38 MAPK phosphorylation, alleviation of the airway neutrophilia, and decrement of the ozone-induced IL-17 expression, and partly restored the ozone-impaired effects of dexamethasone. Ozone exposure not only decreased the protein expression of MKP-1, but also diminished the dexamethasone-mediated induction process of MKP-1 mRNA and protein expression. Conclusions The glucocorticoids insensitivity elicited by ozone exposure on current asthma model may involve the enhanced phosphorylation of p38 MAPK and disturbed expression of MKP-1. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0126-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Zhou
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiao tong University, 100 Haining Road, Shanghai 200080China.
| |
Collapse
|
19
|
Shin MH, Park YJ, Kim KS, Cho DH, Uh IJ, Kim KH, Ha IJ, Chung WS, Jung HJ, Jung SK, Jang HJ. The anti-inflammatory effects of Alisma herb extract on allergic asthma mouse model. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0021-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Abstract
Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked.
Collapse
Affiliation(s)
- Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité Laval, Québec, Québec, Canada G1V 4G5
| |
Collapse
|
21
|
Sunday ME. Oxygen, gastrin-releasing Peptide, and pediatric lung disease: life in the balance. Front Pediatr 2014; 2:72. [PMID: 25101250 PMCID: PMC4103080 DOI: 10.3389/fped.2014.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/25/2014] [Indexed: 11/24/2022] Open
Abstract
Excessive oxygen (O2) can cause tissue injury, scarring, aging, and even death. Our laboratory is studying O2-sensing pulmonary neuroendocrine cells (PNECs) and the PNEC-derived product gastrin-releasing peptide (GRP). Reactive oxygen species (ROS) generated from exposure to hyperoxia, ozone, or ionizing radiation (RT) can induce PNEC degranulation and GRP secretion. PNEC degranulation is also induced by hypoxia, and effects of hypoxia are mediated by free radicals. We have determined that excessive GRP leads to lung injury with acute and chronic inflammation, leading to pulmonary fibrosis (PF), triggered via ROS exposure or by directly treating mice with exogenous GRP. In animal models, GRP-blockade abrogates lung injury, inflammation, and fibrosis. The optimal time frame for GRP-blockade and the key target cell types remain to be determined. The concept of GRP as a mediator of ROS-induced tissue damage represents a paradigm shift about how O2 can cause injury, inflammation, and fibrosis. The host PNEC response in vivo may depend on individual ROS sensing mechanisms and subsequent GRP secretion. Ongoing scientific and clinical investigations promise to further clarify the molecular pathways and clinical relevance of GRP in the pathogenesis of diverse pediatric lung diseases.
Collapse
Affiliation(s)
- Mary E Sunday
- Department of Pathology, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
22
|
Abstract
While considerable effort has been made to investigate the neural mechanisms of pain, much less effort has been devoted to itch, at least until recently. However, itch is now gaining increasing recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and rapidly-advancing field of research. The goal of the present forefront review is to describe the recent progress that has been made in our understanding of itch mechanisms.
Collapse
Affiliation(s)
- Tasuku Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, United States
| | | |
Collapse
|
23
|
Gastrin-releasing peptide receptor signaling in the integration of stress and memory. Neurobiol Learn Mem 2013; 112:44-52. [PMID: 24001571 DOI: 10.1016/j.nlm.2013.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022]
Abstract
Neuropeptides act as signaling molecules that regulate a range of aspects of brain function. Gastrin-releasing peptide (GRP) is a 27-amino acid mammalian neuropeptide, homolog of the amphibian peptide bombesin. GRP acts by binding to the GRP receptor (GRPR, also called BB2), a member of the G-protein coupled receptor (GPCR) superfamily. GRP produced by neurons in the central nervous system (CNS) plays a role in synaptic transmission by activating GRPRs located on postsynaptic membranes, influencing several aspects of brain function. Here we review the role of GRP/GRPR as a system mediating both stress responses and the formation and expression of memories for fearful events. GRPR signaling might integrate the processing of stress and fear with synaptic plasticity and memory, serving as an important component of the set of neurobiological systems underlying the enhancement of memory storage by aversive information.
Collapse
|
24
|
Radiation-induced lung injury is mitigated by blockade of gastrin-releasing peptide. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1248-54. [PMID: 23395092 DOI: 10.1016/j.ajpath.2012.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/27/2012] [Accepted: 12/12/2012] [Indexed: 02/06/2023]
Abstract
Gastrin-releasing peptide (GRP), secreted by pulmonary neuroendocrine cells, mediates oxidant-induced lung injury in animal models. Considering that GRP blockade abrogates pulmonary inflammation and fibrosis in hyperoxic baboons, we hypothesized that ionizing radiation triggers GRP secretion, contributing to inflammatory and fibrotic phases of radiation-induced lung injury (RiLI). Using C57BL/6 mouse model of pulmonary fibrosis developing ≥20 weeks after high-dose thoracic radiation (15 Gy), we injected small molecule 77427 i.p. approximately 1 hour after radiation then twice weekly for up to 20 weeks. Sham controls were anesthetized and placed in the irradiator without radiation. Lung paraffin sections were immunostained and quantitative image analyses performed. Mice exposed to radiation plus PBS had increased interstitial CD68(+) macrophages 4 weeks after radiation and pulmonary neuroendocrine cells hyperplasia 6 weeks after radiation. Ten weeks later radiation plus PBS controls had significantly increased pSmad2/3(+) nuclei/cm(2). GRP blockade with 77427 treatment diminished CD68(+), GRP(+), and pSmad2/3(+) cells. Finally, interstitial fibrosis was evident 20 weeks after radiation by immunostaining for α-smooth muscle actin and collagen deposition. Treatment with 77427 abrogated interstitial α-smooth muscle actin and collagen. Sham mice given 77427 did not differ significantly from PBS controls. Our data are the first to show that GRP blockade decreases inflammatory and fibrotic responses to radiation in mice. GRP blockade is a novel radiation fibrosis mitigating agent that could be clinically useful in humans exposed to radiation therapeutically or unintentionally.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Description of the recent findings of the biological roles of bombesin-like peptides and their receptors in lungs. RECENT FINDINGS Gastrin-releasing peptide (GRP) was involved in the airway inflammation in murine models of airway hyperreactivity. The circulating proGRP could serve as a valuable tumor marker for small-cell lung cancers, and the plasma level of proGRP is more stable compared with that of serum proGRP. Recent studies also shed light on the intracellular signaling pathways of bombesin receptor subtype-3 (BRS-3) activation in cultured human lung cancer cells. SUMMARY The relevant biology of BLPs and their receptors in lung cancers and other lung diseases still remains largely unknown. With the development of several highly specific BRS-3 agonists, recent studies provided some insights into the biological effects of BRS-3 in lungs.
Collapse
Affiliation(s)
- Xiao-Qun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China.
| | | |
Collapse
|
26
|
Context-specific protein network miner--an online system for exploring context-specific protein interaction networks from the literature. PLoS One 2012; 7:e34480. [PMID: 22493694 PMCID: PMC3321019 DOI: 10.1371/journal.pone.0034480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of deriving context-specific PINs for conducting exploratory analysis. RESULTS We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed query system. CPNM reports enriched information on protein interactions (with type and directionality), their network topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time, user-queried, up-to-date PubMed document processing, and prediction of PIN directionality. CONCLUSIONS CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/CPNM/.
Collapse
|
27
|
Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils. Proc Natl Acad Sci U S A 2011; 109:547-52. [PMID: 22203955 DOI: 10.1073/pnas.1110996109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neutrophil migration to inflamed sites is crucial for both the initiation of inflammation and resolution of infection, yet these cells are involved in perpetuation of different chronic inflammatory diseases. Gastrin-releasing peptide (GRP) is a neuropeptide that acts through G protein coupled receptors (GPCRs) involved in signal transmission in both central and peripheral nervous systems. Its receptor, gastrin-releasing peptide receptor (GRPR), is expressed by various cell types, and it is overexpressed in cancer cells. RC-3095 is a selective GRPR antagonist, recently found to have antiinflammatory properties in arthritis and sepsis models. Here we demonstrate that i.p. injection of GRP attracts neutrophils in 4 h, and attraction is blocked by RC-3095. Macrophage depletion or neutralization of TNF abrogates GRP-induced neutrophil recruitment to the peritoneum. In vitro, GRP-induced neutrophil migration was dependent on PLC-β2, PI3K, ERK, p38 and independent of Gαi protein, and neutrophil migration toward synovial fluid of arthritis patients was inhibited by treatment with RC-3095. We propose that GRPR is an alternative chemotactic receptor that may play a role in the pathogenesis of inflammatory disorders.
Collapse
|
28
|
Que LG, Stiles JV, Sundy JS, Foster WM. Pulmonary function, bronchial reactivity, and epithelial permeability are response phenotypes to ozone and develop differentially in healthy humans. J Appl Physiol (1985) 2011; 111:679-87. [PMID: 21700892 DOI: 10.1152/japplphysiol.00337.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effect of laboratory exposure to O₃ (220 ppb) and filtered air (FA) on respiratory physiology were evaluated at two time points (acute and 1 day postexposure) in healthy cohort (n = 138, 18-35 yr, 40% women) comprised mainly of Caucasian (60%) and African American (33.3%) subjects. Randomized exposures had a crossover design and durations of 2.25 h that included rest and treadmill walking. Airway responsiveness (AHR) to methacholine (Mch) and permeability of respiratory epithelium (EI) to hydrophilic radiomarker ((99m)Tc-DTPA, MW = 492), were measured at 1-day postexposure. O₃ significantly affected FEV₁ and FVC indices acutely with mean decrements from pre-exposure values on the order of 7.7 to 8.8% and 1.8 to 2.3% at 1-day post. Acute FEV₁ and FVC decreases were most robust in African American male subjects. At 1-day post, O₃ induced significant changes in AHR (slope of Mch dose response curve) and EI (Tc(99m)-DTPA clearance half-time). Based on conventional thresholds of response and dichotomous classification of subjects as responders and nonresponders, sensitivity to O₃ was shown to be nonuniform. Acute decrements ≥ 15% in FEV₁, a doubling of Mch slope, or ≥ 15% increase in EI developed in 20.3%, 23.1%, and 25.9%, respectively, of subjects evaluated. Results demonstrate a diffuse sensitivity to O₃ and physiological responses, either acutely (decreases in FEV₁) or 1 day post (development of AHR or change in EI) occur differentially in healthy young adults. Random overlap among subjects classified as responsive for respective FEV₁, AHR, and EI endpoints suggests these are separate and independent phenotypes of O₃ exposure.
Collapse
Affiliation(s)
- Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|