1
|
Feng J, Osmekhina E, Timonen JVI, Linder MB. Effects of Sup35 overexpression on the formation, morphology, and physiological functions of intracellular Sup35 assemblies. Appl Environ Microbiol 2025; 91:e0170324. [PMID: 39912644 PMCID: PMC11921396 DOI: 10.1128/aem.01703-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
The yeast prion protein Sup35 is aggregation-prone at high concentrations. De novo Sup35 prion formation occurs at a significantly increased rate after transient overexpression of Sup35 in the presence of another prion, [PIN+], but it is still a rare event. Recent studies uncovered an additional and seemingly more prevalent role of Sup35: at its physiological level, it undergoes phase separation to form reversible condensates in response to transient stress. Stress-induced reversible Sup35 condensation in the [psi-] strain enhances cellular fitness after stress ceases, whereas irreversible Sup35 aggregates in the [PSI+] strain do not confer this advantage. However, how Sup35 overexpression, which could potentially lead to irreversible aggregation, affects its condensation under stress conditions remains unclear. In this study, we used a combinatorial method to examine how different levels of Sup35 overproduction and cellular conditions affect the nature, formation, and physical properties of Sup35 assemblies in yeast cells, as well as their impacts on cellular growth. We observed notable morphological distinctions between irreversible Sup35 aggregates and reversible Sup35 condensates, possibly indicating different formation mechanisms. In addition, Sup35 aggregation caused by a very high overexpression level can strongly inhibit cell growth, diminish the formation of stress-induced condensates when Sup35 is completely aggregated, and impair cellular recovery from stress. Together, this study advances our fundamental understanding of the physical properties and formation mechanism of different Sup35 assemblies and their impacts on cellular growth. We conclude that in vivo studies are sensitive to overexpression and can lead to assembly routes that strongly affect functions. IMPORTANCE The role of condensates in living cells is often studied by overexpression. For understanding their physiological role, this can be problematic. Overexpression can shift cellular functions, thereby changing the system under study, and overexpression can also affect the phase behavior of condensates by shifting the position of the system in the underlying phase diagram. Our detailed study of overexpression of Sup35 in S. cerevisiae shows the interplay between these factors and highlights basic features of intracellular condensation such as the balance between condensation and aggregation as well as how cellular localization and responsiveness depend on protein levels. We also apply super-resolution microscopy to highlight details within the cells.
Collapse
Affiliation(s)
- Jianhui Feng
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Ekaterina Osmekhina
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Jaakko V. I. Timonen
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Markus B. Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Flynn JM, Joyce ME, Bolon DNA. Dominant negative mutations in yeast Hsp90 indicate triage decision mechanism targeting client proteins for degradation. Mol Biol Cell 2025; 36:ar5. [PMID: 39565679 PMCID: PMC11742116 DOI: 10.1091/mbc.e24-07-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
Dominant negative (DN) mutations provide valuable tools for investigating protein mechanisms but can be difficult to isolate because of their toxic effects. We used a mutational scanning approach to identify DN mutations in yeast Hsp90. In a previous mutational scan of the ATPase domain of Hsp90, we noticed that many mutations were at very low frequency after outgrowth in cells coexpressing wildtype Hsp90. Most of these depleted variants were located at the hinge of a lid that closes over ATP. To quantify toxic effects in the hinge regions, we performed mutational scanning using an inducible promoter and identified 113 variants with strong toxic effects. We analyzed individual DN mutations in detail and found that addition of the E33A mutation that prevents ATP hydrolysis by Hsp90 abrogated the DN phenotype. FRET assays performed on individual DN mutants indicate the linkage between ATPase activity and formation of the closed structure is disrupted. DN Hsp90 decreased the expression level of two model Hsp90 clients, glucocorticoid receptor (GR) and v-src kinase. Using MG132, we found that GR was rapidly destabilized in a proteasome-dependent manner. Biochemical analyses indicate that ATP hydrolysis by Hsp90 from open conformations can lead to ubiquitin-dependent client degradation.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Margot E. Joyce
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Daniel N. A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
3
|
Wu X, Xu M, Yang JR, Lu J. Genome-wide impact of codon usage bias on translation optimization in Drosophila melanogaster. Nat Commun 2024; 15:8329. [PMID: 39333102 PMCID: PMC11437122 DOI: 10.1038/s41467-024-52660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Accuracy and efficiency are fundamental to mRNA translation. Codon usage bias is widespread across species. Despite the long-standing association between optimized codon usage and improved translation, our understanding of its evolutionary basis and functional effects remains limited. Drosophila is widely used to study codon usage bias, but genome-scale experimental data are scarce. Using high-resolution mass spectrometry data from Drosophila melanogaster, we show that optimal codons have lower translation errors than nonoptimal codons after accounting for these biases. Genomic-scale analysis of ribosome profiling data shows that optimal codons are translated more rapidly than nonoptimal codons. Although we find no long-term selection favoring synonymous mutations in D. melanogaster after diverging from D. simulans, we identify signatures of positive selection driving codon optimization in the D. melanogaster population. These findings expand our understanding of the functional consequences of codon optimization and serve as a foundation for future investigations.
Collapse
Affiliation(s)
- Xinkai Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Mengze Xu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
Schmidlin K, Apodaca S, Newell D, Sastokas A, Kinsler G, Geiler-Samerotte K. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. eLife 2024; 13:RP94144. [PMID: 39255191 PMCID: PMC11386965 DOI: 10.7554/elife.94144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Kara Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Sam Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Daphne Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Alexander Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Grant Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Kerry Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
5
|
Potera K, Tomala K. Using yeasts for the studies of nonfunctional factors in protein evolution. Yeast 2024; 41:529-536. [PMID: 38895906 DOI: 10.1002/yea.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
The evolution of protein sequence is driven not only by factors directly related to protein function and shape but also by nonfunctional factors. Such factors in protein evolution might be categorized as those connected to energetic costs, synthesis efficiency, and avoidance of misfolding and toxicity. A common approach to studying them is correlational analysis contrasting them with some characteristics of the protein, like amino acid composition, but these features are interdependent. To avoid possible bias, empirical studies are needed, and not enough work has been done to date. In this review, we describe the role of nonfunctional factors in protein evolution and present an experimental approach using yeast as a suitable model organism. The focus of the proposed approach is on the potential negative impact on the fitness of mutations that change protein properties not related to function and the frequency of mutations that change these properties. Experimental results of testing the misfolding avoidance hypothesis as an explanation for why highly expressed proteins evolve slowly are inconsistent with correlational research results. Therefore, more efforts should be made to empirically test the effects of nonfunctional factors in protein evolution and to contrast these results with the results of the correlational analysis approach.
Collapse
Affiliation(s)
- Katarzyna Potera
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Katarzyna Tomala
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Ni Y, Qiao Y, Tian X, Li H, Meng Y, Li C, Du W, Sun T, Zhu K, Huang W, Yan H, Li J, Zhou R, Ding C, Gao X. Unraveling the mechanism of thermotolerance by Set302 in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0420223. [PMID: 38874428 PMCID: PMC11302353 DOI: 10.1128/spectrum.04202-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
The underlying mechanism of thermotolerance, which is a key virulence factor essential for pathogenic fungi such as Cryptococcus neoformans, is largely unexplored. In this study, our findings suggest that Set302, a homolog of Set3 and a subunit of histone deacetylase complex Set3C, contributes to thermotolerance in C. neoformans. Specifically, the deletion of the predicted Set3C core subunit, Set302, resulted in further reduction in the growth of C. neoformans at 39°C, and survival of transient incubation at 50°C. Transcriptomics analysis revealed that the expression levels of numerous heat stress-responsive genes altered at both 30°C and 39°C due to the lack of Set302. Notably, at 39°C, the absence of Set302 led to the downregulation of gene expression related to the ubiquitin-proteasome system (UPS). Based on the GFP-α-synuclein overexpression model to characterize misfolded proteins, we observed a pronounced accumulation of misfolded GFP-α-synuclein at 39°C, consequently inhibiting C. neoformans thermotolerance. Furthermore, the loss of Set302 exacerbated the accumulation of misfolded GFP-α-synuclein during heat stress. Interestingly, the set302∆ strain exhibited a similar phenotype under proteasome stress as it did at 39°C. Moreover, the absence of Set302 led to reduced production of capsule and melanin. set302∆ strain also displayed significantly reduced pathogenicity and colonization ability compared to the wild-type strain in the murine infection model. Collectively, our findings suggest that Set302 modulates thermotolerance by affecting the degradation of misfolded proteins and multiple virulence factors to mediate the pathogenicity of C. neoformans.IMPORTANCECryptococcus neoformans is a pathogenic fungus that poses a potential and significant threat to public health. Thermotolerance plays a crucial role in the wide distribution in natural environments and host colonization of this fungus. Herein, Set302, a critical core subunit for the integrity of histone deacetylase complex Set3C and widely distributed in various fungi and mammals, governs thermotolerance and affects survival at extreme temperatures as well as the formation of capsule and melanin in C. neoformans. Additionally, Set302 participates in regulating the expression of multiple genes associated with the ubiquitin-proteasome system (UPS). By eliminating misfolded proteins under heat stress, Set302 significantly contributes to the thermotolerance of C. neoformans. Moreover, Set302 regulates the pathogenicity and colonization ability of C. neoformans in a murine model. Overall, this study provides new insight into the mechanism of thermotolerance in C. neoformans.
Collapse
Affiliation(s)
- Yue Ni
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Yue Qiao
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Xing Tian
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Chao Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Wei Du
- Department of Clinical Laboratory, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Keting Zhu
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Huang
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - He Yan
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jia Li
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Renjie Zhou
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Xindi Gao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Schmidlin, Apodaca, Newell, Sastokas, Kinsler, Geiler-Samerotte. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562616. [PMID: 37905147 PMCID: PMC10614906 DOI: 10.1101/2023.10.17.562616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into 6 classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| |
Collapse
|
8
|
Namba S, Moriya H. Toxicity of the model protein 3×GFP arises from degradation overload, not from aggregate formation. J Cell Sci 2024; 137:jcs261977. [PMID: 38766715 DOI: 10.1242/jcs.261977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system.
Collapse
Affiliation(s)
- Shotaro Namba
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hisao Moriya
- Faculty of Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Flynn JM, Joyce ME, Bolon DNA. Dominant negative mutations in yeast Hsp90 reveal triage decision mechanism targeting client proteins for degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573950. [PMID: 38260708 PMCID: PMC10802349 DOI: 10.1101/2024.01.02.573950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Most of the fundamental processes of cells are mediated by proteins. However, the biologically-relevant mechanism of most proteins are poorly understood. Dominant negative mutations have provided a valuable tool for investigating protein mechanisms but can be difficult to isolate because of their toxic effects. We used a mutational scanning approach to identify dominant negative mutations in yeast Hsp90. Hsp90 is a chaperone that forms dynamic complexes with many co-chaperones and client proteins. In vitro analyses have elucidated some key biochemical states and structures of Hsp90, co-chaperones, and clients; however, the biological mechanism of Hsp90 remains unclear. For example, high throughput studies have found that many E3 ubiquitin ligases bind to Hsp90, but it is unclear if these are primarily clients or acting to tag other clients for degradation. We introduced a library of all point mutations in the ATPase domain of Hsp90 into yeast and noticed that 176 were more than 10-fold depleted at the earliest point that we could analyze. There were two hot spot regions of the depleted mutations that were located at the hinges of a loop that closes over ATP. We quantified the dominant negative growth effects of mutations in the hinge regions using a library of mutations driven by an inducible promoter. We analyzed individual dominant negative mutations in detail and found that addition of the E33A mutation that prevents ATP hydrolysis by Hsp90 abrogated the dominant negative phenotype. Pull-down experiments did not reveal any stable binding partners, indicating that the dominant effects were mediated by dynamic complexes. DN Hsp90 decreased the expression level of two model Hsp90 clients, glucocorticoid receptor (GR) and v-src kinase. Using MG132, we found that GR was rapidly destabilized in a proteasome-dependent fashion. These findings provide evidence that the binding of E3 ligases to Hsp90 may serve a quality control function fundamental to eukaryotes.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Margot E. Joyce
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Daniel N. A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| |
Collapse
|
10
|
Keyport Kik S, Christopher D, Glauninger H, Hickernell CW, Bard JAM, Lin KM, Squires AH, Ford M, Sosnick TR, Drummond DA. An adaptive biomolecular condensation response is conserved across environmentally divergent species. Nat Commun 2024; 15:3127. [PMID: 38605014 PMCID: PMC11009240 DOI: 10.1038/s41467-024-47355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cells must sense and respond to sudden maladaptive environmental changes-stresses-to survive and thrive. Across eukaryotes, stresses such as heat shock trigger conserved responses: growth arrest, a specific transcriptional response, and biomolecular condensation of protein and mRNA into structures known as stress granules under severe stress. The composition, formation mechanism, adaptive significance, and even evolutionary conservation of these condensed structures remain enigmatic. Here we provide a remarkable view into stress-triggered condensation, its evolutionary conservation and tuning, and its integration into other well-studied aspects of the stress response. Using three morphologically near-identical budding yeast species adapted to different thermal environments and diverged by up to 100 million years, we show that proteome-scale biomolecular condensation is tuned to species-specific thermal niches, closely tracking corresponding growth and transcriptional responses. In each species, poly(A)-binding protein-a core marker of stress granules-condenses in isolation at species-specific temperatures, with conserved molecular features and conformational changes modulating condensation. From the ecological to the molecular scale, our results reveal previously unappreciated levels of evolutionary selection in the eukaryotic stress response, while establishing a rich, tractable system for further inquiry.
Collapse
Affiliation(s)
- Samantha Keyport Kik
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Dana Christopher
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Caitlin Wong Hickernell
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jared A M Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Kyle M Lin
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | | | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Romero-Romero ML, Garcia-Seisdedos H. Agglomeration: when folded proteins clump together. Biophys Rev 2023; 15:1987-2003. [PMID: 38192350 PMCID: PMC10771401 DOI: 10.1007/s12551-023-01172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024] Open
Abstract
Protein self-association is a widespread phenomenon that results in the formation of multimeric protein structures with critical roles in cellular processes. Protein self-association can lead to finite protein complexes or open-ended, and potentially, infinite structures. This review explores the concept of protein agglomeration, a process that results from the infinite self-assembly of folded proteins. We highlight its differences from other better-described processes with similar macroscopic features, such as aggregation and liquid-liquid phase separation. We review the sequence, structural, and biophysical factors influencing protein agglomeration. Lastly, we briefly discuss the implications of agglomeration in evolution, disease, and aging. Overall, this review highlights the need to study protein agglomeration for a better understanding of cellular processes.
Collapse
Affiliation(s)
- M. L. Romero-Romero
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology, Dresden, Germany
| | - H. Garcia-Seisdedos
- Department of Structural and Molecular Biology, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
12
|
Bradley SA, Lehka BJ, Hansson FG, Adhikari KB, Rago D, Rubaszka P, Haidar AK, Chen L, Hansen LG, Gudich O, Giannakou K, Lengger B, Gill RT, Nakamura Y, de Bernonville TD, Koudounas K, Romero-Suarez D, Ding L, Qiao Y, Frimurer TM, Petersen AA, Besseau S, Kumar S, Gautron N, Melin C, Marc J, Jeanneau R, O'Connor SE, Courdavault V, Keasling JD, Zhang J, Jensen MK. Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast. Nat Chem Biol 2023; 19:1551-1560. [PMID: 37932529 PMCID: PMC10667104 DOI: 10.1038/s41589-023-01430-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2023] [Indexed: 11/08/2023]
Abstract
Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.
Collapse
Affiliation(s)
- Samuel A Bradley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Khem B Adhikari
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Paulina Rubaszka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ahmad K Haidar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Chen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Olga Gudich
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Konstantina Giannakou
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ryan T Gill
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | - David Romero-Suarez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Ding
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Yijun Qiao
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Thomas M Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anja A Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Sandeep Kumar
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Nicolas Gautron
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Celine Melin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Jillian Marc
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | | | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
13
|
Christensen S, Wernersson C, André I. Facile Method for High-throughput Identification of Stabilizing Mutations. J Mol Biol 2023; 435:168209. [PMID: 37479080 DOI: 10.1016/j.jmb.2023.168209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Characterizing the effects of mutations on stability is critical for understanding the function and evolution of proteins and improving their biophysical properties. High throughput folding and abundance assays have been successfully used to characterize missense mutations associated with reduced stability. However, screening for increased thermodynamic stability is more challenging since such mutations are rarer and their impact on assay readout is more subtle. Here, a multiplex assay for high throughput screening of protein folding was developed by combining deep mutational scanning, fluorescence-activated cell sorting, and deep sequencing. By analyzing a library of 2000 variants of Adenylate kinase we demonstrate that the readout of the method correlates with stability and that mutants with up to 13 °C increase in thermal melting temperature could be identified with low false positive rate. The discovery of many stabilizing mutations also enabled the analysis of general substitution patterns associated with increased stability in Adenylate kinase. This high throughput method to identify stabilizing mutations can be combined with functional screens to identify mutations that improve both stability and activity.
Collapse
Affiliation(s)
- Signe Christensen
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Camille Wernersson
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
McQuown AJ, Nelliat AR, Reif D, Sabbarini IM, Membreno BS, Wu CCC, Denic V. A Zpr1 co-chaperone mediates folding of eukaryotic translation elongation factor 1A via a GTPase cycle. Mol Cell 2023; 83:3108-3122.e13. [PMID: 37597513 PMCID: PMC10528422 DOI: 10.1016/j.molcel.2023.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
General protein folding is mediated by chaperones that utilize ATP hydrolysis to regulate client binding and release. Zinc-finger protein 1 (Zpr1) is an essential ATP-independent chaperone dedicated to the biogenesis of eukaryotic translation elongation factor 1A (eEF1A), a highly abundant GTP-binding protein. How Zpr1-mediated folding is regulated to ensure rapid Zpr1 recycling remains an unanswered question. Here, we use yeast genetics and microscopy analysis, biochemical reconstitution, and structural modeling to reveal that folding of eEF1A by Zpr1 requires GTP hydrolysis. Furthermore, we identify the highly conserved altered inheritance of mitochondria 29 (Aim29) protein as a Zpr1 co-chaperone that recognizes eEF1A in the GTP-bound, pre-hydrolysis conformation. This interaction dampens Zpr1⋅eEF1A GTPase activity and facilitates client exit from the folding cycle. Our work reveals that a bespoke ATP-independent chaperone system has mechanistic similarity to ATPase chaperones but unexpectedly relies on client GTP hydrolysis to regulate the chaperone-client interaction.
Collapse
Affiliation(s)
- Alexander J McQuown
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anjali R Nelliat
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dvir Reif
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ibrahim M Sabbarini
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Britnie Santiago Membreno
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Colin Chih-Chien Wu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Quan N, Eguchi Y, Geiler-Samerotte K. Intra- FCY1: a novel system to identify mutations that cause protein misfolding. Front Genet 2023; 14:1198203. [PMID: 37745845 PMCID: PMC10512024 DOI: 10.3389/fgene.2023.1198203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Protein misfolding is a common intracellular occurrence. Most mutations to coding sequences increase the propensity of the encoded protein to misfold. These misfolded molecules can have devastating effects on cells. Despite the importance of protein misfolding in human disease and protein evolution, there are fundamental questions that remain unanswered, such as, which mutations cause the most misfolding? These questions are difficult to answer partially because we lack high-throughput methods to compare the destabilizing effects of different mutations. Commonly used systems to assess the stability of mutant proteins in vivo often rely upon essential proteins as sensors, but misfolded proteins can disrupt the function of the essential protein enough to kill the cell. This makes it difficult to identify and compare mutations that cause protein misfolding using these systems. Here, we present a novel in vivo system named Intra-FCY1 that we use to identify mutations that cause misfolding of a model protein [yellow fluorescent protein (YFP)] in Saccharomyces cerevisiae. The Intra-FCY1 system utilizes two complementary fragments of the yeast cytosine deaminase Fcy1, a toxic protein, into which YFP is inserted. When YFP folds, the Fcy1 fragments associate together to reconstitute their function, conferring toxicity in media containing 5-fluorocytosine and hindering growth. But mutations that make YFP misfold abrogate Fcy1 toxicity, thus strains possessing misfolded YFP variants rise to high frequency in growth competition experiments. This makes such strains easier to study. The Intra-FCY1 system cancels localization of the protein of interest, thus can be applied to study the relative stability of mutant versions of diverse cellular proteins. Here, we confirm this method can identify novel mutations that cause misfolding, highlighting the potential for Intra-FCY1 to illuminate the relationship between protein sequence and stability.
Collapse
Affiliation(s)
- N. Quan
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Y. Eguchi
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - K. Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
16
|
Alings F, Scharmann K, Eggers C, Böttcher B, Sokołowski M, Shvetsova E, Sharma P, Roth J, Rashiti L, Glatt S, Brunke S, Leidel SA. Ncs2* mediates in vivo virulence of pathogenic yeast through sulphur modification of cytoplasmic transfer RNA. Nucleic Acids Res 2023; 51:8133-8149. [PMID: 37462076 PMCID: PMC10450187 DOI: 10.1093/nar/gkad564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 08/26/2023] Open
Abstract
Fungal pathogens threaten ecosystems and human health. Understanding the molecular basis of their virulence is key to develop new treatment strategies. Here, we characterize NCS2*, a point mutation identified in a clinical baker's yeast isolate. Ncs2 is essential for 2-thiolation of tRNA and the NCS2* mutation leads to increased thiolation at body temperature. NCS2* yeast exhibits enhanced fitness when grown at elevated temperatures or when exposed to oxidative stress, inhibition of nutrient signalling, and cell-wall stress. Importantly, Ncs2* alters the interaction and stability of the thiolase complex likely mediated by nucleotide binding. The absence of 2-thiolation abrogates the in vivo virulence of pathogenic baker's yeast in infected mice. Finally, hypomodification triggers changes in colony morphology and hyphae formation in the common commensal pathogen Candida albicans resulting in decreased virulence in a human cell culture model. These findings demonstrate that 2-thiolation of tRNA acts as a key mediator of fungal virulence and reveal new mechanistic insights into the function of the highly conserved tRNA-thiolase complex.
Collapse
Affiliation(s)
- Fiona Alings
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Karin Scharmann
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Mikołaj Sokołowski
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ekaterina Shvetsova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Joël Roth
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Leon Rashiti
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Wienecke AN, Barry ML, Pollard DA. Natural variation in codon bias and mRNA folding strength interact synergistically to modify protein expression in Saccharomyces cerevisiae. Genetics 2023; 224:iyad113. [PMID: 37310925 PMCID: PMC10411576 DOI: 10.1093/genetics/iyad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Codon bias and mRNA folding strength (mF) are hypothesized molecular mechanisms by which polymorphisms in genes modify protein expression. Natural patterns of codon bias and mF across genes as well as effects of altering codon bias and mF suggest that the influence of these 2 mechanisms may vary depending on the specific location of polymorphisms within a transcript. Despite the central role codon bias and mF may play in natural trait variation within populations, systematic studies of how polymorphic codon bias and mF relate to protein expression variation are lacking. To address this need, we analyzed genomic, transcriptomic, and proteomic data for 22 Saccharomyces cerevisiae isolates, estimated protein accumulation for each allele of 1,620 genes as the log of protein molecules per RNA molecule (logPPR), and built linear mixed-effects models associating allelic variation in codon bias and mF with allelic variation in logPPR. We found that codon bias and mF interact synergistically in a positive association with logPPR, and this interaction explains almost all the effects of codon bias and mF. We examined how the locations of polymorphisms within transcripts influence their effects and found that codon bias primarily acts through polymorphisms in domain-encoding and 3' coding sequences, while mF acts most significantly through coding sequences with weaker effects from untranslated regions. Our results present the most comprehensive characterization to date of how polymorphisms in transcripts influence protein expression.
Collapse
Affiliation(s)
- Anastacia N Wienecke
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret L Barry
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Daniel A Pollard
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
18
|
Kik SK, Christopher D, Glauninger H, Hickernell CW, Bard JAM, Ford M, Sosnick TR, Drummond DA. An adaptive biomolecular condensation response is conserved across environmentally divergent species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551061. [PMID: 37546789 PMCID: PMC10402146 DOI: 10.1101/2023.07.28.551061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cells must sense and respond to sudden maladaptive environmental changes-stresses-to survive and thrive. Across eukaryotes, stresses such as heat shock trigger conserved responses: growth arrest, a specific transcriptional response, and biomolecular condensation of protein and mRNA into structures known as stress granules under severe stress. The composition, formation mechanism, adaptive significance, and even evolutionary conservation of these condensed structures remain enigmatic. Here we provide an unprecedented view into stress-triggered condensation, its evolutionary conservation and tuning, and its integration into other well-studied aspects of the stress response. Using three morphologically near-identical budding yeast species adapted to different thermal environments and diverged by up to 100 million years, we show that proteome-scale biomolecular condensation is tuned to species-specific thermal niches, closely tracking corresponding growth and transcriptional responses. In each species, poly(A)-binding protein-a core marker of stress granules-condenses in isolation at species-specific temperatures, with conserved molecular features and conformational changes modulating condensation. From the ecological to the molecular scale, our results reveal previously unappreciated levels of evolutionary selection in the eukaryotic stress response, while establishing a rich, tractable system for further inquiry.
Collapse
Affiliation(s)
- Samantha Keyport Kik
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL
| | - Dana Christopher
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL
| | | | - Jared A. M. Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | | | - Tobin R. Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
19
|
Ingram D, Stan GB. Modelling genetic stability in engineered cell populations. Nat Commun 2023; 14:3471. [PMID: 37308512 DOI: 10.1038/s41467-023-38850-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Predicting the evolution of engineered cell populations is a highly sought-after goal in biotechnology. While models of evolutionary dynamics are far from new, their application to synthetic systems is scarce where the vast combination of genetic parts and regulatory elements creates a unique challenge. To address this gap, we here-in present a framework that allows one to connect the DNA design of varied genetic devices with mutation spread in a growing cell population. Users can specify the functional parts of their system and the degree of mutation heterogeneity to explore, after which our model generates host-aware transition dynamics between different mutation phenotypes over time. We show how our framework can be used to generate insightful hypotheses across broad applications, from how a device's components can be tweaked to optimise long-term protein yield and genetic shelf life, to generating new design paradigms for gene regulatory networks that improve their functionality.
Collapse
Affiliation(s)
- Duncan Ingram
- Centre of Excellence in Synthetic Biology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Guy-Bart Stan
- Centre of Excellence in Synthetic Biology and Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
20
|
Kinsler G, Schmidlin K, Newell D, Eder R, Apodaca S, Lam G, Petrov D, Geiler-Samerotte K. Extreme Sensitivity of Fitness to Environmental Conditions: Lessons from #1BigBatch. J Mol Evol 2023; 91:293-310. [PMID: 37237236 PMCID: PMC10276131 DOI: 10.1007/s00239-023-10114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
The phrase "survival of the fittest" has become an iconic descriptor of how natural selection works. And yet, precisely measuring fitness, even for single-celled microbial populations growing in controlled laboratory conditions, remains a challenge. While numerous methods exist to perform these measurements, including recently developed methods utilizing DNA barcodes, all methods are limited in their precision to differentiate strains with small fitness differences. In this study, we rule out some major sources of imprecision, but still find that fitness measurements vary substantially from replicate to replicate. Our data suggest that very subtle and difficult to avoid environmental differences between replicates create systematic variation across fitness measurements. We conclude by discussing how fitness measurements should be interpreted given their extreme environment dependence. This work was inspired by the scientific community who followed us and gave us tips as we live tweeted a high-replicate fitness measurement experiment at #1BigBatch.
Collapse
Affiliation(s)
| | - Kara Schmidlin
- Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - Daphne Newell
- Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Rachel Eder
- Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Sam Apodaca
- Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
- School of Life Sciences, Arizona State University, Tempe, USA
| | | | | | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, Arizona State University, Tempe, USA.
- School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
21
|
Serebryany E, Zhao VY, Park K, Bitran A, Trauger SA, Budnik B, Shakhnovich EI. Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins. Mol Cell 2023; 83:1936-1952.e7. [PMID: 37267908 PMCID: PMC10281453 DOI: 10.1016/j.molcel.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Bogdan Budnik
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Cui D, Liu L, Sun L, Lin X, Lin L, Zhang C. Genome-wide analysis reveals Hsf1 maintains high transcript abundance of target genes controlled by strong constitutive promoter in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:72. [PMID: 37118827 PMCID: PMC10141939 DOI: 10.1186/s13068-023-02322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND In synthetic biology, the strength of promoter elements is the basis for precise regulation of target gene transcription levels, which in turn increases the yield of the target product. However, the results of many researches proved that excessive transcription levels of target genes actually reduced the yield of the target product. This phenomenon has been found in studies using different microorganisms as chassis cells, thus, it becomes a bottleneck problem to improve the yield of the target product. RESULTS In this study, promoters PGK1p and TDH3p with different strengths were used to regulate the transcription level of alcohol acetyl transferase encoding gene ATF1. The results demonstrated that the strong promoter TDH3p decreased the production of ethyl acetate. The results of Real-time PCR proved that the transcription level of ATF1 decreased rapidly under the control of TDH3p, and the unfolded protein reaction was activated, which may be the reason for the abnormal production caused by the strong promoter. RNA-sequencing analysis showed that the overexpression of differential gene HSP30 increased the transcriptional abundance of ATF1 gene and production of ethyl acetate. Interestingly, deletion of the heat shock protein family (e.g., Hsp26, Hsp78, Hsp82) decreased the production of ethyl acetate, suggesting that the Hsp family was also involved in the regulation of ATF1 gene transcription. Furthermore, the results proved that the Hsf1, an upstream transcription factor of Hsps, had a positive effect on alleviating the unfolded protein response and that overexpression of Hsf1 reprogramed the pattern of ATF1 gene transcript levels. The combined overexpression of Hsf1 and Hsps further increased the production of ethyl acetate. In addition, kinase Rim15 may be involved in this regulatory pathway. Finally, the regulation effect of Hsf1 on recombinant strains constructed by other promoters was verified, which confirmed the universality of the strategy. CONCLUSIONS Our results elucidated the mechanism by which Rim15-Hsf1-Hsps pathway reconstructed the repression of high transcription level stress and increased the production of target products, thereby providing new insights and application strategies for the construction of recombinant strains in synthetic biology.
Collapse
Affiliation(s)
- Danyao Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ling Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lijing Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xue Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
23
|
Mehlhoff JD, Ostermeier M. Genes Vary Greatly in Their Propensity for Collateral Fitness Effects of Mutations. Mol Biol Evol 2023; 40:7043719. [PMID: 36798991 PMCID: PMC9999109 DOI: 10.1093/molbev/msad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Mutations can have deleterious fitness effects when they decrease protein specific activity or decrease active protein abundance. Mutations will also be deleterious when they cause misfolding or misinteractions that are toxic to the cell (i.e., independent of whether the mutations affect specific activity and abundance). The extent to which protein evolution is shaped by these and other collateral fitness effects is unclear in part because little is known of their frequency and magnitude. Using deep mutational scanning (DMS), we previously found at least 42% of missense mutations in the TEM-1 β-lactamase antibiotic resistance gene cause deleterious collateral fitness effects. Here, we used DMS to comprehensively determine the collateral fitness effects of missense mutations in three genes encoding the antibiotic resistance proteins New Delhi metallo-β-lactamase (NDM-1), chloramphenicol acetyltransferase I (CAT-I), and 2″-aminoglycoside nucleotidyltransferase (AadB). AadB (20%), CAT-I (0.9%), and NDM-1 (0.2%) were less susceptible to deleterious collateral fitness effects than TEM-1 (42%) indicating that genes have different propensities for these effects. As was observed with TEM-1, all the studied deleterious aadB mutants increased aggregation. However, aggregation did not correlate with collateral fitness effects for many of the deleterious mutants of CAT-I and NDM-1. Select deleterious mutants caused unexpected phenotypes to emerge. The introduction of internal start codons in CAT-1 caused loss of the episome and a mutation in aadB made its cognate antibiotic essential for growth. Our study illustrates how the complexity of the cell provides a rich environment for collateral fitness effects and new phenotypes to emerge.
Collapse
Affiliation(s)
- Jacob D Mehlhoff
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
24
|
Serebryany E, Zhao VY, Park K, Bitran A, Trauger SA, Budnik B, Shakhnovich EI. Systematic conformation-to-phenotype mapping via limited deep-sequencing of proteins. ARXIV 2023:2204.06159. [PMID: 36776823 PMCID: PMC9915745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Non-native conformations drive protein misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well-suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Victor Y. Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | | | - Bogdan Budnik
- Center for Mass Spectrometry, Harvard University, Cambridge, MA
| | | |
Collapse
|
25
|
Moreira-Ramos S, Arias L, Flores R, Katz A, Levicán G, Orellana O. Synonymous mutations in the phosphoglycerate kinase 1 gene induce an altered response to protein misfolding in Schizosaccharomyces pombe. Front Microbiol 2023; 13:1074741. [PMID: 36713198 PMCID: PMC9875302 DOI: 10.3389/fmicb.2022.1074741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background Proteostasis refers to the processes that regulate the biogenesis, folding, trafficking, and degradation of proteins. Any alteration in these processes can lead to cell malfunction. Protein synthesis, a key proteostatic process, is highly-regulated at multiple levels to ensure adequate adaptation to environmental and physiological challenges such as different stressors, proteotoxic conditions and aging, among other factors. Because alterations in protein translation can lead to protein misfolding, examining how protein translation is regulated may also help to elucidate in part how proteostasis is controlled. Codon usage bias has been implicated in the fine-tuning of translation rate, as more-frequent codons might be read faster than their less-frequent counterparts. Thus, alterations in codon usage due to synonymous mutations may alter translation kinetics and thereby affect the folding of the nascent polypeptide, without altering its primary structure. To date, it has been difficult to predict the effect of synonymous mutations on protein folding and cellular fitness due to a scarcity of relevant data. Thus, the purpose of this work was to assess the effect of synonymous mutations in discrete regions of the gene that encodes the highly-expressed enzyme 3-phosphoglycerate kinase 1 (pgk1) in the fission yeast Schizosaccharomyces pombe. Results By means of systematic replacement of synonymous codons along pgk1, we found slightly-altered protein folding and activity in a region-specific manner. However, alterations in protein aggregation, heat stress as well as changes in proteasome activity occurred independently of the mutated region. Concomitantly, reduced mRNA levels of the chaperones Hsp9 and Hsp16 were observed. Conclusion Taken together, these data suggest that codon usage bias of the gene encoding this highly-expressed protein is an important regulator of protein function and proteostasis.
Collapse
Affiliation(s)
- Sandra Moreira-Ramos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Loreto Arias
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Flores
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,*Correspondence: Omar Orellana,
| |
Collapse
|
26
|
Shibai A, Kotani H, Sakata N, Furusawa C, Tsuru S. Purifying selection enduringly acts on the sequence evolution of highly expressed proteins in Escherichia coli. G3 GENES|GENOMES|GENETICS 2022; 12:6694045. [PMID: 36073932 PMCID: PMC9635659 DOI: 10.1093/g3journal/jkac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The evolutionary speed of a protein sequence is constrained by its expression level, with highly expressed proteins evolving relatively slowly. This negative correlation between expression levels and evolutionary rates (known as the E–R anticorrelation) has already been widely observed in past macroevolution between species from bacteria to animals. However, it remains unclear whether this seemingly general law also governs recent evolution, including past and de novo, within a species. However, the advent of genomic sequencing and high-throughput phenotyping, particularly for bacteria, has revealed fundamental gaps between the 2 evolutionary processes and has provided empirical data opposing the possible underlying mechanisms which are widely believed. These conflicts raise questions about the generalization of the E–R anticorrelation and the relevance of plausible mechanisms. To explore the ubiquitous impact of expression levels on molecular evolution and test the relevance of the possible underlying mechanisms, we analyzed the genome sequences of 99 strains of Escherichia coli for evolution within species in nature. We also analyzed genomic mutations accumulated under laboratory conditions as a model of de novo evolution within species. Here, we show that E–R anticorrelation is significant in both past and de novo evolution within species in E. coli. Our data also confirmed ongoing purifying selection on highly expressed genes. Ongoing selection included codon-level purifying selection, supporting the relevance of the underlying mechanisms. However, the impact of codon-level purifying selection on the constraints in evolution within species might be smaller than previously expected from evolution between species.
Collapse
Affiliation(s)
- Atsushi Shibai
- Center for Biosystems Dynamics Research (BDR), RIKEN , Osaka 565-0874, Japan
| | - Hazuki Kotani
- Center for Biosystems Dynamics Research (BDR), RIKEN , Osaka 565-0874, Japan
| | - Natsue Sakata
- Center for Biosystems Dynamics Research (BDR), RIKEN , Osaka 565-0874, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research (BDR), RIKEN , Osaka 565-0874, Japan
- Universal Biology Institute, School of Science, The University of Tokyo , Tokyo 113-0033, Japan
| | - Saburo Tsuru
- Universal Biology Institute, School of Science, The University of Tokyo , Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Du M, Zhang S, Liu X, Xu C, Zhang X. Nondiploid cancer cells: Stress, tolerance and therapeutic inspirations. Biochim Biophys Acta Rev Cancer 2022; 1877:188794. [PMID: 36075287 DOI: 10.1016/j.bbcan.2022.188794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
Aberrant ploidy status is a prominent characteristic in malignant neoplasms. Approximately 90% of solid tumors and 75% of haematopoietic malignancies contain aneuploidy cells, and 30%-60% of tumors undergo whole-genome doubling, indicating that nondiploidy might be a prevalent genomic aberration in cancer. Although the role of aneuploid and polyploid cells in cancer remains to be elucidated, recent studies have suggested that nondiploid cells might be a dangerous minority that severely challenges cancer management. Ploidy shifts cause multiple fitness coasts for cancer cells, mainly including genomic, proteotoxic, metabolic and immune stresses. However, nondiploid comprises a well-adopted subpopulation, with many tolerance mechanisms evident in cells along with ploidy shifts. Aneuploid and polyploid cells elegantly maintain an autonomous balance between the stress and tolerance during adaptive evolution in cancer. Breaking the balance might provide some inspiration for ploidy-selective cancer therapy and alleviation of ploidy-related chemoresistance. To understand of the complex role and therapeutic potential of nondiploid cells better, we reviewed the survival stresses and adaptive tolerances within nondiploid cancer cells and summarized therapeutic ploidy-selective alterations for potential use in developing future cancer therapy.
Collapse
Affiliation(s)
- Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Shuo Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| |
Collapse
|
28
|
Abstract
The rediscovery of Mendel’s work showing that the heredity of phenotypes is controlled by discrete genes was followed by the reconciliation of Mendelian genetics with evolution by natural selection in the middle of the last century with the Modern Synthesis. In the past two decades, dramatic advances in genomic methods have facilitated the identification of the loci, genes, and even individual mutations that underlie phenotypic variants that are the putative targets of natural selection. Moreover, these methods have also changed how we can study adaptation by flipping the problem around, allowing us to first examine what loci show evidence of having been under selection, and then connecting these genetic variants to phenotypic variation. As a result, we now have an expanding list of actual genetic changes that underlie potentially adaptive phenotypic variation. Here, we synthesize how considering the effects of these adaptive loci in the context of cellular environments, genomes, organisms, and populations has provided new insights to the genetic architecture of adaptation.
Collapse
|
29
|
Toll-Riera M, Olombrada M, Castro-Giner F, Wagner A. A limit on the evolutionary rescue of an Antarctic bacterium from rising temperatures. SCIENCE ADVANCES 2022; 8:eabk3511. [PMID: 35857489 PMCID: PMC9286510 DOI: 10.1126/sciadv.abk3511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Climate change is gradual, but it can also cause brief extreme heat waves that can exceed the upper thermal limit of any one organism. To study the evolutionary potential of upper thermal tolerance, we evolved the cold-adapted Antarctic bacterium Pseudoalteromonas haloplanktis to survive at 30°C, beyond its ancestral thermal limit. This high-temperature adaptation occurred rapidly and in multiple populations. It involved genomic changes that occurred in a highly parallel fashion and mitigated the effects of protein misfolding. However, it also confronted a physiological limit, because populations failed to grow beyond 30°C. Our experiments aimed to facilitate evolutionary rescue by using a small organism with large populations living at temperatures several degrees below their upper thermal limit. Larger organisms with smaller populations and living at temperatures closer to their upper thermal tolerances are even more likely to go extinct during extreme heat waves.
Collapse
Affiliation(s)
- Macarena Toll-Riera
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Miriam Olombrada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
30
|
Christensen S, Rämisch S, André I. DnaK response to expression of protein mutants is dependent on translation rate and stability. Commun Biol 2022; 5:597. [PMID: 35710941 PMCID: PMC9203555 DOI: 10.1038/s42003-022-03542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Chaperones play a central part in the quality control system in cells by clearing misfolded and aggregated proteins. The chaperone DnaK acts as a sensor for molecular stress by recognising short hydrophobic stretches of misfolded proteins. As the level of unfolded protein is a function of protein stability, we hypothesised that the level of DnaK response upon overexpression of recombinant proteins would be correlated to stability. Using a set of mutants of the λ-repressor with varying thermal stabilities and a fluorescent reporter system, the effect of stability on DnaK response and protein abundance was investigated. Our results demonstrate that the initial DnaK response is largely dependent on protein synthesis rate but as the recombinantly expressed protein accumulates and homeostasis is approached the response correlates strongly with stability. Furthermore, we observe a large degree of cell-cell variation in protein abundance and DnaK response in more stable proteins.
Collapse
Affiliation(s)
- Signe Christensen
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| | | | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Namba S, Kato H, Shigenobu S, Makino T, Moriya H. Massive expression of cysteine-containing proteins causes abnormal elongation of yeast cells by perturbing the proteasome. G3 (BETHESDA, MD.) 2022; 12:jkac106. [PMID: 35485947 PMCID: PMC9157148 DOI: 10.1093/g3journal/jkac106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
The enhanced green fluorescent protein (EGFP) is considered to be a harmless protein because the critical expression level that causes growth defects is higher than that of other proteins. Here, we found that overexpression of EGFP, but not a glycolytic protein Gpm1, triggered the cell elongation phenotype in the budding yeast Saccharomyces cerevisiae. By the morphological analysis of the cell overexpressing fluorescent protein and glycolytic enzyme variants, we revealed that cysteine content was associated with the cell elongation phenotype. The abnormal cell morphology triggered by overexpression of EGFP was also observed in the fission yeast Schizosaccharomyces pombe. Overexpression of cysteine-containing protein was toxic, especially at high-temperature, while the toxicity could be modulated by additional protein characteristics. Investigation of protein aggregate formation, morphological abnormalities in mutants, and transcriptomic changes that occur upon overexpression of EGFP variants suggested that perturbation of the proteasome by the exposed cysteine of the overexpressed protein causes cell elongation. Overexpression of proteins with relatively low folding properties, such as EGFP, was also found to promote the formation of SHOTA (Seventy kDa Heat shock protein-containing, Overexpression-Triggered Aggregates), an intracellular aggregate that incorporates Hsp70/Ssa1, which induces a heat shock response, while it was unrelated to cell elongation. Evolutionary analysis of duplicated genes showed that cysteine toxicity may be an evolutionary bias to exclude cysteine from highly expressed proteins. The overexpression of cysteine-less moxGFP, the least toxic protein revealed in this study, would be a good model system to understand the physiological state of protein burden triggered by ultimate overexpression of harmless proteins.
Collapse
Affiliation(s)
- Shotaro Namba
- Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hisaaki Kato
- Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki, 444-8585 Aichi, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hisao Moriya
- Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
32
|
Cope AL, Gilchrist MA. Quantifying shifts in natural selection on codon usage between protein regions: a population genetics approach. BMC Genomics 2022; 23:408. [PMID: 35637464 PMCID: PMC9153123 DOI: 10.1186/s12864-022-08635-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Codon usage bias (CUB), the non-uniform usage of synonymous codons, occurs across all domains of life. Adaptive CUB is hypothesized to result from various selective pressures, including selection for efficient ribosome elongation, accurate translation, mRNA secondary structure, and/or protein folding. Given the critical link between protein folding and protein function, numerous studies have analyzed the relationship between codon usage and protein structure. The results from these studies have often been contradictory, likely reflecting the differing methods used for measuring codon usage and the failure to appropriately control for confounding factors, such as differences in amino acid usage between protein structures and changes in the frequency of different structures with gene expression. Results Here we take an explicit population genetics approach to quantify codon-specific shifts in natural selection related to protein structure in S. cerevisiae and E. coli. Unlike other metrics of codon usage, our approach explicitly separates the effects of natural selection, scaled by gene expression, and mutation bias while naturally accounting for a region’s amino acid usage. Bayesian model comparisons suggest selection on codon usage varies only slightly between helix, sheet, and coil secondary structures and, similarly, between structured and intrinsically-disordered regions. Similarly, in contrast to prevous findings, we find selection on codon usage only varies slightly at the termini of helices in E. coli. Using simulated data, we show this previous work indicating “non-optimal” codons are enriched at the beginning of helices in S. cerevisiae was due to failure to control for various confounding factors (e.g. amino acid biases, gene expression, etc.), and rather than selection to modulate cotranslational folding. Conclusions Our results reveal a weak relationship between codon usage and protein structure, indicating that differences in selection on codon usage between structures are slight. In addition to the magnitude of differences in selection between protein structures being slight, the observed shifts appear to be idiosyncratic and largely codon-specific rather than systematic reversals in the nature of selection. Overall, our work demonstrates the statistical power and benefits of studying selective shifts on codon usage or other genomic features from an explicitly evolutionary approach. Limitations of this approach and future potential research avenues are discussed. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08635-0).
Collapse
Affiliation(s)
- Alexander L Cope
- Genome Science and Technology, University of Tennessee, Knoxville, United States.,Current Address: Department of Genetics, Rutgers University, Piscataway, United States
| | - Michael A Gilchrist
- Genome Science and Technology, University of Tennessee, Knoxville, United States. .,National Institute for Mathematical and Biological Synthesis, Knoxville, TN, United States. .,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, United States.
| |
Collapse
|
33
|
Yoo H, Bard JA, Pilipenko E, Drummond DA. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates. Mol Cell 2022; 82:741-755.e11. [PMID: 35148816 PMCID: PMC8857057 DOI: 10.1016/j.molcel.2022.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.
Collapse
Affiliation(s)
- Haneul Yoo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jared A.M. Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Evgeny Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA,Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA,Lead Contact,Correspondence: (D.A.D.)
| |
Collapse
|
34
|
Zanetti M, Xian S, Dosset M, Carter H. The Unfolded Protein Response at the Tumor-Immune Interface. Front Immunol 2022; 13:823157. [PMID: 35237269 PMCID: PMC8882736 DOI: 10.3389/fimmu.2022.823157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor-immune interface has surged to primary relevance in an effort to understand the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past decades have indicated a role for the unfolded protein response (UPR) in modulating not only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the phenotype and altered function of immune cells such as myeloid cells and T cells. Emerging evidence also suggests that aneuploidy correlates with local immune dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy and immune cell dysregulation in a cell nonautonomous way. These new findings add considerable complexity to the organization of the tumor microenvironment (TME) and the origin of its altered function. In this review, we summarize these data and also discuss the role of aneuploidy as a negative regulator of local immunity.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Maurizio Zanetti, ; orcid.org/0000-0001-6346-8776
| | - Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
35
|
Duan Z, Zhang Y, Zhang T, Chen M, Song H. Proteome evaluation of homolog abundance patterns in Arachis hypogaea cv. Tifrunner. PLANT METHODS 2022; 18:6. [PMID: 35027052 PMCID: PMC8756696 DOI: 10.1186/s13007-022-00840-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cultivated peanut (Arachis hypogaea, AABB genome), an allotetraploid from a cross between A. duranensis (AA genome) and A. ipaensis (BB genome), is an important oil and protein crop with released genome and RNA-seq sequence datasets. These datasets provide the molecular foundation for studying gene expression and evolutionary patterns. However, there are no reports on the proteomic data of A. hypogaea cv. Tifrunner, which limits understanding of its gene function and protein level evolution. RESULTS This study sequenced the A. hypogaea cv. Tifrunner leaf and root proteome using the tandem mass tag technology. A total of 4803 abundant proteins were identified. The 364 differentially abundant proteins were estimated by comparing protein abundances between leaf and root proteomes. The differentially abundant proteins enriched the photosystem process. The number of biased abundant homeologs between the two sub-genomes A (87 homeologs in leaf and root) and B (69 and 68 homeologs in leaf and root, respectively) was not significantly different. However, homeologous proteins with biased abundances in different sub-genomes enriched different biological processes. In the leaf, homeologs biased to sub-genome A enriched biosynthetic and metabolic process, while homeologs biased to sub-genome B enriched iron ion homeostasis process. In the root, homeologs with biased abundance in sub-genome A enriched inorganic biosynthesis and metabolism process, while homeologs with biased abundance in sub-genome B enriched organic biosynthesis and metabolism process. Purifying selection mainly acted on paralogs and homeologs. The selective pressure values were negatively correlated with paralogous protein abundance. About 77.42% (24/31) homeologous and 80% (48/60) paralogous protein pairs had asymmetric abundance, and several protein pairs had conserved abundances in the leaf and root tissues. CONCLUSIONS This study sequenced the proteome of A. hypogaea cv. Tifrunner using the leaf and root tissues. Differentially abundant proteins were identified, and revealed functions. Paralog abundance divergence and homeolog bias abundance was elucidated. These results indicate that divergent abundance caused retention of homologs in A. hypogaea cv. Tifrunner.
Collapse
Affiliation(s)
- Zhenquan Duan
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yongli Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Tian Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Mingwei Chen
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
36
|
Stark C, Bautista-Leung T, Siegfried J, Herschlag D. Systematic investigation of the link between enzyme catalysis and cold adaptation. eLife 2022; 11:72884. [PMID: 35019838 PMCID: PMC8754429 DOI: 10.7554/elife.72884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Cold temperature is prevalent across the biosphere and slows the rates of chemical reactions. Increased catalysis has been predicted to be a dominant adaptive trait of enzymes to reduced temperature, and this expectation has informed physical models for enzyme catalysis and influenced bioprospecting strategies. To systematically test rate enhancement as an adaptive trait to cold, we paired kinetic constants of 2223 enzyme reactions with their organism's optimal growth temperature (TGrowth) and analyzed trends of rate constants as a function of TGrowth. These data do not support a general increase in rate enhancement in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there is prior evidence for temperature adaptation from a change in an active site residue that results in a tradeoff between activity and stability. Nevertheless, we found that little of the rate constant variation for 20 KSI variants was accounted for by TGrowth. In contrast, and consistent with prior expectations, we observed a correlation between stability and TGrowth across 433 proteins. These results suggest that temperature exerts a weaker selection pressure on enzyme rate constants than stability and that evolutionary forces other than temperature are responsible for the majority of enzymatic rate constant variation.
Collapse
Affiliation(s)
- Catherine Stark
- ChEM-H, Stanford University, Stanford, United States.,Department of Biochemistry, Stanford University, Stanford, United States
| | | | - Joanna Siegfried
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Daniel Herschlag
- ChEM-H, Stanford University, Stanford, United States.,Department of Biochemistry, Stanford University, Stanford, United States.,Department of Chemical Engineering, Stanford University, Stanford, United States
| |
Collapse
|
37
|
Kurop MK, Huyen CM, Kelly JH, Blagg BSJ. The heat shock response and small molecule regulators. Eur J Med Chem 2021; 226:113846. [PMID: 34563965 PMCID: PMC8608735 DOI: 10.1016/j.ejmech.2021.113846] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response (HSR) is a highly conserved cellular pathway that is responsible for stress relief and the refolding of denatured proteins [1]. When a host cell is exposed to conditions such as heat shock, ischemia, or toxic substances, heat shock factor-1 (HSF-1), a transcription factor, activates the genes that encode for the heat shock proteins (Hsps), which are a family of proteins that work alongside other chaperones to relieve stress and refold proteins that have been denatured (Burdon, 1986) [2]. Along with the refolding of denatured proteins, Hsps facilitate the removal of misfolded proteins by escorting them to degradation pathways, thereby preventing the accumulation of misfolded proteins [3]. Research has indicated that many pathological conditions, such as diabetes, cancer, neuropathy, cardiovascular disease, and aging have a negative impact on HSR function and are commonly associated with misfolded protein aggregation [4,5]. Studies indicate an interplay between mitochondrial homeostasis and HSF-1 levels can impact stress resistance, proteostasis, and malignant cell growth, which further support the role of Hsps in pathological and metabolic functions [6]. On the other hand, Hsp activation by specific small molecules can induce the heat shock response, which can afford neuroprotection and other benefits [7]. This review will focus on the modulation of Hsps and the HSR as therapeutic options to treat these conditions.
Collapse
Affiliation(s)
- Margaret K Kurop
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cormac M Huyen
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - John H Kelly
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
38
|
Schneider-Nachum G, Flynn J, Mavor D, Schiffer CA, Bolon DNA. Analyses of HIV proteases variants at the threshold of viability reveals relationships between processing efficiency and fitness. Virus Evol 2021; 7:veab103. [PMID: 35299788 PMCID: PMC8923237 DOI: 10.1093/ve/veab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Investigating the relationships between protein function and fitness provides keys for understanding biochemical mechanisms that underly evolution. Mutations with partial fitness defects can delineate the threshold of biochemical function required for viability. We utilized a previous deep mutational scan of HIV-1 protease (PR) to identify variants with 15–45 per cent defects in replication and analysed the biochemical function of eight variants (L10M, L10S, V32C, V32I, A71V, A71S, Q92I, Q92N). We purified each variant and assessed the efficiency of peptide cleavage for three cut sites (MA-CA, TF-PR, and PR-RT) as well as gel-based analyses of processing of purified Gag. The cutting activity of at least one site was perturbed relative to WT protease for all variants, consistent with cutting activity being a primary determinant of fitness effects. We examined the correlation of fitness defects with cutting activity of different sites. MA-CA showed the weakest correlation (R2 = 0.02) with fitness, suggesting relatively weak coupling with viral replication. In contrast, cutting of the TF-PR site showed the strongest correlation with fitness (R2 = 0.53). Cutting at the TF-PR site creates a new PR protein with a free N-terminus that is critical for activity. Our findings indicate that increasing the pool of active PR is rate limiting for viral replication, making this an ideal step to target with inhibitors.
Collapse
Affiliation(s)
- Gily Schneider-Nachum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Julia Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - David Mavor
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605, USA
| |
Collapse
|
39
|
Xian S, Dosset M, Almanza G, Searles S, Sahani P, Waller TC, Jepsen K, Carter H, Zanetti M. The unfolded protein response links tumor aneuploidy to local immune dysregulation. EMBO Rep 2021; 22:e52509. [PMID: 34698427 PMCID: PMC8647024 DOI: 10.15252/embr.202152509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Aneuploidy is a chromosomal abnormality associated with poor prognosis in many cancer types. Here, we tested the hypothesis that the unfolded protein response (UPR) mechanistically links aneuploidy and local immune dysregulation. Using a single somatic copy number alteration (SCNA) score inclusive of whole‐chromosome, chromosome arm, and focal alterations in a pan‐cancer analysis of 9,375 samples in The Cancer Genome Atlas (TCGA) database, we found an inverse correlation with a cytotoxicity (CYT) score across disease stages. Co‐expression patterns of UPR genes changed substantially between SCNAlow and SCNAhigh groups. Pathway activity scores showed increased activity of multiple branches of the UPR in response to aneuploidy. The PERK branch showed the strongest association with a reduced CYT score. The conditioned medium of aneuploid cells transmitted XBP1 splicing and caused IL‐6 and arginase 1 transcription in receiver bone marrow‐derived macrophages and markedly diminished the production of IFN‐γ and granzyme B in activated human T cells. We propose the UPR as a mechanistic link between aneuploidy and immune dysregulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Su Xian
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephen Searles
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Paras Sahani
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - T Cameron Waller
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Kristen Jepsen
- IGM Genomics Center, University of California, San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
40
|
Kane AJ, Brennan CM, Xu AE, Solís EJ, Terhorst A, Denic V, Amon A. Cell adaptation to aneuploidy by the environmental stress response dampens induction of the cytosolic unfolded-protein response. Mol Biol Cell 2021; 32:1557-1564. [PMID: 34191542 PMCID: PMC8351746 DOI: 10.1091/mbc.e21-03-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Aneuploid yeast cells are in a chronic state of proteotoxicity, yet do not constitutively induce the cytosolic unfolded protein response, or heat shock response (HSR) by heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single-chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Last, we show that in euploids, Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.
Collapse
Affiliation(s)
- Andrew J. Kane
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Christopher M. Brennan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Acer E. Xu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eric J. Solís
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Allegra Terhorst
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
41
|
Biesiadecka MK, Sliwa P, Tomala K, Korona R. An Overexpression Experiment Does Not Support the Hypothesis That Avoidance of Toxicity Determines the Rate of Protein Evolution. Genome Biol Evol 2021; 12:589-596. [PMID: 32259256 PMCID: PMC7250497 DOI: 10.1093/gbe/evaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
The misfolding avoidance hypothesis postulates that sequence mutations render proteins cytotoxic and therefore the higher the gene expression, the stronger the operation of selection against substitutions. This translates into prediction that relative toxicity of extant proteins is higher for those evolving faster. In the present experiment, we selected pairs of yeast genes which were paralogous but evolving at different rates. We expressed them artificially to high levels. We expected that toxicity would be higher for ones bearing more mutations, especially that overcrowding should rather exacerbate than reverse the already existing differences in misfolding rates. We did find that the applied mode of overexpression caused a considerable decrease in fitness and that the decrease was proportional to the amount of excessive protein. However, it was not higher for proteins which are normally expressed at lower levels (and have less conserved sequence). This result was obtained consistently, regardless whether the rate of growth or ability to compete in common cultures was used as a proxy for fitness. In additional experiments, we applied factors that reduce accuracy of translation or enhance structural instability of proteins. It did not change a consistent pattern of independence between the fitness cost caused by overexpression of a protein and the rate of its sequence evolution.
Collapse
Affiliation(s)
| | - Piotr Sliwa
- Department of Genetics, Faculty of Biotechnology, University of Rzeszów, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Cracow, Poland
| |
Collapse
|
42
|
Tye BW, Churchman LS. Hsf1 activation by proteotoxic stress requires concurrent protein synthesis. Mol Biol Cell 2021; 32:1800-1806. [PMID: 34191586 PMCID: PMC8684711 DOI: 10.1091/mbc.e21-01-0014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heat shock factor 1 (Hsf1) activation is responsible for increasing the abundance of protein-folding chaperones and degradation machinery in response to proteotoxic conditions that give rise to misfolded or aggregated proteins. Here we systematically explored the link between concurrent protein synthesis and proteotoxic stress in the budding yeast, Saccharomyces cerevisiae. Consistent with prior work, inhibiting protein synthesis before inducing proteotoxic stress prevents Hsf1 activation, which we demonstrated across a broad array of stresses and validate using orthogonal means of blocking protein synthesis. However, other stress-dependent transcription pathways remained activatable under conditions of translation inhibition. Titrating the protein denaturant ethanol to a higher concentration results in Hsf1 activation in the absence of translation, suggesting extreme protein-folding stress can induce proteotoxicity independent of protein synthesis. Furthermore, we demonstrate this connection under physiological conditions where protein synthesis occurs naturally at reduced rates. We find that disrupting the assembly or subcellular localization of newly synthesized proteins is sufficient to activate Hsf1. Thus, new proteins appear to be especially sensitive to proteotoxic conditions, and we propose that their aggregation may represent the bulk of the signal that activates Hsf1 in the wake of these insults.
Collapse
Affiliation(s)
- Blake W Tye
- Department of Genetics, Harvard Medical School, Boston, MA 02115.,Program in Chemical Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
43
|
Razban RM, Dasmeh P, Serohijos AWR, Shakhnovich EI. Avoidance of protein unfolding constrains protein stability in long-term evolution. Biophys J 2021; 120:2413-2424. [PMID: 33932438 PMCID: PMC8390877 DOI: 10.1016/j.bpj.2021.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022] Open
Abstract
Every amino acid residue can influence a protein's overall stability, making stability highly susceptible to change throughout evolution. We consider the distribution of protein stabilities evolutionarily permittable under two previously reported protein fitness functions: flux dynamics and misfolding avoidance. We develop an evolutionary dynamics theory and find that it agrees better with an extensive protein stability data set for dihydrofolate reductase orthologs under the misfolding avoidance fitness function rather than the flux dynamics fitness function. Further investigation with ribonuclease H data demonstrates that not any misfolded state is avoided; rather, it is only the unfolded state. At the end, we discuss how our work pertains to the universal protein abundance-evolutionary rate correlation seen across organisms' proteomes. We derive a closed-form expression relating protein abundance to evolutionary rate that captures Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens experimental trends without fitted parameters.
Collapse
Affiliation(s)
- Rostam M Razban
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Pouria Dasmeh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; Departement de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
44
|
Bao X, Zhang Z, Guo Y, Buser C, Kochounian H, Wu N, Li X, He S, Sun B, Ross-Cisneros FN, Sadun AA, Huang L, Zhao M, Fong HKW. Human RGR Gene and Associated Features of Age-Related Macular Degeneration in Models of Retina-Choriocapillaris Atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1454-1473. [PMID: 34022179 DOI: 10.1016/j.ajpath.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 01/28/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive eye disease and the most common cause of blindness among the elderly. AMD is characterized by early atrophy of the choriocapillaris and retinal pigment epithelium (RPE). Although AMD is a multifactorial disease with many environmental and genetic risk factors, a hallmark of the disease is the origination of extracellular deposits, or drusen, between the RPE and Bruch membrane. Human retinal G-protein-coupled receptor (RGR) gene generates an exon-skipping splice variant of RGR-opsin (RGR-d; NP_001012740) that is a persistent component of small and large drusen. Herein, the findings show that abnormal RGR proteins, including RGR-d, are pathogenic in an animal retina with degeneration of the choriocapillaris, RPE, and photoreceptors. A frameshift truncating mutation resulted in severe retinal degeneration with a continuous band of basal deposits along the Bruch membrane. RGR-d produced less severe disease with choriocapillaris and RPE atrophy, including focal accumulation of abnormal RGR-d protein at the basal boundary of the RPE. Degeneration of the choriocapillaris was marked by a decrease in endothelial CD31 protein and choriocapillaris breakdown at the ultrastructural level. Fundus lesions with patchy depigmentation were characteristic of old RGR-d mice. RGR-d was mislocalized in cultured cells and caused a strong cell growth defect. These results uphold the notion of a potential hidden link between AMD and a high-frequency RGR allele.
Collapse
Affiliation(s)
- Xuan Bao
- Department of Ophthalmology, Beijing Key Laboratory for the Diagnosis and Treatment of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China; Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California
| | - Zhaoxia Zhang
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California; Shanxi Eye Hospital, Taiyuan, China
| | - Yanjiang Guo
- Department of Ophthalmology, Beijing Key Laboratory for the Diagnosis and Treatment of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | | | | | - Nancy Wu
- Norris Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Xiaohua Li
- Henan Eye Institute, Henan Provincial People's Hospital, Henan, China
| | - Shikun He
- Department of Pathology, Keck School of Medicine of USC, Los Angeles, California
| | - Bin Sun
- Shanxi Eye Hospital, Taiyuan, China
| | | | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Lvzhen Huang
- Department of Ophthalmology, Beijing Key Laboratory for the Diagnosis and Treatment of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Beijing Key Laboratory for the Diagnosis and Treatment of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China.
| | - Henry K W Fong
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California; University of Southern California Roski Eye Institute, Los Angeles, California; Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California.
| |
Collapse
|
45
|
Endoplasmic reticulum stress regulates the intestinal stem cell state through CtBP2. Sci Rep 2021; 11:9892. [PMID: 33972635 PMCID: PMC8111031 DOI: 10.1038/s41598-021-89326-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Enforcing differentiation of cancer stem cells is considered as a potential strategy to sensitize colorectal cancer cells to irradiation and chemotherapy. Activation of the unfolded protein response, due to endoplasmic reticulum (ER) stress, causes rapid stem cell differentiation in normal intestinal and colon cancer cells. We previously found that stem cell differentiation was mediated by a Protein kinase R-like ER kinase (PERK) dependent arrest of mRNA translation, resulting in rapid protein depletion of WNT-dependent transcription factor c-MYC. We hypothesize that ER stress dependent stem cell differentiation may rely on the depletion of additional transcriptional regulators with a short protein half-life that are rapidly depleted due to a PERK-dependent translational pause. Using a novel screening method, we identify novel transcription factors that regulate the intestinal stem cell fate upon ER stress. ER stress was induced in LS174T cells with thapsigargin or subtilase cytotoxin (SubAB) and immediate alterations in nuclear transcription factor activity were assessed by the CatTFRE assay in which transcription factors present in nuclear lysate are bound to plasmid DNA, co-extracted and quantified using mass-spectrometry. The role of altered activity of transcription factor CtBP2 was further examined by modification of its expression levels using CAG-rtTA3-CtBP2 overexpression in small intestinal organoids, shCtBP2 knockdown in LS174T cells, and familial adenomatous polyposis patient-derived organoids. CtBP2 overexpression organoids were challenged by ER stress and ionizing irradiation. We identified a unique set of transcription factors with altered activation upon ER stress. Gene ontology analysis showed that transcription factors with diminished binding were involved in cellular differentiation processes. ER stress decreased CtBP2 protein expression in mouse small intestine. ER stress induced loss of CtBP2 expression which was rescued by inhibition of PERK signaling. CtBP2 was overexpressed in mouse and human colorectal adenomas. Inducible CtBP2 overexpression in organoids conferred higher clonogenic potential, resilience to irradiation-induced damage and a partial rescue of ER stress-induced loss of stemness. Using an unbiased proteomics approach, we identified a unique set of transcription factors for which DNA-binding activity is lost directly upon ER stress. We continued investigating the function of co-regulator CtBP2, and show that CtBP2 mediates ER stress-induced loss of stemness which supports the intestinal stem cell state in homeostatic stem cells and colorectal cancer cells.
Collapse
|
46
|
Labourel F, Rajon E. Resource uptake and the evolution of moderately efficient enzymes. Mol Biol Evol 2021; 38:3938-3952. [PMID: 33964160 PMCID: PMC8382906 DOI: 10.1093/molbev/msab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes speed up reactions that would otherwise be too slow to sustain the metabolism of selfreplicators. Yet, most enzymes seem only moderately efficient, exhibiting kinetic parameters orders of magnitude lower than their expected physically achievable maxima and spanning over surprisingly large ranges of values. Here, we question how these parameters evolve using a mechanistic model where enzyme efficiency is a key component of individual competition for resources. We show that kinetic parameters are under strong directional selection only up to a point, above which enzymes appear to evolve under near-neutrality, thereby confirming the qualitative observation of other modeling approaches. While the existence of a large fitness plateau could potentially explain the extensive variation in enzyme features reported, we show using a population genetics model that such a widespread distribution is an unlikely outcome of evolution on a common landscape, as mutation–selection–drift balance occupy a narrow area even when very moderate biases towards lower efficiency are considered. Instead, differences in the evolutionary context encountered by each enzyme should be involved, such that each evolves on an individual, unique landscape. Our results point to drift and effective population size playing an important role, along with the kinetics of nutrient transporters, the tolerance to high concentrations of intermediate metabolites, and the reversibility of reactions. Enzyme concentration also shapes selection on kinetic parameters, but we show that the joint evolution of concentration and efficiency does not yield extensive variance in evolutionary outcomes when documented costs to protein expression are applied.
Collapse
Affiliation(s)
- Florian Labourel
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Etienne Rajon
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| |
Collapse
|
47
|
Piirainen MA, Frey AD. Investigating the role of ERAD on antibody processing in glycoengineered Saccharomyces cerevisiae. FEMS Yeast Res 2021; 20:5700285. [PMID: 31922547 DOI: 10.1093/femsyr/foaa002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
N-glycosylation plays an important role in the endoplasmic reticulum quality control (ERQC). N-glycan biosynthesis pathways have been engineered in yeasts and fungi to enable the production of therapeutic glycoproteins with human-compatible N-glycosylation, and some glycoengineering approaches alter the synthesis of the lipid-linked oligosaccharide (LLO). Because the effects of LLO engineering on ERQC are currently unknown, we characterized intracellular processing of IgG in glycoengineered Δalg3 Δalg11 Saccharomyces cerevisiae strain and analyzed how altered LLO structures affect endoplasmic reticulum-associated degradation (ERAD). Intracellular IgG light and heavy chain molecules expressed in Δalg3 Δalg11 strain are ERAD substrates and targeted to ERAD independently of Yos9p and Htm1p, whereas in the presence of ALG3 ERAD targeting is dependent on Yos9p but does not require Htm1p. Blocking of ERAD accumulated ER and post-Golgi forms of IgG and increased glycosylation of matα secretion signal but did not improve IgG secretion. Our results show ERAD targeting of a heterologous glycoprotein in yeast, and suggest that proteins in the ER can be targeted to ERAD via other mechanisms than the Htm1p-Yos9p-dependent route when the LLO biosynthesis is altered.
Collapse
Affiliation(s)
- Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Finland, Kemistintie 1, 02150 Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Finland, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
48
|
Storchova Z. Consequences of mitotic failure - The penalties and the rewards. Semin Cell Dev Biol 2021; 117:149-158. [PMID: 33820699 DOI: 10.1016/j.semcdb.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells are usually diploid, meaning they contain two copies of each chromosome. However, aberrant chromosome numbers due to both, chromosome gains and losses, are often observed in nature. They can occur as a planned developmental step, but are more often an uninvited result of mitotic failure. Recent discoveries have improved our understanding of the cellular effects of aneuploidy - uneven chromosome numbers, and polyploidy - multiplication of entire sets of chromosomes - in eukaryotic cells. The results show that mitotic errors lead to rapid and extensive modifications of many cellular processes and affect proliferation, proteome balance, genome stability and more. The findings picture the cellular response to aneuploidy and polyploidy as a complex, tissue and context dependent network of events. Here I review the latest discoveries, with an emphasis on pathological aspects of aneuploidy and polyploidy in human cells.
Collapse
Affiliation(s)
- Zuzana Storchova
- Department of Molecular Genetics, TU Kaiserslautern, Paul Ehrlich Str. 24, 67663 Kaiserslautern, Germany.
| |
Collapse
|
49
|
Romero-Suarez D, Wulff T, Rong Y, Jakočiu̅nas T, Yuzawa S, Keasling JD, Jensen MK. A Reporter System for Cytosolic Protein Aggregates in Yeast. ACS Synth Biol 2021; 10:466-477. [PMID: 33577304 DOI: 10.1021/acssynbio.0c00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein misfolding and aggregation are linked to neurodegenerative diseases of mammals and suboptimal protein expression within biotechnology. Tools for monitoring protein aggregates are therefore useful for studying disease-related aggregation and for improving soluble protein expression in heterologous hosts for biotechnology purposes. In this work, we developed a promoter-reporter system for aggregated protein on the basis of the yeast native response to misfolded protein. To this end, we first studied the proteome of yeast in response to the expression of folded soluble and aggregation-prone protein baits and identified genes encoding proteins related to protein folding and the response to heat stress as well as the ubiquitin-proteasome system that are over-represented in cells expressing an aggregation-prone protein. From these data, we created and validated promoter-reporter constructs and further engineered the best performing promoters by increasing the copy number of upstream activating sequences and optimization of culture conditions. Our best promoter-reporter has an output dynamic range of approximately 12-fold upon expression of the aggregation-prone protein and responded to increasing levels of aggregated protein. Finally, we demonstrate that the system can discriminate between yeast cells expressing different prion precursor proteins and select the cells expressing folded soluble protein from mixed populations. Our reporter system is thus a simple tool for diagnosing protein aggregates in living cells and should be applicable for the health and biotechnology industries.
Collapse
Affiliation(s)
- David Romero-Suarez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Yixin Rong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tadas Jakočiu̅nas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Satoshi Yuzawa
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, Guangdong 518055, China
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
50
|
Work JJ, Brandman O. Adaptability of the ubiquitin-proteasome system to proteolytic and folding stressors. J Cell Biol 2021; 220:211650. [PMID: 33382395 PMCID: PMC7780722 DOI: 10.1083/jcb.201912041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/02/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Aging, disease, and environmental stressors are associated with failures in the ubiquitin-proteasome system (UPS), yet a quantitative understanding of how stressors affect the proteome and how the UPS responds is lacking. Here we assessed UPS performance and adaptability in yeast under stressors using quantitative measurements of misfolded substrate stability and stress-dependent UPS regulation by the transcription factor Rpn4. We found that impairing degradation rates (proteolytic stress) and generating misfolded proteins (folding stress) elicited distinct effects on the proteome and on UPS adaptation. Folding stressors stabilized proteins via aggregation rather than overburdening the proteasome, as occurred under proteolytic stress. Still, the UPS productively adapted to both stressors using separate mechanisms: proteolytic stressors caused Rpn4 stabilization while folding stressors increased RPN4 transcription. In some cases, adaptation completely prevented loss of UPS substrate degradation. Our work reveals the distinct effects of proteotoxic stressors and the versatility of cells in adapting the UPS.
Collapse
Affiliation(s)
- Jeremy J Work
- Department of Biochemistry, Stanford University, Stanford, CA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA
| |
Collapse
|