1
|
Rigby Dames BA, Kilili H, Charvet CJ, Díaz-Barba K, Proulx MJ, de Sousa AA, Urrutia AO. Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases. PROGRESS IN BRAIN RESEARCH 2023; 275:165-215. [PMID: 36841568 PMCID: PMC11191546 DOI: 10.1016/bs.pbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brier A Rigby Dames
- Department of Computer Science, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom.
| | - Huseyin Kilili
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Karina Díaz-Barba
- Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom; Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México.
| |
Collapse
|
2
|
Boldsen JL, Milner GR, Ousley SD. Paleodemography: From archaeology and skeletal age estimation to life in the past. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:115-150. [PMID: 36787786 DOI: 10.1002/ajpa.24462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Much of paleodemography, an interdisciplinary field with strong ties to archaeology, among other disciplines, is oriented toward clarifying the life experiences of past people and why they changed over time. We focus on how human skeletons contribute to our understanding of preindustrial demographic regimes, including when changes took place that led to the world as we know it today. Problems with existing paleodemographic practices are highlighted, as are promising directions for future work. The latter requires both better age estimates and innovative methods to handle data appropriately. Age-at-death estimates for adult skeletons are a particular problem, especially for adults over 50 years that undoubtedly are mistakenly underrepresented in published studies of archaeological skeletons. Better age estimates for the entirety of the lifespan are essential to generate realistic distributions of age at death. There are currently encouraging signs that after about a half-century of intensive, and sometimes contentious, research, paleodemography is poised to contribute much to understandings of evolutionary processes, the structure of past populations, and human-disease interaction, among other topics.
Collapse
Affiliation(s)
- Jesper L Boldsen
- ADBOU, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | - George R Milner
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen D Ousley
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Chevalier T, Tignères M. Age-related site-specific modifications in diaphyseal structural properties of the human fibula: Furrows and cross-sectional geometry. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 173:535-555. [PMID: 33460069 DOI: 10.1002/ajpa.24108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Fibular structure is related to locomotor behavior, which allows an exploration of mobility in past human populations with diaphyseal cross-sectional geometry (CSG). However, bone structure depends on age-related changes. Nonmechanical alterations can affect biomechanical investigations. In this study, we examined how the cortical area and the variables used as functional markers in the fibular diaphysis (i.e., CSG and furrows) change with aging. We predict classic and specific modifications, and we discuss functional interpretations based on bone structure. MATERIALS AND METHODS The sample consisted of 124 individuals of known age in whom the fibular furrow depths were measured with calipers. Microcomputed tomography (micro-CT) scanning of 38 individuals provided CSG (e.g., cortical area, shape index, and robusticity) and fibular furrow indices. CSG was studied at five cross sections taken along the diaphysis. Linear regression analyses and age group comparisons were conducted. RESULTS The cross-sectional shape summary by fibular furrows and shape index and the total area did not change with aging; in contrast, the cortical area and the robusticity (Zp-std) decreased with age. DISCUSSION The decrease in robusticity (Zp-std) with aging is due to the maintenance of total area, which is related to the specific mechanical environment of the fibula, and to the loss of cortical bone and not to the decrease in mechanical stress. This finding is consistent with the lower bone modeling capacity in aged individuals, which also explains the lack of significant changes in the diaphyseal shape. Thus, fibular structure in older individuals is due to a combination of early bone adaptations to stress and aging effects.
Collapse
Affiliation(s)
- Tony Chevalier
- UMR 7194 Histoire Naturelle de l'Homme Préhistorique, CNRS, Muséum National d'Histoire Naturelle, Université Perpignan Via Domitia, Centre de Recherche Préhistorique de Tautavel, Tautavel, France
| | - Manon Tignères
- UMR 7194 Histoire Naturelle de l'Homme Préhistorique, CNRS, Muséum National d'Histoire Naturelle, Université Perpignan Via Domitia, Centre de Recherche Préhistorique de Tautavel, Tautavel, France
| |
Collapse
|
4
|
Page AE, French JC. Reconstructing prehistoric demography: What role for extant hunter-gatherers? Evol Anthropol 2020; 29:332-345. [PMID: 33103830 DOI: 10.1002/evan.21869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/17/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022]
Abstract
Demography is central to biological, behavioral, and cultural evolution. Knowledge of the demography of prehistoric populations of both Homo sapiens and earlier members of the genus Homo is, therefore, key to the study of human evolution. Unfortunately, demographic processes (fertility, mortality, migration) leave little mark on the archeological and paleoanthropological records. One common solution to this issue is the application of demographic data from extant hunter-gatherers to prehistory. With the aim of strengthening this line of enquiry, here we outline some pitfalls and their interpretative implications. In doing so, we provide recommendations about the application of hunter-gatherer data to the study of demographic trends throughout human evolution. We use published demographic data from extant hunter-gatherers to show that it is the diversity seen among extant hunter-gatherers-both intra- and inter-population variability-that is most relevant and useful for understanding past hunter-gatherer demography.
Collapse
Affiliation(s)
- Abigail E Page
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Jennifer C French
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Breyl M. Triangulating Neanderthal cognition: A tale of not seeing the forest for the trees. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 12:e1545. [PMID: 32918796 DOI: 10.1002/wcs.1545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023]
Abstract
The inference of Neanderthal cognition, including their cultural and linguistic capabilities, has persisted as a fiercely debated research topic for decades. This lack of consensus is substantially based on inherent uncertainties in reconstructing prehistory out of indirect evidence as well as other methodological limitations. Further factors include systemic difficulties within interdisciplinary discourse, data artifacts, historic research biases, and the sheer scope of the relevant research. Given the degrees of freedom in interpretation ensuing from these complications, any attempt to find approximate answers to the yet unsettled pertinent discourse may not rest on single studies, but instead a careful and comprehensive interdisciplinary synthesis of findings. Triangulating Neanderthals' cognition by considering the plethora of data, diverse perspectives and aforementioned complexities present within the literature constitutes the currently most reliable pathway to tentative conclusions. While some uncertainties remain, such an approach paints the picture of an extensive shared humanity between anatomically modern humans and Neanderthals. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Linguistics > Evolution of Language.
Collapse
Affiliation(s)
- Michael Breyl
- Germanistik, Komparatistik, Nordistik, Deutsch als Fremdsprache, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
| |
Collapse
|
6
|
Ortiz A, Schander-Triplett K, Bailey SE, Skinner MM, Hublin JJ, Schwartz GT. Enamel thickness variation in the deciduous dentition of extant large-bodied hominoids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:500-513. [PMID: 32767577 DOI: 10.1002/ajpa.24106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/16/2020] [Accepted: 06/11/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Enamel thickness features prominently in hominoid evolutionary studies. To date, however, studies of enamel thickness in humans, great apes, and their fossil relatives have focused on the permanent molar row. Comparatively little research effort has been devoted to tissue proportions within deciduous teeth. Here we attempt to fill this gap by documenting enamel thickness variation in the deciduous dentition of extant large-bodied hominoids. MATERIALS AND METHODS We used microcomputed tomography to image dental tissues in 80 maxillary and 78 mandibular deciduous premolars of Homo sapiens, Pan troglodytes, Gorilla, and Pongo. Two-dimensional virtual sections were created from the image volumes to quantify average (AET) and relative (RET) enamel thickness, as well as its distribution across the crown. RESULTS Our results reveal no significant differences in enamel thickness among the great apes. Unlike the pattern present in permanent molars, Pongo does not stand out as having relatively thicker-enameled deciduous premolars than P. troglodytes and Gorilla. Humans, on the other hand, possess significantly thicker deciduous premolar enamel in comparison to great apes. Following expectations from masticatory biomechanics, we also find that the "functional" side (protocone, protoconid) of deciduous premolars generally possesses thicker enamel than the "nonfunctional" side. DISCUSSION Our study lends empirical support to anecdotal observations that patterns of AET and RET observed for permanent molars of large-bodied apes do not apply to deciduous premolars. By documenting enamel thickness variation in hominoid deciduous teeth, this study provides the comparative context to interpret rates and patterns of wear of deciduous teeth and their utility in life history reconstructions.
Collapse
Affiliation(s)
- Alejandra Ortiz
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Center for the Study of Human Origins, Department of Anthropology, New York University, New York, New York, USA
| | - Katherine Schander-Triplett
- Barrett, The Honors College, College of Liberal Arts and Sciences, Arizona State University, Tempe, Arizona, USA
| | - Shara E Bailey
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, New York, USA.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew M Skinner
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Collège de France, Paris, France
| | - Gary T Schwartz
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Nowell A, French JC. Adolescence and innovation in the European Upper Palaeolithic. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e36. [PMID: 37588373 PMCID: PMC10427464 DOI: 10.1017/ehs.2020.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Childhood and adolescence are two stages of development that are unique to the human life course. While childhood in the Pleistocene has received considerable attention in recent years, adolescence during the same period remains an understudied area of research. Yet it is during adolescence that key social, physical and cognitive milestones are reached. Thus, through studying adolescents, there is enormous potential for improving our understanding of Upper Palaeolithic lifeways more broadly. The reason for the dearth of these types of studies may be the perceived methodological difficulty of identifying adolescents in the archaeological record. In many ways, it is easier to distinguish children (sensu lato) from adults based on size, developmental age and associated artefacts. Adolescents, however, are often seen as more ambiguous, more liminal. Working within an evolutionary framework and using a definition of adolescence rooted in biology, we draw on psychology, ethnography and palaeodemography to develop a model of what it might have meant to be a 'teenager' in the European Upper Palaeolithic. Citing the biological, social and cognitive changes that occur during this life stage, we propose an important role of teenagers in the origins and spread of new ideas and innovations throughout the Late Pleistocene.
Collapse
Affiliation(s)
- April Nowell
- Department of Anthropology, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, CanadaV8W 2Y2
| | - Jennifer C. French
- University College London, Institute of Archaeology, 31–34 Gordon Square, LondonWC1H 0PY, UK
| |
Collapse
|
8
|
Chan S, Gomes A, Singh RS. Is menopause still evolving? Evidence from a longitudinal study of multiethnic populations and its relevance to women's health. BMC WOMENS HEALTH 2020; 20:74. [PMID: 32307019 PMCID: PMC7168978 DOI: 10.1186/s12905-020-00932-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 01/19/2023]
Abstract
Background To reflect on the impact of changing patterns of delayed marriage and reproduction and to seek evidence as to whether menopause is still evolving, characteristics of the menopause transition were investigated within and between ethnic populations in this study. Methods A cross-sectional analysis was conducted using data on 747 middle-aged women obtained from the Study of Women’s Health Across the Nation (SWAN) from 1996 to 2008. The ethnic groups included: Afro-American, Chinese, Japanese, Caucasian, and Hispanic. Perimenopause age and duration, menopause age, and hormonal indicators of menopause were examined across five ethnicities. Results We found a similar window of menopause age within populations, but no significant difference in perimenopause and menopause age between populations. The rate of increase of follicle-stimulating hormone and testosterone differed significantly in Hispanics and African-Americans during the menopause transition period. Conclusions The broad window of variation in age at menopause within the population and the absence of significant differences between populations, in combination with population variation in menopause symptoms, suggest that menopause is a relatively recently evolved and still evolving trait. Under the mate choice theory of menopause, menopause is the result of the accumulation of infertility mutations in older women due to men’s preference for younger mates. We propose a shifting mate choice-shifting menopause model which posits that, as the age of mate choice/marriage shifts to older ages, so will the age at menopause, and that menopause is a transient phase of female fertility; it can de-evolve, be delayed, if not disappear completely. Integrated longitudinal menopausal studies linked with genomics and hormonal studies on diverse ethnic populations can provide valuable information bearing on women’s health and personalized medicine.
Collapse
Affiliation(s)
- Shirley Chan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Alyssa Gomes
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
9
|
Thomas F, Giraudeau M, Renaud F, Ujvari B, Roche B, Pujol P, Raymond M, Lemaitre JF, Alvergne A. Can postfertile life stages evolve as an anticancer mechanism? PLoS Biol 2019; 17:e3000565. [PMID: 31805037 PMCID: PMC6917346 DOI: 10.1371/journal.pbio.3000565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Why a postfertile stage has evolved in females of some species has puzzled evolutionary biologists for over 50 years. We propose that existing adaptive explanations have underestimated in their formulation an important parameter operating both at the specific and the individual levels: the balance between cancer risks and cancer defenses. During their life, most multicellular organisms naturally accumulate oncogenic processes in their body. In parallel, reproduction, notably the pregnancy process in mammals, exacerbates the progression of existing tumors in females. When, for various ecological or evolutionary reasons, anticancer defenses are too weak, given cancer risk, older females could not pursue their reproduction without triggering fatal metastatic cancers, nor even maintain a normal reproductive physiology if the latter also promotes the growth of existing oncogenic processes, e.g., hormone-dependent malignancies. At least until stronger anticancer defenses are selected for in these species, females could achieve higher inclusive fitness by ceasing their reproduction and/or going through menopause (assuming that these traits are easier to select than anticancer defenses), thereby limiting the risk of premature death due to metastatic cancers. Because relatively few species experience such an evolutionary mismatch between anticancer defenses and cancer risks, the evolution of prolonged life after reproduction could also be a rare, potentially transient, anticancer adaptation in the animal kingdom.
Collapse
Affiliation(s)
- Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - François Renaud
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
- Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, Unité Mixte de Recherches, Institut de Recherches pour le développement/Sorbonne Université, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Pascal Pujol
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
- CHU Arnaud de Villeneuve, Montpellier, France
| | - Michel Raymond
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jean-François Lemaitre
- Centre National de la Recherche Scientifique, Unité mixte de recherche 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1 Villeurbanne, France
| | - Alexandra Alvergne
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom
| |
Collapse
|
10
|
Rmoutilová R, Gómez‐Olivencia A, Brůžek J, Holliday T, Ledevin R, Couture‐Veschambre C, Madelaine S, Džupa V, Velemínská J, Maureille B. A case of marked bilateral asymmetry in the sacral alae of the Neandertal specimen Regourdou 1 (Périgord, France). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:242-259. [DOI: 10.1002/ajpa.23968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/16/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Rebeka Rmoutilová
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
| | - Asier Gómez‐Olivencia
- Departamento Estratigrafía y Paleontología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) Leioa Spain
- IKERBASQUE. Basque Foundation for Science Bilbao Spain
- Centro UCM‐ISCIII de Investigación sobre Evolución y Comportamiento Humanos Madrid Spain
| | - Jaroslav Brůžek
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
| | - Trenton Holliday
- Department of AnthropologyTulane University New Orleans Louisiana
- Evolutionary Studies InstituteUniversity of the Witwatersrand Johannesburg Republic of South Africa
| | - Ronan Ledevin
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
| | | | - Stéphane Madelaine
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
- Musée National de Préhistoire Les Eyzies‐de‐Tayac France
| | - Valér Džupa
- Department of Orthopaedics and Traumatology, Third Faculty of MedicineCharles University, and University Hospital Královské Vinohrady Prague Czech Republic
| | - Jana Velemínská
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
| | - Bruno Maureille
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
| |
Collapse
|
11
|
The Exergy Footprint as a Sustainability Indicator: An Application to the Neanderthal–Sapiens Competition in the Late Pleistocene. SUSTAINABILITY 2019. [DOI: 10.3390/su11184913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A thermodynamic analysis of population dynamics and of sustainability provides rigor to many important issues. In this work, the “system society” is analysed in connection with the “system environment” using an exergy metric, and the method includes an internalization of the externalities (capital, labour, environmental effects) conducted on the basis of a “system + environment” balance. In this perspective, this study investigates the Late Pleistocene extinction of the Homo neanderthalensis, which took place in a geologically short time and in the presence of a competing species, the Homo sapiens. The case in study is not trivial, and its choice not casual: in those times, the only factor that could lead to an advantage of one group over the other was their respective resource use intensity. A specific indicator, the exergy footprint (EF), is here applied to measure the total amount of primary resources required to produce a certain (material or immaterial) commodity, including the resources needed for the physical survival of the individuals. On the basis of the available data, the results of a steady-state analysis show that the EF of the Neanderthal was higher than that of the Sapiens, and that with both species sharing the same ecological niche in a time of dwindling resources, the less frugal of the two was also more fragile in an evolutionary sense.
Collapse
|
12
|
External auditory exostoses among western Eurasian late Middle and Late Pleistocene humans. PLoS One 2019; 14:e0220464. [PMID: 31412053 PMCID: PMC6693685 DOI: 10.1371/journal.pone.0220464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/16/2019] [Indexed: 01/26/2023] Open
Abstract
External auditory exostoses (EAE) have been noted among the Neandertals and a few other Pleistocene humans, but until recently they have been discussed primary as minor pathological lesions with possible auditory consequences. An assessment of available western Eurasian late Middle and Late Pleistocene human temporal bones with sufficiently preserved auditory canals (n = 77) provides modest levels of EAE among late Middle Pleistocene archaic humans (≈20%) and early modern humans (Middle Paleolithic: ≈25%; Early/Mid Upper Paleolithic: 20.8%; Late Upper Paleolithic: 9.5%). The Neandertals, however, exhibit an exceptionally high level of EAE (56.5%; 47.8% if two anomalous cases are considered normal). The levels of EAE for the early modern humans are well within recent human ranges of variation, frequencies which are low for equatorial inland and high latitude samples but occasionally higher elsewhere. The Early/Mid Upper Paleolithic frequency is nonetheless high for a high latitude sample under interpleniglacial conditions. Given the strong etiological and environmental associations of EAE development with exposure to cold water and/or damp wind chill, the high frequency of EAE among the Neandertals implies frequent aquatic resource exploitation, more frequent than the archeological and stable isotopic evidence for Middle Paleolithic/Neandertal littoral and freshwater resource foraging implies. As such, the Neandertal data parallel a similar pattern evident in eastern Eurasian archaic humans. Yet, factors in addition to cold water/wind exposure may well have contributed to their high EAE frequencies.
Collapse
|
13
|
Nakahashi W. Cultural skill and language: How structuration affects cultural evolution. J Theor Biol 2019; 471:13-21. [PMID: 30926523 DOI: 10.1016/j.jtbi.2019.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
Abstract
The existence of complex structures involved in cultural skills is one of the unique characteristics in humans. Since human language is also complexly structured, we can presume that the ability to merge and divide units (structuration ability) contributes to their existence. To investigate the emergence of structuration ability archeologically, we must confirm its effect on cultural evolution. Using mathematical models, we study whether structuration ability leads to an increase in the difficulty of the cultural skills that can be maintained in the population. We show that even if individuals have structuration ability, the maximum difficulty of a maintainable cultural skill is unchanged provided that the individuals must learn every component skill step by step to master the structured skill; however, if individuals can learn each component skill in parallel, the maximum difficulty might increase. When the cultural skill affects the mortality or injury rate of its carriers, the structuration ability inhibits cultural evolution under some conditions. These results indicate the importance of the learning process and the role of structured cultural skills on cultural evolution.
Collapse
Affiliation(s)
- Wataru Nakahashi
- Faculty of Social Sciences, Waseda University, Nishi-Waseda 1-6-1, Shinjuku, Tokyo 169-8050, Japan.
| |
Collapse
|
14
|
Degioanni A, Bonenfant C, Cabut S, Condemi S. Living on the edge: Was demographic weakness the cause of Neanderthal demise? PLoS One 2019; 14:e0216742. [PMID: 31141515 PMCID: PMC6541251 DOI: 10.1371/journal.pone.0216742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/27/2019] [Indexed: 12/23/2022] Open
Abstract
The causes of disappearance of the Neanderthals, the only human population living in Europe before the arrival of Homo sapiens, have been debated for decades by the scientific community. Different hypotheses have been advanced to explain this demise, such as cognitive, adaptive and cultural inferiority of Neanderthals. Here, we investigate the disappearance of Neanderthals by examining the extent of demographic changes needed over a period of 10,000 years (yrs) to lead to their extinction. In regard to such fossil populations, we inferred demographic parameters from present day and past hunter-gatherer populations, and from bio-anthropological rules. We used demographic modeling and simulations to identify the set of plausible demographic parameters of the Neanderthal population compatible with the observed dynamics, and to explore the circumstances under which they might have led to the disappearance of Neanderthals. A slight (<4%) but continuous decrease in the fertility rate of younger Neanderthal women could have had a significant impact on these dynamics, and could have precipitated their demise. Our results open the way to non-catastrophic events as plausible explanations for Neanderthal extinction.
Collapse
Affiliation(s)
- Anna Degioanni
- Aix Marseille Université, CNRS, Minist Culture, LAMPEA, Aix-en-Provence, France
- * E-mail:
| | - Christophe Bonenfant
- UMR CNRS Laboratoire Biométrie et Biologie Évolutive, Université Claude Bernard Lyon Villeurbanne, Villeurbanne, France
| | - Sandrine Cabut
- Aix Marseille Université, CNRS, Minist Culture, LAMPEA, Aix-en-Provence, France
| | - Silvana Condemi
- Aix Marseille Université, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
15
|
Overall AD, Faragher RG. Population type influences the rate of ageing. Heredity (Edinb) 2019; 123:273-282. [PMID: 30737473 PMCID: PMC6781125 DOI: 10.1038/s41437-019-0187-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 11/09/2022] Open
Abstract
Mutation accumulation is one of the major genetic theories of ageing and predicts that the frequencies of deleterious alleles that are neutral to selection until post-reproductive years are influenced by random genetic drift. The effective population size (Ne) determines the rate of drift and in age-structured populations is a function of generation time, the number of newborn individuals and reproductive value. We hypothesise that over the last 50,000 years, the human population survivorship curve has experienced a shift from one of constant mortality and no senescence (known as a Type-II population) to one of delayed, but strong senescence (known as a Type-I population). We simulate drift in age-structured populations to explore the sensitivity of different population ‘types’ to generation time and contrast our results with predictions based purely on estimates of Ne. We conclude that estimates of Ne do not always accurately predict the rates of drift between populations with different survivorship curves and that survivorship curves are useful predictors of the sensitivity of a population to generation time. We find that a shift from an ancestral Type-II to a modern Type-I population coincides with an increase in the rate of drift unless accompanied by an increase in generation time. Both population type and generation time are therefore relevant to the contribution mutation accumulation makes to the genetic underpinnings of senescence.
Collapse
Affiliation(s)
- Andrew Dj Overall
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex, BN2 4GJ, UK.
| | - Richard Ga Faragher
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex, BN2 4GJ, UK
| |
Collapse
|
16
|
Ríos L, Kivell TL, Lalueza-Fox C, Estalrrich A, García-Tabernero A, Huguet R, Quintino Y, de la Rasilla M, Rosas A. Skeletal Anomalies in The Neandertal Family of El Sidrón (Spain) Support A Role of Inbreeding in Neandertal Extinction. Sci Rep 2019; 9:1697. [PMID: 30737446 PMCID: PMC6368597 DOI: 10.1038/s41598-019-38571-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
Neandertals disappeared from the fossil record around 40,000 bp, after a demographic history of small and isolated groups with high but variable levels of inbreeding, and episodes of interbreeding with other Paleolithic hominins. It is reasonable to expect that high levels of endogamy could be expressed in the skeleton of at least some Neandertal groups. Genetic studies indicate that the 13 individuals from the site of El Sidrón, Spain, dated around 49,000 bp, constituted a closely related kin group, making these Neandertals an appropriate case study for the observation of skeletal signs of inbreeding. We present the complete study of the 1674 identified skeletal specimens from El Sidrón. Altogether, 17 congenital anomalies were observed (narrowing of the internal nasal fossa, retained deciduous canine, clefts of the first cervical vertebra, unilateral hypoplasia of the second cervical vertebra, clefting of the twelfth thoracic vertebra, diminutive thoracic or lumbar rib, os centrale carpi and bipartite scaphoid, tripartite patella, left foot anomaly and cuboid-navicular coalition), with at least four individuals presenting congenital conditions (clefts of the first cervical vertebra). At 49,000 years ago, the Neandertals from El Sidrón, with genetic and skeletal evidence of inbreeding, could be representative of the beginning of the demographic collapse of this hominin phenotype.
Collapse
Affiliation(s)
- L Ríos
- Department of Physical Anthropology, Aranzadi Zientzia Elkartea, Zorroagagaina 11, 20014, Donostia, Gipuzkoa, Basque Country, Spain.
| | - T L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury, CT2 7NR, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - C Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Carrer Dr. Aiguader 88, 08003, Barcelona, Spain
| | - A Estalrrich
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria IIIPC (Universidad de Cantabria, Santander, Gobierno de Cantabria), Avda. de los Castros 52, 39005, Santander, Cantabria, Spain
| | - A García-Tabernero
- Paleoanthropology Group, Department of Paleobiology. Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - R Huguet
- IPHES, Institut Catala de Paleoecologia Humana i Evolució Social, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.,Area de Prehistoria, Universitat Rovira i Virgili, Avda. Catalunya 35, 43002, Tarragona, Spain.,Unidad asociada al CSIC, Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Y Quintino
- Laboratorio de Evolución Humana, Dpto. de Ciencias Históricas y Geografía, Universidad de Burgos, Edificio I+D+i, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - M de la Rasilla
- Área de Prehistoria Departamento de Historia, Universidad de Oviedo, Calle Teniente Alfonso Martínez s/n, 33011, Oviedo, Spain
| | - A Rosas
- Paleoanthropology Group, Department of Paleobiology. Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
17
|
Abstract
The causes of essential hypertension remain an enigma. Interactions between genetic and external factors are generally recognized to act as aetiological mechanisms that trigger the pathogenesis of high blood pressure. However, the questions of which genes and factors are involved, and when and where such interactions occur, remain unresolved. Emerging evidence indicates that the hypertensive response to pressor stimuli, like many other physiological and behavioural adaptations, can become sensitized to particular stimuli. Studies in animal models show that, similarly to other response systems controlled by the brain, hypertensive response sensitization (HTRS) is mediated by neuroplasticity. The brain circuitry involved in HTRS controls the sympathetic nervous system. This Review outlines evidence supporting the phenomenon of HTRS and describes the range of physiological and psychosocial stressors that can produce a sensitized hypertensive state. Also discussed are the cellular and molecular changes in the brain neural network controlling sympathetic tone involved in long-term storage of information relating to stressors, which could serve to maintain a sensitized state. Finally, this Review concludes with a discussion of why a sensitized hypertensive response might previously have been beneficial and increased biological fitness under some environmental conditions and why today it has become a health-related liability.
Collapse
Affiliation(s)
- Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA.
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
- The François M. Abboud Cardiovascular Center, Iowa City, IA, USA.
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- The François M. Abboud Cardiovascular Center, Iowa City, IA, USA
| |
Collapse
|
18
|
Kurtas NE, Xumerle L, Leonardelli L, Delledonne M, Brusco A, Chrzanowska K, Schinzel A, Larizza D, Guerneri S, Natacci F, Bonaglia MC, Reho P, Manolakos E, Mattina T, Soli F, Provenzano A, Al-Rikabi AH, Errichiello E, Nazaryan-Petersen L, Giglio S, Tommerup N, Liehr T, Zuffardi O. Small supernumerary marker chromosomes: A legacy of trisomy rescue? Hum Mutat 2018; 40:193-200. [PMID: 30412329 DOI: 10.1002/humu.23683] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 11/11/2022]
Abstract
We studied by a whole genomic approach and trios genotyping, 12 de novo, nonrecurrent small supernumerary marker chromosomes (sSMC), detected as mosaics during pre- or postnatal diagnosis and associated with increased maternal age. Four sSMCs contained pericentromeric portions only, whereas eight had additional non-contiguous portions of the same chromosome, assembled together in a disordered fashion by repair-based mechanisms in a chromothriptic event. Maternal hetero/isodisomy was detected with a paternal origin of the sSMC in some cases, whereas in others two maternal alleles in the sSMC region and biparental haplotypes of the homologs were detected. In other cases, the homologs were biparental while the sSMC had the same haplotype of the maternally inherited chromosome. These findings strongly suggest that most sSMCs are the result of a multiple-step mechanism, initiated by maternal meiotic nondisjunction followed by postzygotic anaphase lagging of the supernumerary chromosome and its subsequent chromothripsis.
Collapse
Affiliation(s)
| | - Luciano Xumerle
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Daniela Larizza
- Pediatrics and Adolescentology Unit, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvana Guerneri
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Natacci
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Paolo Reho
- Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | | | - Teresa Mattina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fiorenza Soli
- Department of Genetics, Santa Chiara Hospital, Trento, Italy
| | - Aldesia Provenzano
- Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy.,Azienda Ospedaliero-Universitaria Meyer, Firenze, Italy
| | - Ahmed H Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | | | - Sabrina Giglio
- Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy.,Azienda Ospedaliero-Universitaria Meyer, Firenze, Italy
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Nyce JW. Detection of a novel, primate-specific 'kill switch' tumor suppression mechanism that may fundamentally control cancer risk in humans: an unexpected twist in the basic biology of TP53. Endocr Relat Cancer 2018; 25:R497-R517. [PMID: 29941676 PMCID: PMC6106910 DOI: 10.1530/erc-18-0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
The activation of TP53 is well known to exert tumor suppressive effects. We have detected a primate-specific adrenal androgen-mediated tumor suppression system in which circulating DHEAS is converted to DHEA specifically in cells in which TP53 has been inactivated DHEA is an uncompetitive inhibitor of glucose-6-phosphate dehydrogenase (G6PD), an enzyme indispensable for maintaining reactive oxygen species within limits survivable by the cell. Uncompetitive inhibition is otherwise unknown in natural systems because it becomes irreversible in the presence of high concentrations of substrate and inhibitor. In addition to primate-specific circulating DHEAS, a unique, primate-specific sequence motif that disables an activating regulatory site in the glucose-6-phosphatase (G6PC) promoter was also required to enable function of this previously unrecognized tumor suppression system. In human somatic cells, loss of TP53 thus triggers activation of DHEAS transport proteins and steroid sulfatase, which converts circulating DHEAS into intracellular DHEA, and hexokinase which increases glucose-6-phosphate substrate concentration. The triggering of these enzymes in the TP53-affected cell combines with the primate-specific G6PC promoter sequence motif that enables G6P substrate accumulation, driving uncompetitive inhibition of G6PD to irreversibility and ROS-mediated cell death. By this catastrophic 'kill switch' mechanism, TP53 mutations are effectively prevented from initiating tumorigenesis in the somatic cells of humans, the primate with the highest peak levels of circulating DHEAS. TP53 mutations in human tumors therefore represent fossils of kill switch failure resulting from an age-related decline in circulating DHEAS, a potentially reversible artifact of hominid evolution.
Collapse
|
20
|
D’Amore G, Orru A, Frederic P, Di Bacco M. Probability of Mitochondrial Lineage Extinction in Female Offspring, Modern and Paleolithic: Branching Process Analysis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
|
22
|
Trinkaus E. One hundred years of paleoanthropology: An American perspective. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:638-651. [PMID: 29574840 DOI: 10.1002/ajpa.23330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Erik Trinkaus
- Department of Anthropology, Washington University, Saint Louis, Missouri, 63130
| |
Collapse
|
23
|
Junno JA, Niskanen M, Maijanen H, Holt B, Sladek V, Niinimäki S, Berner M. The effect of age and body composition on body mass estimation of males using the stature/bi-iliac method. J Hum Evol 2018; 115:122-129. [DOI: 10.1016/j.jhevol.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 11/26/2022]
|
24
|
Nakahashi W. The effect of trauma on Neanderthal culture: A mathematical analysis. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:83-100. [PMID: 28238406 DOI: 10.1016/j.jchb.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/03/2017] [Indexed: 11/26/2022]
Abstract
Traumatic lesions are often observed in ancient skeletal remains. Since ancient medical technology was immature, severely traumatized individuals may have frequently lost the physical ability for cultural skills that demand complex body movements. I develop a mathematical model to analyze the effect of trauma on cultural transmission and apply it to Neanderthal culture using Neanderthal fossil data. I estimate from the data that the proportion of adult individuals who suffered traumatic injuries before death was approximately 0.79-0.94, in which 0.37-0.52 were injured severely and 0.13-0.19 were injured before adulthood. Assuming that every severely traumatized individual and a quarter to a half of the other traumatized individuals lost the capacity for a cultural skill that demands complex control of the traumatized body part, I estimate that if an upper limb is associated with a cultural skill, each individual had to communicate closely with at least 1.5-2.6 individuals during adulthood to maintain the skill in Neanderthal society, and if a whole body is associated, at least 3.1-11.5 individuals were necessary. If cultural transmissions between experts and novices were inaccurate, or if low frequency skills easily disappeared from the population due to random drift, more communicable individuals were necessary. Since the community size of Neanderthals was very small, their high risk of injury may have inhibited the spread of technically difficult cultural skills in their society. It may be important to take this inhibition into consideration when we study Neanderthal culture and the replacement of Neanderthals by modern humans.
Collapse
Affiliation(s)
- W Nakahashi
- School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies) Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
25
|
Abstract
The last decade has seen a significant growth of our knowledge of the Neandertals, a population of Pleistocene hunter-gatherers who lived in (western) Eurasia between ∼400,000 and 40,000 y ago. Starting from a source population deep in the Middle Pleistocene, the hundreds of thousands of years of relative separation between African and Eurasian groups led to the emergence of different phenotypes in Late Pleistocene Europe and Africa. Both recently obtained genetic evidence and archeological data show that the biological and cultural gaps between these populations were probably smaller than previously thought. These data, reviewed here, falsify inferences to the effect that, compared with their near-modern contemporaries in Africa, Neandertals were outliers in terms of behavioral complexity. It is only around 40,000 y ago, tens of thousands of years after anatomically modern humans first left Africa and thousands of years after documented interbreeding between modern humans, Neandertals and Denisovans, that we see major changes in the archeological record, from western Eurasia to Southeast Asia, e.g., the emergence of representational imagery and the colonization of arctic areas and of greater Australia (Sahul).
Collapse
|
26
|
Friedl L, Eisová S, Holliday TW. Re-evaluation of Pleistocene and Holocene long bone robusticity trends with regards to age-at-death estimates and size standardization procedures. J Hum Evol 2016; 97:109-22. [DOI: 10.1016/j.jhevol.2016.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
|
27
|
Subsistence-patterns, gender roles, effective temperature, and the evolutionary timing of a post reproductive life span. Med Hypotheses 2016; 89:48-57. [PMID: 26968909 DOI: 10.1016/j.mehy.2016.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 11/23/2022]
Abstract
Evolutionary anthropologists explain menopause and the start of a post reproductive lifespan (PRLS), as beneficiary for older women who can now help contribute to their children/grandchildren's wellbeing. This paper presents a new model with the aim to elucidate when, where, and for whom, such benefits may have arisen. In foraging societies, women contribute nutrients to their social groups/family units to a greater degree as overall effective temperatures (ETs) rise. Where the ET is favorable for women's contributions (ETs between 15 and 20), selection does lengthen the PRLS of women because women contribute sufficiently to enhance their own inclusive fitness. Paleo-environment records suggest that the climate necessary to encourage an increase PRLS occurred shortly after the younger dryad in emerging subtropical settings. Subsistence patterns and gender roles may have played a role in the evolution of PRLS in human females.
Collapse
|
28
|
Comparative perspective on antemortem tooth loss in Neandertals. J Hum Evol 2016; 92:80-90. [PMID: 26989018 DOI: 10.1016/j.jhevol.2015.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/06/2015] [Accepted: 10/24/2015] [Indexed: 11/21/2022]
|
29
|
Possible Further Evidence of Low Genetic Diversity in the El Sidrón (Asturias, Spain) Neandertal Group: Congenital Clefts of the Atlas. PLoS One 2015; 10:e0136550. [PMID: 26418427 PMCID: PMC4587856 DOI: 10.1371/journal.pone.0136550] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022] Open
Abstract
We present here the first cases in Neandertals of congenital clefts of the arch of the atlas. Two atlases from El Sidrón, northern Spain, present respectively a defect of the posterior (frequency in extant modern human populations ranging from 0.73% to 3.84%), and anterior (frequency in extant modern human populations ranging from 0.087% to 0.1%) arch, a condition in most cases not associated with any clinical manifestation. The fact that two out of three observable atlases present a low frequency congenital condition, together with previously reported evidence of retained deciduous mandibular canine in two out of ten dentitions from El Sidrón, supports the previous observation based on genetic evidence that these Neandertals constituted a group with close genetic relations. Some have proposed for humans and other species that the presence of skeletal congenital conditions, although without clinical significance, could be used as a signal of endogamy or inbreeding. In the present case this interpretation would fit the general scenario of high incidence of rare conditions among Pleistocene humans and the specific scenariothat emerges from Neandertal paleogenetics, which points to long-term small and decreasing population size with reduced and isolated groups. Adverse environmental factors affecting early pregnancies would constitute an alternative, non-exclusive, explanation for a high incidence of congenital conditions. Further support or rejection of these interpretations will come from new genetic and skeletal evidence from Neandertal remains.
Collapse
|
30
|
|
31
|
|
32
|
Langton AK, Sherratt MJ, Sellers WI, Griffiths CEM, Watson REB. Geographical ancestry is a key determinant of epidermal morphology and dermal composition. Br J Dermatol 2014; 171:274-82. [PMID: 24484315 DOI: 10.1111/bjd.12860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Geographical ancestry plays a key role in determining the susceptibility of human skin to external insults and dermatological disease. Despite this, studies of skin from individuals of diverse geographical ancestry focus primarily on epidermal pigmentation. Few reports characterize the gross morphology and composition of the dermis and dermal-epidermal junction (DEJ). OBJECTIVES To characterize epidermal morphology and dermal composition in skin from individuals of diverse geographical ancestry. METHODS Immunohistochemical techniques were used to assess epidermal morphology and protein composition of the DEJ and dermal extracellular matrix in photoprotected skin from young African, Eurasian and Far East Asian individuals (n = 7 per group; age 18-30 years). RESULTS The epidermis of African skin was thicker, with deeper rete ridges and a more convoluted DEJ than Eurasian and Far East Asian skin. Compared with Eurasians, protein composition of the DEJ was collagen VII poor in African and Far East Asian skin (P < 0·001 and P < 0·01, respectively); the dermis of African skin was enriched in fibrillar collagens (P < 0·05), but was relatively elastin poor (P < 0·05). African dermis was abundant in fibrillin-rich microfibrils and fibulin-5 (P < 0·001 and P < 0·001, respectively) compared with Eurasian and Far East Asian skin. CONCLUSIONS We demonstrate that fundamental differences exist in skin structure and composition in individuals of diverse geographical ancestry. Disparate environmental pressures encountered by ancestral human populations living at different latitudes may have driven adaptations in skin structure and composition. Further research into the functional significance and clinical consequences of these differences is warranted.
Collapse
Affiliation(s)
- A K Langton
- Centre for Dermatology, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester, Manchester, U.K; The Dermatology Centre, Salford Royal NHS Foundation Trust, Salford, U.K
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Hrvoj-Mihic B, Bienvenu T, Stefanacci L, Muotri AR, Semendeferi K. Evolution, development, and plasticity of the human brain: from molecules to bones. Front Hum Neurosci 2013; 7:707. [PMID: 24194709 PMCID: PMC3812990 DOI: 10.3389/fnhum.2013.00707] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/05/2013] [Indexed: 11/13/2022] Open
Abstract
Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research.
Collapse
Affiliation(s)
- Branka Hrvoj-Mihic
- Department of Anthropology, University of California at San Diego La Jolla, CA, USA ; Department of Pediatrics/Rady Children's Hospital San Diego Department of Cellular and Molecular Medicine Stem Cell Program, University of California at San Diego, School of Medicine La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Tanya M. Smith
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;
| |
Collapse
|
36
|
Menopause: No support for an evolutionary explanation among historical Norwegians. Exp Gerontol 2013; 48:408-13. [DOI: 10.1016/j.exger.2013.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 12/20/2012] [Accepted: 02/03/2013] [Indexed: 11/21/2022]
|
37
|
A Neanderthal lower molar from Stajnia Cave, Poland. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2013; 64:89-103. [DOI: 10.1016/j.jchb.2013.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022]
|
38
|
Condemi S, Mounier A, Giunti P, Lari M, Caramelli D, Longo L. Possible interbreeding in late Italian Neanderthals? New data from the Mezzena jaw (Monti Lessini, Verona, Italy). PLoS One 2013; 8:e59781. [PMID: 23544098 PMCID: PMC3609795 DOI: 10.1371/journal.pone.0059781] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/18/2013] [Indexed: 01/08/2023] Open
Abstract
In this article we examine the mandible of Riparo Mezzena a Middle Paleolithic rockshelter in the Monti Lessini (NE Italy, Verona) found in 1957 in association with Charentian Mousterian lithic assemblages. Mitochondrial DNA analysis performed on this jaw and on other cranial fragments found at the same stratigraphic level has led to the identification of the only genetically typed Neanderthal of the Italian peninsula and has confirmed through direct dating that it belongs to a late Neanderthal. Our aim here is to re-evaluate the taxonomic affinities of the Mezzena mandible in a wide comparative framework using both comparative morphology and geometric morphometrics. The comparative sample includes mid-Pleistocene fossils, Neanderthals and anatomically modern humans. This study of the Mezzena jaw shows that the chin region is similar to that of other late Neanderthals which display a much more modern morphology with an incipient mental trigone (e.g. Spy 1, La Ferrassie, Saint-Césaire). In our view, this change in morphology among late Neanderthals supports the hypothesis of anatomical change of late Neanderthals and the hypothesis of a certain degree of interbreeding with AMHs that, as the dating shows, was already present in the European territory. Our observations on the chin of the Mezzena mandible lead us to support a non abrupt phylogenetic transition for this period in Europe.
Collapse
Affiliation(s)
- Silvana Condemi
- UMR 7268 CNRS/Aix-Marseille Université/EFS ADES - Anthropologie bioculturelle, Droit, Ethique et Santé Faculté de Médecine - Secteur Nord Aix-Marseille Université, Marseille, France
- * E-mail: (SC); (LL)
| | - Aurélien Mounier
- UMR 7268 CNRS/Aix-Marseille Université/EFS ADES - Anthropologie bioculturelle, Droit, Ethique et Santé Faculté de Médecine - Secteur Nord Aix-Marseille Université, Marseille, France
- The Leverhulme Centre for Human Evolutionary Studies Biological, Anthropology Division, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Paolo Giunti
- Istituto Italiano di Preistoria e Protostoria, Firenze, Italy
| | - Martina Lari
- Università di Firenze, Dipartimento di Biologia Evoluzionistica, Laboratorio di Antropologia,Unità di Antropologia Molecolare/Paleogenetica, Firenze, Italy
| | - David Caramelli
- Università di Firenze, Dipartimento di Biologia Evoluzionistica, Laboratorio di Antropologia,Unità di Antropologia Molecolare/Paleogenetica, Firenze, Italy
| | - Laura Longo
- Musei Civici Fiorentini, Firenze, Italy
- * E-mail: (SC); (LL)
| |
Collapse
|
39
|
Wu XJ, Xing S, Trinkaus E. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from Northern China, and rare anomalies among Pleistocene Homo. PLoS One 2013; 8:e59587. [PMID: 23527224 PMCID: PMC3601107 DOI: 10.1371/journal.pone.0059587] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/15/2013] [Indexed: 11/24/2022] Open
Abstract
We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF) in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao) site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right) parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual’s age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen). In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans.
Collapse
Affiliation(s)
- Xiu-Jie Wu
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Song Xing
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Erik Trinkaus
- Department of Anthropology, Washington University, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
40
|
Schwartz GT. Growth, Development, and Life History throughout the Evolution of Homo. CURRENT ANTHROPOLOGY 2012. [DOI: 10.1086/667591] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Barrett CK, Guatelli-Steinberg D, Sciulli PW. Revisiting dental fluctuating asymmetry in neandertals and modern humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149:193-204. [DOI: 10.1002/ajpa.22107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/22/2012] [Indexed: 11/10/2022]
|
42
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
43
|
Smith TM, Olejniczak AJ, Zermeno JP, Tafforeau P, Skinner MM, Hoffmann A, Radovčić J, Toussaint M, Kruszynski R, Menter C, Moggi-Cecchi J, Glasmacher UA, Kullmer O, Schrenk F, Stringer C, Hublin JJ. Variation in enamel thickness within the genus Homo. J Hum Evol 2012; 62:395-411. [PMID: 22361504 DOI: 10.1016/j.jhevol.2011.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/08/2011] [Accepted: 12/13/2011] [Indexed: 10/28/2022]
Abstract
Recent humans and their fossil relatives are classified as having thick molar enamel, one of very few dental traits that distinguish hominins from living African apes. However, little is known about enamel thickness in the earliest members of the genus Homo, and recent studies of later Homo report considerable intra- and inter-specific variation. In order to assess taxonomic, geographic, and temporal trends in enamel thickness, we applied micro-computed tomographic imaging to 150 fossil Homo teeth spanning two million years. Early Homo postcanine teeth from Africa and Asia show highly variable average and relative enamel thickness (AET and RET) values. Three molars from South Africa exceed Homo AET and RET ranges, resembling the hyper thick Paranthropus condition. Most later Homo groups (archaic European and north African Homo, and fossil and recent Homo sapiens) possess absolutely and relatively thick enamel across the entire dentition. In contrast, Neanderthals show relatively thin enamel in their incisors, canines, premolars, and molars, although incisor AET values are similar to H. sapiens. Comparisons of recent and fossil H. sapiens reveal that dental size reduction has led to a disproportionate decrease in coronal dentine compared with enamel (although both are reduced), leading to relatively thicker enamel in recent humans. General characterizations of hominins as having 'thick enamel' thus oversimplify a surprisingly variable craniodental trait with limited taxonomic utility within a genus. Moreover, estimates of dental attrition rates employed in paleodemographic reconstruction may be biased when this variation is not considered. Additional research is necessary to reconstruct hominin dietary ecology since thick enamel is not a prerequisite for hard-object feeding, and it is present in most later Homo species despite advances in technology and food processing.
Collapse
Affiliation(s)
- Tanya M Smith
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|