1
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Mora-Bitria L, Debebe BJ, Miners KL, Ladell K, Kaur C, Traherne JA, Jiang W, Price DA, Hadcocks L, McQuibban NAR, Trowsdale J, Wong FS, Pontikos N, Niederalt C, Asquith B. Inhibitory KIRs decrease HLA class II-mediated protection in Type 1 Diabetes. PLoS Genet 2024; 20:e1011456. [PMID: 39724143 PMCID: PMC11741628 DOI: 10.1371/journal.pgen.1011456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/17/2025] [Accepted: 10/09/2024] [Indexed: 12/28/2024] Open
Abstract
Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are a family of inhibitory receptors that are expressed by natural killer (NK) cells and late-stage differentiated T cells. There is accumulating evidence that iKIRs regulate T cell-mediated immunity. Recently, we reported that T cell-mediated control was enhanced by iKIRs in chronic viral infections. We hypothesized that in the context of autoimmunity, where an enhanced T cell response might be considered detrimental, iKIRs would have an opposite effect. We studied Type 1 diabetes (T1D) as a paradigmatic example of autoimmunity. In T1D, variation in the Human Leucocyte Antigen (HLA) genes explains up to 50% of the genetic risk, indicating that T cells have a major role in T1D etiopathogenesis. To investigate if iKIRs affect this T cell response, we asked whether HLA associations were modified by iKIR genes. We conducted an immunogenetic analysis of a case-control T1D dataset (N = 11,961) and found that iKIR genes, in the presence of genes encoding their ligands, have a consistent and significant effect on protective HLA class II genetic associations. Our results were validated in an independent data set. We conclude that iKIRs significantly decrease HLA class II protective associations and suggest that iKIRs regulate CD4+ T cell responses in T1D.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Systems Pharmacology and Medicine, Bayer AG, Leverkusen, Germany
| | - Bisrat J. Debebe
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Charandeep Kaur
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James A. Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Wei Jiang
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Linda Hadcocks
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Nicholas A. R. McQuibban
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics (CISBIO), Department of Life Sciences, Imperial College London, London, United Kingdom
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Yang Y, Bai H, Wu Y, Chen P, Zhou J, Lei J, Ye X, Brown AJ, Zhou X, Shu T, Chen Y, Wei P, Yin L. The Activating receptor KIR2DS2 bound to HLA-C1 reveals the novel recognition features of activating receptor. Immunology 2021; 165:341-354. [PMID: 34967442 DOI: 10.1111/imm.13439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are important receptors for regulating the killing of virus-infected or cancer cells of natural killer (NK) cells. KIR2DS2 can recognize peptides derived from hepatitis C virus (HCV) or global flaviviruses (such as dengue and Zika) presented by HLA-C*0102 to activate NK cells, and have shown promising results when used for cancer immunotherapy. Here, we present the complex structure of KIR2DS2 with HLA-C*0102 at a resolution of 2.5Å. Our structure reveals that KIR2DS2 can bind HLA-C*0102 and HLA-A*1101 in two different directions. Moreover, Tyr45 (in activating receptor KIR2DS2) and Phe45 (in inhibitory KIRs) distinguish the two different binding models and binding affinity between activating KIRs and inhibitory KIRs. The conserved "AT" motif of the peptide mediates recognition and determines the peptide specificity of recognition. These structural characteristic shed light on how KIRs activate NK cells and can provide a molecular basis for immunotherapy by NK cells.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hua Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alex J Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Abstract
Natural Killer (NK) cells are key effectors of the innate immune system which represent the first line of defense against viral infections. NK cell activation depends on the engagement of a complex receptor repertoire expressed on their surface, consisting of both activating and inhibitory receptors. Among the known NK cell receptors, the family of killer Ig-like receptors (KIRs) consists in activating/inhibitory receptors that interact with specific human leukocyte antigen (HLA) molecules expressed on target cells. In particular, the expression of peculiar KIRs have been reported to be associated to viral infection susceptibility. Interestingly, a significant association between the development and onset of different human pathologies, such as tumors, neurodegeneration and infertility, and a clonal KIRs expression on NK cells has been described in presence of viral infections, supporting the crucial role of KIRs in defining the effect of viral infections in different tissues and organs. This review aims to report the state of art about the role of KIRs receptors in NK cell activation and viral infection control.
Collapse
|
5
|
Zhu C, Dixon KO, Newcomer K, Gu G, Xiao S, Zaghouani S, Schramm MA, Wang C, Zhang H, Goto K, Christian E, Rangachari M, Rosenblatt-Rosen O, Okada H, Mak T, Singer M, Regev A, Kuchroo V. Tim-3 adaptor protein Bat3 is a molecular checkpoint of T cell terminal differentiation and exhaustion. SCIENCE ADVANCES 2021; 7:eabd2710. [PMID: 33931442 PMCID: PMC8087420 DOI: 10.1126/sciadv.abd2710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/10/2021] [Indexed: 05/03/2023]
Abstract
T cell exhaustion has been associated with poor prognosis in persistent viral infection and cancer. Conversely, in the context of autoimmunity, T cell exhaustion has been favorably correlated with long-term clinical outcome. Understanding the development of exhaustion in autoimmune settings may provide underlying principles that can be exploited to quell autoreactive T cells. Here, we demonstrate that the adaptor molecule Bat3 acts as a molecular checkpoint of T cell exhaustion, with deficiency of Bat3 promoting a profound exhaustion phenotype, suppressing autoreactive T cell-mediated neuroinflammation. Mechanistically, Bat3 acts as a critical mTORC2 inhibitor to suppress Akt function. As a result, Bat3 deficiency leads to increased Akt activity and FoxO1 phosphorylation, indirectly promoting Prdm1 expression. Transcriptional analysis of Bat3 -/- T cells revealed up-regulation of dysfunction-associated genes, concomitant with down-regulation of genes associated with T cell effector function, suggesting that absence of Bat3 can trigger T cell dysfunction even under highly proinflammatory autoimmune conditions.
Collapse
Affiliation(s)
- Chen Zhu
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Karen O Dixon
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathleen Newcomer
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Department of Data Sciences, DFCI, Boston, MA 02215, USA
| | - Guangxiang Gu
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sheng Xiao
- Celsius Therapeutics, Cambridge, MA 02139, USA
| | - Sarah Zaghouani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Markus A Schramm
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Huiyuan Zhang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kouichiro Goto
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University of Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | - Manu Rangachari
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC, Canada
| | | | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tak Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University of Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Meromit Singer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Department of Data Sciences, DFCI, Boston, MA 02215, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Koch Institute and Ludwig Center, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Vijay Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Significance of KIR like natural killer cell receptors in autoimmune disorders. Clin Immunol 2020; 216:108449. [PMID: 32376502 DOI: 10.1016/j.clim.2020.108449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs), act as the regulators for the cytolytic activity of natural killer and certain T cells by interacting with the HLA class I ligands. KIRs have been shown to contribute to the pathogenesis of several autoimmune diseases. However, their specific roles are still not very clear. Autoimmune diseases are multifactorial in nature, highlighting the influence of both genetic and environmental factors. The innate immune response plays an important role in autoimmunity as it alters the self-glycans that mimic molecular patterns found on different intracellular pathogens. Natural killer (NK) cells have an important position in the innate immune response. NK cell receptors are encoded by the leukocyte receptor complex located on the chromosome 19q13.4 and lectin-like receptors on chromosome 12p13. This review focuses on the role of KIRs and their relationship with different autoimmune diseases.
Collapse
|
7
|
Sun E, Liu K, Zhao K, Wang L. Serine/threonine kinase 32C is overexpressed in bladder cancer and contributes to tumor progression. Cancer Biol Ther 2018; 20:307-320. [PMID: 30359551 DOI: 10.1080/15384047.2018.1529098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Tumor markers of bladder cancer (BC) have been investigated for many years, but the clinical treatment based on these biomarkers is still unsatisfactory. STK32C, a member of the serine/threonine protein kinase of AGC superfamily, was first found to be highly expressed in brain tissues; however, the role of STK32C in malignant disease has not been determined. Data from TCGA database showed that the STK32C gene is overexpressed in BC and a number of other human tumors. In the current study, immunohistochemistry revealed that high expression of STK32C protein in tumor tissues was significantly associated with poor clinico pathologic features and a short relapse-free survival (RFS) in patients with BC. Slicing of STK32C inhibited tumor cell proliferation, migration and invasion in vitro. In vivo animal experiments demonstrated that knocking-down of STK32C restricted the growth of tumor cells in mice. Finally, microarray analysis revealed that silencing of STK32C inhibited the activity of the HMGB1 pathway and regulated the expression of key genes in this pathway. In conclusion, our study showed novel promoting roles for STK32C in human tumors, which may provide a new therapeutic target for the patients with BC.
Collapse
Affiliation(s)
- Erlin Sun
- a Department of Urology, Tianjin institute of urology , The 2nd Hospital of Tianjin Medical University , Tianjin , P.R. China
| | - Kangkang Liu
- a Department of Urology, Tianjin institute of urology , The 2nd Hospital of Tianjin Medical University , Tianjin , P.R. China
| | - Kun Zhao
- a Department of Urology, Tianjin institute of urology , The 2nd Hospital of Tianjin Medical University , Tianjin , P.R. China
| | - Lining Wang
- a Department of Urology, Tianjin institute of urology , The 2nd Hospital of Tianjin Medical University , Tianjin , P.R. China
| |
Collapse
|
8
|
Langie SAS, Szarc vel Szic K, Declerck K, Traen S, Koppen G, Van Camp G, Schoeters G, Vanden Berghe W, De Boever P. Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy. PLoS One 2016; 11:e0151109. [PMID: 26999364 PMCID: PMC4801358 DOI: 10.1371/journal.pone.0151109] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field of respiratory allergy.
Collapse
Affiliation(s)
- Sabine A. S. Langie
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- * E-mail:
| | - Katarzyna Szarc vel Szic
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sophie Traen
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Gudrun Koppen
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Guy Van Camp
- Laboratory of Cancer Research and Clinical Oncology, Center for Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Greet Schoeters
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
- University of Southern Denmark, Institute of Public Health, Department of Environmental Medicine, Odense, Denmark
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick De Boever
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
9
|
Traherne JA, Jiang W, Valdes AM, Hollenbach JA, Jayaraman J, Lane JA, Johnson C, Trowsdale J, Noble JA. KIR haplotypes are associated with late-onset type 1 diabetes in European-American families. Genes Immun 2015; 17:8-12. [PMID: 26492518 PMCID: PMC4746488 DOI: 10.1038/gene.2015.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 01/30/2023]
Abstract
Classical human leukocyte antigens (HLA) genes confer the strongest, but not the only, genetic susceptibility to type 1 diabetes. Killer cell immunoglobulin-like receptors (KIR), on natural killer (NK) cells, bind ligands including class I HLA. We examined presence or absence, with copy number, of KIR loci in 1698 individuals, from 339 multiplex type 1 diabetes families, from the Human Biological Data Interchange, previously genotyped for HLA. Combining family data with KIR copy number information allowed assignment of haplotypes using identity by descent. This is the first disease study to use KIR copy number typing and unambiguously define haplotypes by gene transmission. KIR A1 haplotypes were positively associated with T1D in the subset of patients without the high T1D risk HLA genotype, DR3/DR4 (odds ratio=1.29, P=0.0096). The data point to a role for KIR in type 1 diabetes risk in late-onset patients. In the top quartile (age of onset>14), KIR A2 haplotype was overtransmitted (63.4%, odds ratio=1.73, P=0.024) and KIR B haplotypes were undertransmitted (41.1%, odds ratio=0.70, P=0.0052) to patients. The data suggest that inhibitory ‘A' haplotypes are predisposing and stimulatory ‘B' haplotypes confer protection in both DR3/DR4-negative and late-onset patient groups.
Collapse
Affiliation(s)
- J A Traherne
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - W Jiang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - A M Valdes
- Academic Rheumatology, University of Nottingham, City Hospital, Nottingham, UK
| | - J A Hollenbach
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - J Jayaraman
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - J A Lane
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - C Johnson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - J Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - J A Noble
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
10
|
Kumari S, Jamal F, Shivam P, Thakur A, Kumar M, Bimal S, Das V, Pandey K, Narayan S, Gupta A, Das P, Singh SK. Leishmania donovani skews the CD56+ Natural Killer T cell response during human visceral leishmaniasis. Cytokine 2015; 73:53-60. [DOI: 10.1016/j.cyto.2015.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/05/2023]
|
11
|
Abstract
Rare genetic variants have recently been studied for genome-wide associations with human complex diseases. Existing rare variant methods are based on the hypothesis-testing framework that predefined variant sets need to be tested separately. The power of those methods is contingent upon accurate selection of variants for testing, and frequently, common variants are left out for separate testing. In this article, we present a novel Bayesian method for simultaneous testing of all genome-wide variants across the whole frequency range. The method allows for much more flexible grouping of variants and dynamically combines them for joint testing. The method accounts for correlation among variant sets, such that only direct associations with the disease are reported, whereas indirect associations due to linkage disequilibrium are not. Consequently, the method can obtain much improved power and flexibility and simultaneously pinpoint multiple disease variants with high resolution. Additional covariates of categorical, discrete, and continuous values can also be added. We compared our method with seven existing categories of approaches for rare variant mapping. We demonstrate that our method achieves similar power to the best methods available to date when testing very rare variants in small SNP sets. When moderately rare or common variants are included, or when testing a large collection of variants, however, our method significantly outperforms all existing methods evaluated in this study. We further demonstrate the power and the usage of our method in a whole-genome resequencing study of type 1 diabetes.
Collapse
|
12
|
Zuo HN, Wang ZL, Cui DR, Xin DJ. Genetic variations in the KIR gene family may contribute to susceptibility to ankylosing spondylitis: a meta-analysis. Mol Biol Rep 2014; 41:5311-9. [PMID: 24880650 DOI: 10.1007/s11033-014-3402-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
The present meta-analysis of relevant case-control studies was conducted to investigate the possible relationships between genetic variations in the killer cell immunoglobulin-like receptor (KIR) gene clusters of the human KIR gene family and susceptibility to ankylosing spondylitis (AS). The following electronic databases were searched for relevant articles without language restrictions: the Web of Science, the Cochrane Library Database, PubMed, EMBASE, CINAHL, the Chinese Biomedical Database (CBM) and Chinese National Knowledge Infrastructure (CNKI) databases, covering all papers published until 2013. STATA statistical software was adopted in this meta-analysis as well. We also calculated the crude odds ratios (OR) and its 95% confidence intervals (95 % CI). Seven case-control studies with 1,004 patients diagnosed with AS and 2,138 healthy cases were implicated in our meta-analysis, and 15 genes in the KIR gene family were also evaluated. The results of our meta-analysis show statistical significance between the genetic variations in the KIR2DL1, KIR2DS4, KIR2DS5 and KIR3DS1 genes and an increased susceptibility to AS (KIR2DL1: OR 7.82, 95% CI 3.87-15.81, P< 0.001; KIR2DS4: OR 1.91, 95% CI 1.16-3.13, P = 0.010; KIR2DS5: OR1.51, 95% CI 1.14-2.01, P = 0.004; KIR3DS1: OR 1.58, 95% CI 1.34-1.86, P< 0.001; respectively). However, we failed to found positive correlations between other genes and susceptibility to AS (all P >0.05). The current meta-analysis provides reliable evidence that genetic variations in the KIR gene family may contribute to susceptibility to AS, especially for the KIR2DL1, KIR2DS4, KIR2DS5 and KIR3DS1 genes.
Collapse
Affiliation(s)
- Hai-Ning Zuo
- 1st Department of Trauma Surgery, Yantai Hill Hospital of Yantai, Yantai, 264000, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Li M, Song LJ, Qin XY. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med 2014; 18:749-58. [PMID: 24629100 PMCID: PMC4119381 DOI: 10.1111/jcmm.12270] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of insulin-producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4(+) and CD8(+) T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long-lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Lu-Jun Song
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xin-Yu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
14
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
15
|
Mavropoulos A, Rigopoulou EI, Liaskos C, Bogdanos DP, Sakkas LI. The role of p38 MAPK in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin Dev Immunol 2013; 2013:569751. [PMID: 24151518 PMCID: PMC3787653 DOI: 10.1155/2013/569751] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/14/2013] [Indexed: 02/08/2023]
Abstract
The pathogenetic mechanisms responsible for the induction of immune-mediated disorders, such as psoriasis, remain not well characterized. Molecular signaling pathways are not well described in psoriasis, as well as psoriatic arthritis, which is seen in up to 40% of patients with psoriasis. Signaling pathway defects have long been hypothesized to participate in the pathology of psoriasis, yet their implication in the altered psoriatic gene expression still remains unclear. Emerging data suggest a potential pathogenic role for mitogen activated protein kinases p38 (p38 MAPK) extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) in the development of psoriasis. The data are still limited, though, for psoriatic arthritis. This review discusses the current data suggesting a crucial role for p38 MAPK in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Athanasios Mavropoulos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Institute of Research and Technology Thessaly, 41222 Larissa, Greece
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London SE5 9RS, UK
| | - Eirini I. Rigopoulou
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Christos Liaskos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Institute of Research and Technology Thessaly, 41222 Larissa, Greece
| | - Dimitrios P. Bogdanos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Institute of Research and Technology Thessaly, 41222 Larissa, Greece
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London SE5 9RS, UK
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Lazaros I. Sakkas
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Center of Molecular Medicine, Old Dominion University, 23529 Monarch Way, Norfolk, VA, USA
- Department of Rheumatology, Faculty of Medicine School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
| |
Collapse
|
16
|
Goronzy JJ, Li G, Yang Z, Weyand CM. The janus head of T cell aging - autoimmunity and immunodeficiency. Front Immunol 2013; 4:131. [PMID: 23761790 PMCID: PMC3671290 DOI: 10.3389/fimmu.2013.00131] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/21/2013] [Indexed: 01/09/2023] Open
Abstract
Immune aging is best known for its immune defects that increase susceptibility to infections and reduce adaptive immune responses to vaccination. In parallel, the aged immune system is prone to autoimmune responses and many autoimmune diseases increase in incidence with age or are even preferentially encountered in the elderly. Why an immune system that suboptimally responds to exogenous antigen fails to maintain tolerance to self-antigens appears to be perplexing. In this review, we will discuss age-associated deviations in the immune repertoire and the regulation of signaling pathways that may shed light on this conundrum.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA ; Department of Medicine, Palo Alto Veteran Administration Health Care System , Palo Alto, CA , USA
| | | | | | | |
Collapse
|
17
|
Kuśnierczyk P. Are killer cell immunoglobulin-like receptor genes important for the prediction of kidney graft rejection? Arch Immunol Ther Exp (Warsz) 2013; 61:321-5. [PMID: 23552952 DOI: 10.1007/s00005-013-0225-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/25/2013] [Indexed: 01/03/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are expressed on natural killer cells and minor subpopulations of thymus-derived (T) lymphocytes. KIRs may have a long cytoplasmic tail and inhibit cell activation upon ligand (HLA class I) binding, or they may have a short cytoplasmic tail and activate a cell after ligand binding. They are encoded by up to 14 genes present in different individuals in different combinations, whence their associations with several human diseases. KIR involvement in the fate of kidney allograft has not been extensively studied; nevertheless some associations had already been noticed. Their results are not concordant: some authors found no effect of KIR genotype, whereas others detected protective effect of KIR2DL2/KIR2DS2 or KIR-KIR ligand mismatch. We found an association of KIR2DS4 gene with acute rejection and a protective effect of KIR2DS5 gene. Interestingly, in patients, whose end-stage renal disease was caused by glomerulonephritis, the effect of KIR2DS4 was stronger than HLA mismatch, whereas opposite was true for recipients with other causes of renal failure.
Collapse
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
18
|
Vairo F, Portela P, Salim PH, Jobim M, Netto C, Dorneles A, Mittlestadt S, Jobim LF, Schwartz IVD. KIR genes and HLA class I ligands in Gaucher disease. Gene 2013; 516:53-7. [DOI: 10.1016/j.gene.2012.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022]
|
19
|
Inhibition of S-phase kinase-associated protein 2 (Skp2) reprograms and converts diabetogenic T cells to Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2012; 109:9493-8. [PMID: 22645357 DOI: 10.1073/pnas.1207293109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autoreactive pathogenic T cells (Tpaths) and regulatory T cells (Tregs) express a distinct gene profiles; however, the genes and associated genetic/signaling pathways responsible for the functional determination of Tpaths vs. Tregs remain unknown. Here we show that Skp2, an E3 ubiquitin ligase that affects cell cycle control and death, plays a critical role in the function of diabetogenic Tpaths and Tregs. Down-regulation of Skp2 in diabetogenic Tpaths converts them into Foxp3-expressing Tregs. The suppressive function of the Tpath-converted Tregs is dependent on increased production of TGF-β/IL-10, and these Tregs are able to inhibit spontaneous diabetes in NOD mice. Like naturally arising Foxp3(+) nTregs, the converted Tregs are anergic cells with decreased proliferation and activation-induced cell death. Skp2 down-regulation leads to Tpath-Treg conversion due at least in part to up-regulation of several genes involved in cell cycle control and genes in the Foxo family. Down-regulation of the cyclin-dependent kinase inhibitor p27 alone significantly attenuates the effect of Skp2 on Tpaths and reduces the suppressive function of converted Tregs; its effect is further improved with concomitant down-regulation of p21, Foxo1, and Foxo3. In comparison, Skp2 overexpression does not change Tpath function, but significantly decreases Foxp3 expression and abrogates the suppressive function of nTregs. These findings support the critical role of Skp2 in functional specification of Tpaths and Tregs, and demonstrate an important molecular mechanism mediating Skp2 function in balancing immune tolerance during autoimmune disease development.
Collapse
|
20
|
Culina S, Mallone R. Pathogenic and regulatory T cells in type 1 diabetes: losing self-control, restoring it, and how to take the temperature. Curr Diab Rep 2011; 11:426-33. [PMID: 21732231 DOI: 10.1007/s11892-011-0209-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The central role of T cells in type 1 diabetes pathogenesis is well established, but these cells continue to pose numerous challenges in understanding their dynamics and in following their modifications. Important progress has been recently made in pinpointing some novel antigens targeted by pathogenic T cells and the epitope sequences recognized. Studies on the interplay between effector T cells, their regulatory counterparts, and cells of the innate immune system have unraveled novel pathways and may inspire new therapeutic approaches. At the same time, the appreciation of the plasticity of regulatory T cells has raised important caveats on their use for cell-based therapies. Continuous development of T-cell assays exploring both pathogenic and regulatory players will be critical to "take the temperature" of undergoing disease progression and reversal.
Collapse
Affiliation(s)
- Slobodan Culina
- INSERM U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 75674, Paris, Cedex 14, France.
| | | |
Collapse
|
21
|
Killer cell immunoglobulin-like receptor genes in Spanish multiple sclerosis patients. Mol Immunol 2011; 48:1896-902. [DOI: 10.1016/j.molimm.2011.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/05/2011] [Accepted: 05/18/2011] [Indexed: 12/22/2022]
|
22
|
Fernandez-Jimenez N, Santín I, Irastorza I, Plaza-Izurieta L, Castellanos-Rubio A, Vitoria JC, Bilbao JR. Upregulation of KIR3DL1 gene expression in intestinal mucosa in active celiac disease. Hum Immunol 2011; 72:617-20. [DOI: 10.1016/j.humimm.2011.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/04/2011] [Accepted: 04/26/2011] [Indexed: 12/11/2022]
|
23
|
In Brief. Nat Rev Immunol 2011. [DOI: 10.1038/nri2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|