1
|
Marín‐Tovar Y, Serrano‐Posada H, Díaz‐Vilchis A, Rudiño‐Piñera E. PCNA from
Thermococcus gammatolerans
: A protein involved in chromosomal
DNA
metabolism intrinsically resistant at high levels of ionizing radiation. Proteins 2022; 90:1684-1698. [DOI: 10.1002/prot.26346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yerli Marín‐Tovar
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| | - Hugo Serrano‐Posada
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ Universidad de Colima Colima Mexico
| | - Adelaida Díaz‐Vilchis
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| | - Enrique Rudiño‐Piñera
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| |
Collapse
|
2
|
Manning RJ, Tschurtschenthaler M, Sabitzer S, Witte A. Manipulation of viral protein production using the PCNA of halovirus фCh1 via alternative start codon usage. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
3
|
Oki K, Yamagami T, Nagata M, Mayanagi K, Shirai T, Adachi N, Numata T, Ishino S, Ishino Y. DNA polymerase D temporarily connects primase to the CMG-like helicase before interacting with proliferating cell nuclear antigen. Nucleic Acids Res 2021; 49:4599-4612. [PMID: 33849056 PMCID: PMC8096248 DOI: 10.1093/nar/gkab243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.
Collapse
Affiliation(s)
- Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
| | - Naruhiko Adachi
- Structure Biology Research Center, Institute of Materials Structural Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Mayanagi K, Oki K, Miyazaki N, Ishino S, Yamagami T, Morikawa K, Iwasaki K, Kohda D, Shirai T, Ishino Y. Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy. BMC Biol 2020; 18:152. [PMID: 33115459 PMCID: PMC7594292 DOI: 10.1186/s12915-020-00889-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA polymerase D (PolD) is the representative member of the D family of DNA polymerases. It is an archaea-specific DNA polymerase required for replication and unrelated to other known DNA polymerases. PolD consists of a heterodimer of two subunits, DP1 and DP2, which contain catalytic sites for 3'-5' editing exonuclease and DNA polymerase activities, respectively, with both proteins being mutually required for the full activities of each enzyme. However, the processivity of the replicase holoenzyme has additionally been shown to be enhanced by the clamp molecule proliferating cell nuclear antigen (PCNA), making it crucial to elucidate the interaction between PolD and PCNA on a structural level for a full understanding of its functional relevance. We present here the 3D structure of a PolD-PCNA-DNA complex from Thermococcus kodakarensis using single-particle cryo-electron microscopy (EM). RESULTS Two distinct forms of the PolD-PCNA-DNA complex were identified by 3D classification analysis. Fitting the reported crystal structures of truncated forms of DP1 and DP2 from Pyrococcus abyssi onto our EM map showed the 3D atomic structural model of PolD-PCNA-DNA. In addition to the canonical interaction between PCNA and PolD via PIP (PCNA-interacting protein)-box motif, we found a new contact point consisting of a glutamate residue at position 171 in a β-hairpin of PCNA, which mediates interactions with DP1 and DP2. The DNA synthesis activity of a mutant PolD with disruption of the E171-mediated PCNA interaction was not stimulated by PCNA in vitro. CONCLUSIONS Based on our analyses, we propose that glutamate residues at position 171 in each subunit of the PCNA homotrimer ring can function as hooks to lock PolD conformation on PCNA for conversion of its activity. This hook function of the clamp molecule may be conserved in the three domains of life.
Collapse
Affiliation(s)
- Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan.
| | - Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Present address: Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Present address: Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Daisuke Kohda
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan.
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Gehring AM, Zatopek KM, Burkhart BW, Potapov V, Santangelo TJ, Gardner AF. Biochemical reconstitution and genetic characterization of the major oxidative damage base excision DNA repair pathway in Thermococcus kodakarensis. DNA Repair (Amst) 2020; 86:102767. [PMID: 31841800 PMCID: PMC8061334 DOI: 10.1016/j.dnarep.2019.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species drive the oxidation of guanine to 8-oxoguanine (8oxoG), which threatens genome integrity. The repair of 8oxoG is carried out by base excision repair enzymes in Bacteria and Eukarya, however, little is known about archaeal 8oxoG repair. This study identifies a member of the Ogg-subfamily archaeal GO glycosylase (AGOG) in Thermococcus kodakarensis, an anaerobic, hyperthermophilic archaeon, and delineates its mechanism, kinetics, and substrate specificity. TkoAGOG is the major 8oxoG glycosylase in T. kodakarensis, but is non-essential. In addition to TkoAGOG, the major apurinic/apyrimidinic (AP) endonuclease (TkoEndoIV) required for archaeal base excision repair and cell viability was identified and characterized. Enzymes required for the archaeal oxidative damage base excision repair pathway were identified and the complete pathway was reconstituted. This study illustrates the conservation of oxidative damage repair across all Domains of life.
Collapse
Affiliation(s)
| | | | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | | | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | | |
Collapse
|
6
|
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol (Praha) 2019; 65:67-78. [PMID: 31286382 DOI: 10.1007/s12223-019-00730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
Collapse
|
7
|
A global map of the protein shape universe. PLoS Comput Biol 2019; 15:e1006969. [PMID: 30978181 PMCID: PMC6481876 DOI: 10.1371/journal.pcbi.1006969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/24/2019] [Accepted: 03/20/2019] [Indexed: 11/19/2022] Open
Abstract
Proteins are involved in almost all functions in a living cell, and functions of proteins are realized by their tertiary structures. Obtaining a global perspective of the variety and distribution of protein structures lays a foundation for our understanding of the building principle of protein structures. In light of the rapid accumulation of low-resolution structure data from electron tomography and cryo-electron microscopy, here we map and classify three-dimensional (3D) surface shapes of proteins into a similarity space. Surface shapes of proteins were represented with 3D Zernike descriptors, mathematical moment-based invariants, which have previously been demonstrated effective for biomolecular structure similarity search. In addition to single chains of proteins, we have also analyzed the shape space occupied by protein complexes. From the mapping, we have obtained various new insights into the relationship between shapes, main-chain folds, and complex formation. The unique view obtained from shape mapping opens up new ways to understand design principles, functions, and evolution of proteins. Proteins are the major molecules involved in almost all cellular processes. In this work, we present a novel mapping of protein shapes that represents the variety and the similarities of 3D shapes of proteins and their assemblies. This mapping provides various novel insights into protein shapes including determinant factors of protein 3D shapes, which enhance our understanding of the design principles of protein shapes. The mapping will also be a valuable resource for artificial protein design as well as references for classifying medium- to low-resolution protein structure images of determined by cryo-electron microscopy and tomography.
Collapse
|
8
|
Zatopek KM, Gardner AF, Kelman Z. Archaeal DNA replication and repair: new genetic, biophysical and molecular tools for discovering and characterizing enzymes, pathways and mechanisms. FEMS Microbiol Rev 2018; 42:477-488. [PMID: 29912309 DOI: 10.1093/femsre/fuy017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023] Open
Abstract
DNA replication and repair are essential biological processes needed for the survival of all organisms. Although these processes are fundamentally conserved in the three domains, archaea, bacteria and eukarya, the proteins and complexes involved differ. The genetic and biophysical tools developed for archaea in the last several years have accelerated the study of DNA replication and repair in this domain. In this review, the current knowledge of DNA replication and repair processes in archaea will be summarized, with emphasis on the contribution of genetics and other recently developed biophysical and molecular tools, including capillary gel electrophoresis, next-generation sequencing and single-molecule approaches. How these new tools will continue to drive archaeal DNA replication and repair research will also be discussed.
Collapse
Affiliation(s)
| | | | - Zvi Kelman
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
9
|
Cloning, recombinant production and crystallographic structure of Proliferating Cell Nuclear Antigen from radioresistant archaeon Thermococcus gammatolerans. Biochem Biophys Rep 2017; 8:200-206. [PMID: 28955957 PMCID: PMC5613700 DOI: 10.1016/j.bbrep.2016.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022] Open
Abstract
Thermococcus gammatolerans is a strictly anaerobic; hyperthermophilicarchaeon belongs to the order Thermococcales in the phylum Euryarchaeota. It was extracted from a hydrothermal vent from the Guaymas Basin (Gulf of California, Mexico). Different studies show that T. gammatolerans is one of the most radioresistant organisms known amongst the archaea. This makes it a unique model to study adaptations to the environment and to study DNA repair mechanisms in an organism able to tolerate harsh conditions. A key protein in these mechanisms is the Proliferation Cell Nuclear Antigen (PCNA). Its function is focused on their ability to slide along the DNA duplex and coordinating the activities of proteins mainly related to DNA edition and processing. Analysis of archaeal proteins have proven to be enormously fruitful because much of the information obtained from them can be extrapolated to eukaryotic systems, and PCNA is no exception. Here we report the cloning, recombinant expression and crystallographic structure of PCNA from T. gammatolerans (TgPCNA). Amino acid sequence of TgPCNA depicts several residues and motifs well conserved. Asp41 appears to stimulate archaeal family B polymerases and FEN1 in homologous PCNA. By gel filtration the molecular mass was 52 kDa, closer to the monomeric state. The TgPCNA crystal belonged to the P3 space group. A total of 47 457 reflections were integrated to a resolution of 2.8 Å.
Collapse
|
10
|
Heider MR, Burkhart BW, Santangelo TJ, Gardner AF. Defining the RNaseH2 enzyme-initiated ribonucleotide excision repair pathway in Archaea. J Biol Chem 2017; 292:8835-8845. [PMID: 28373277 PMCID: PMC5448109 DOI: 10.1074/jbc.m117.783472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/31/2017] [Indexed: 11/06/2022] Open
Abstract
Incorporation of ribonucleotides during DNA replication has severe consequences for genome stability. Although eukaryotes possess a number of redundancies for initiating and completing repair of misincorporated ribonucleotides, archaea such as Thermococcus rely only upon RNaseH2 to initiate the pathway. Because Thermococcus DNA polymerases incorporate as many as 1,000 ribonucleotides per genome, RNaseH2 must be efficient at recognizing and nicking at embedded ribonucleotides to ensure genome integrity. Here, we show that ribonucleotides are incorporated by the hyperthermophilic archaeon Thermococcus kodakarensis both in vitro and in vivo and a robust ribonucleotide excision repair pathway is critical to keeping incorporation levels low in wild-type cells. Using pre-steady-state and steady-state kinetics experiments, we also show that archaeal RNaseH2 rapidly cleaves at embedded ribonucleotides (200-450 s-1), but exhibits an ∼1,000-fold slower turnover rate (0.06-0.17 s-1), suggesting a potential role for RNaseH2 in protecting or marking nicked sites for further processing. We found that following RNaseH2 cleavage, the combined activities of polymerase B (PolB), flap endonuclease (Fen1), and DNA ligase are required to complete ribonucleotide processing. PolB formed a ribonucleotide-containing flap by strand displacement synthesis that was cleaved by Fen1, and DNA ligase sealed the nick for complete repair. Our study reveals conservation of the overall mechanism of ribonucleotide excision repair across domains of life. The lack of redundancies in ribonucleotide repair in archaea perhaps suggests a more ancestral form of ribonucleotide excision repair compared with the eukaryotic pathway.
Collapse
Affiliation(s)
| | - Brett W Burkhart
- the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80521
| | - Thomas J Santangelo
- the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80521
| | - Andrew F Gardner
- From New England Biolabs, Inc., Ipswich, Massachusetts 01938 and
| |
Collapse
|
11
|
Altieri AS, Ladner JE, Li Z, Robinson H, Sallman ZF, Marino JP, Kelman Z. A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp. Nucleic Acids Res 2016; 44:6232-41. [PMID: 27141962 PMCID: PMC5181682 DOI: 10.1093/nar/gkw351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.
Collapse
Affiliation(s)
- Amanda S Altieri
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Jane E Ladner
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zhuo Li
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Howard Robinson
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zahur F Sallman
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
12
|
PCNA-binding proteins in the archaea: novel functionality beyond the conserved core. Curr Genet 2016; 62:527-32. [PMID: 26886233 PMCID: PMC4929162 DOI: 10.1007/s00294-016-0577-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 11/30/2022]
Abstract
Sliding clamps play an essential role in coordinating protein activity in DNA metabolism in all three domains of life. In eukaryotes and archaea, the sliding clamp is PCNA (proliferating cell nuclear antigen). Across the diversity of the archaea PCNA interacts with a highly conserved set of proteins with key roles in DNA replication and repair, including DNA polymerases B and D, replication factor C, the Fen1 nuclease and RNAseH2, but this core set of factors is likely to represent a fraction of the PCNA interactome only. Here, I review three recently characterised non-core archaeal PCNA-binding proteins NusS, NreA/NreB and TIP, highlighting what is known of their interactions with PCNA and their functions in vivo and in vitro. Gaining a detailed understanding of the non-core PCNA interactome will provide significant insights into key aspects of chromosome biology in divergent archaeal lineages.
Collapse
|
13
|
Gallagher ES, Hudgens JW. Mapping Protein–Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry. Methods Enzymol 2016; 566:357-404. [DOI: 10.1016/bs.mie.2015.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Functional dissection of proliferating-cell nuclear antigens (1 and 2) in human malarial parasite Plasmodium falciparum: possible involvement in DNA replication and DNA damage response. Biochem J 2015; 470:115-29. [PMID: 26251451 DOI: 10.1042/bj20150452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
Eukaryotic PCNAs (proliferating-cell nuclear antigens) play diverse roles in nucleic acid metabolism in addition to DNA replication. Plasmodium falciparum, which causes human malaria, harbours two PCNA homologues: PfPCNA1 and PfPCNA2. The functional role of two distinct PCNAs in the parasite still eludes us. In the present study, we show that, whereas both PfPCNAs share structural and biochemical properties, only PfPCNA1 functionally complements the ScPCNA mutant and forms distinct replication foci in the parasite, which PfPCNA2 fails to do. Although PfPCNA1 appears to be the primary replicative PCNA, both PfPCNA1 and PfPCNA2 participate in an active DDR (DNA-damage-response) pathway with significant accumulation in the parasite upon DNA damage induction. Interestingly, PfPCNA genes were found to be regulated not at the transcription level, but presumably at the protein stability level upon DNA damage. Such regulation of PCNA has not been shown in eukaryotes before. Moreover, overexpression of PfPCNA1 and PfPCNA2 in the parasite confers a survival edge on the parasite in a genotoxic environment. This is the first evidence of a PfPCNA-mediated DDR in the parasite and gives new insights and rationale for the presence of two PCNAs as a parasite survival strategy and its probable success.
Collapse
|
15
|
|
16
|
Greenough L, Menin JF, Desai NS, Kelman Z, Gardner AF. Characterization of family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles 2014; 18:653-64. [PMID: 24794034 PMCID: PMC4065339 DOI: 10.1007/s00792-014-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10−5) compared to polB (19 × 10−5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.
Collapse
Affiliation(s)
- Lucia Greenough
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | | |
Collapse
|
17
|
Li Z, Huang RYC, Yopp DC, Hileman TH, Santangelo TJ, Hurwitz J, Hudgens JW, Kelman Z. A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein. Nucleic Acids Res 2014; 42:5776-89. [PMID: 24728986 PMCID: PMC4027161 DOI: 10.1093/nar/gku239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that associates with and influences the activity of many proteins participating in DNA metabolic processes and cell cycle progression. Previously, an uncharacterized small protein, encoded by TK0808 in the archaeon Thermococcus kodakarensis, was shown to stably interact with PCNA in vivo. Here, we show that this protein, designated Thermococcales inhibitor of PCNA (TIP), binds to PCNA in vitro and inhibits PCNA-dependent activities likely by preventing PCNA trimerization. Using hydrogen/deuterium exchange mass spectrometry and site-directed mutagenesis, the interacting regions of PCNA and TIP were identified. Most proteins bind to PCNA via a PCNA-interacting peptide (PIP) motif that interacts with the inter domain connecting loop (IDCL) on PCNA. TIP, however, lacks any known PCNA-interacting motif, suggesting a new mechanism for PCNA binding and regulation of PCNA-dependent activities, which may support the development of a new subclass of therapeutic biomolecules for inhibiting PCNA.
Collapse
Affiliation(s)
- Zhuo Li
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Richard Y-C Huang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Daniel C Yopp
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Travis H Hileman
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jeffrey W Hudgens
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
18
|
Diversity of the DNA replication system in the Archaea domain. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:675946. [PMID: 24790526 PMCID: PMC3984812 DOI: 10.1155/2014/675946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/16/2014] [Indexed: 12/11/2022]
Abstract
The precise and timely duplication of the genome is essential for cellular life. It is achieved by DNA replication, a complex process that is conserved among the three domains of life. Even though the cellular structure of archaea closely resembles that of bacteria, the information processing machinery of archaea is evolutionarily more closely related to the eukaryotic system, especially for the proteins involved in the DNA replication process. While the general DNA replication mechanism is conserved among the different domains of life, modifications in functionality and in some of the specialized replication proteins are observed. Indeed, Archaea possess specific features unique to this domain. Moreover, even though the general pattern of the replicative system is the same in all archaea, a great deal of variation exists between specific groups.
Collapse
|
19
|
Fang J, Nevin P, Kairys V, Venclovas Č, Engen JR, Beuning PJ. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics. Structure 2014; 22:572-581. [PMID: 24613485 DOI: 10.1016/j.str.2014.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 02/06/2023]
Abstract
The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics.
Collapse
Affiliation(s)
- Jing Fang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Visvaldas Kairys
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Zhu Q, Chang Y, Yang J, Wei Q. Post-translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review). Oncol Lett 2014; 7:1363-1369. [PMID: 24765138 PMCID: PMC3997659 DOI: 10.3892/ol.2014.1943] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/13/2014] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that the post-translational modifications of proliferating cell nuclear antigen (PCNA) may be crucial in influencing the cellular choice between different pathways, such as the cell cycle checkpoint, DNA repair or apoptosis pathways, in order to maintain genomic stability. DNA damage leads to replication stress and the subsequent induction of PCNA modification by small ubiquitin (Ub)-related modifiers and Ub, which has been identified to affect multiple biological processes of genomic DNA. Thus far, much has been learned concerning the behavior of modified PCNA as a key signal integrator in response to DNA damage. In humans and yeast, modified PCNA activates DNA damage bypass via an error-prone or error-free pathway to prevent the breakage of DNA replication forks, which may potentially induce double-strand breaks and subsequent chromosomal rearrangements. However, the exact mechanisms by which these pathways work and by what means the modified PCNA is involved in these processes remain elusive. Thus, the improved understanding of PCNA modification and its implications for DNA damage response may provide us with more insight into the mechanisms by which human cells regulate aberrant recombination events, and cancer initiation and development. The present review focuses on the post-translational modifications of PCNA and its important functions in mediating mammalian cellular response to different types of DNA damage.
Collapse
Affiliation(s)
- Qiong Zhu
- Battalion Two of Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuxiao Chang
- Battalion Two of Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Quanfang Wei
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
21
|
Abstract
DNA replication plays an essential role in all life forms. Research on archaeal DNA replication began approximately 20 years ago. Progress was hindered, however, by the lack of genetic tools to supplement the biochemical and structural studies. This has changed, however, and genetic approaches are now available for several archaeal species. One of these organisms is the thermophilic euryarchaeon Thermococcus kodakarensis. In the present paper, the recent developments in the biochemical, structural and genetic studies on the replication machinery of T. kodakarensis are summarized.
Collapse
|
22
|
Pan M, Santangelo TJ, Čuboňová Ľ, Li Z, Metangmo H, Ladner J, Hurwitz J, Reeve JN, Kelman Z. Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability. Extremophiles 2013; 17:453-61. [PMID: 23525944 PMCID: PMC3743106 DOI: 10.1007/s00792-013-0526-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) monomers assemble to form a ring-shaped clamp complex that encircles duplex DNA. PCNA binding to other proteins tethers them to the DNA providing contacts and interactions for many other enzymes essential for DNA metabolic processes. Most eukarya and euryarchaea have only one PCNA homolog but Thermococcus kodakarensis uniquely has two, designated PCNA1 and PCNA2, encoded by TK0535 and TK0582, respectively. Here, we establish that both PCNA1 and PCNA2 form homotrimers that stimulate DNA synthesis by archaeal DNA polymerases B and D and ATP hydrolysis by the replication factor C complex. In exponentially growing cells, PCNA1 is abundant and present at an ~100-fold higher concentration than PCNA2 monomers. Deletion of TK0582 (PCNA2) had no detectable effects on viability or growth whereas repeated attempts to construct a T. kodakarensis strain with TK0535 (PCNA1) deleted were unsuccessful. The implications of these observations for PCNA1 function and the origin of the two PCNA-encoding genes in T. kodakarensis are discussed.
Collapse
Affiliation(s)
- Miao Pan
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | - Ľbomíra Čuboňová
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Zhuo Li
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Harlette Metangmo
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Jane Ladner
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA. National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - John N. Reeve
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA. National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
23
|
Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis. Extremophiles 2012; 17:153-60. [PMID: 23224520 DOI: 10.1007/s00792-012-0504-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Four virus-like integrated elements (TKV1, TKV2, TKV3, and TKV4) have been found in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis, but virus particle formation has not been observed in the culture of T. kodakarensis. As the result of growth property analyses, mutants lacking each of the four virus-like regions exhibited decrease in the cell concentration and/or less growth rates compared to growth of parental strain (KU216), when the T. kodakarensis strains were grown at 85 °C in nutrient-rich medium. These results indicated that the genes in virus-like regions stimulated the cell growth under the observed growth condition. As the result of transcriptome analyses, genes involved in amino acid, energy or nucleotide metabolisms, and transport systems were up- or down-regulated in the cells of mutant strains. Interestingly, a decrease in transcriptional levels of glutamine synthetase (TK1796) gene (Tk-glnA) was observed in the cells of four mutant strains. Growths of TKV1 disrupted strain and TKV4 disrupted strain have shown no difference compared with that of KU216 by the addition of glutamate or glutamine, and the result suggested that TKV1 and TKV4 contributed to supply of amino acids to the cell.
Collapse
|
24
|
Rings in the extreme: PCNA interactions and adaptations in the archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:951010. [PMID: 23209375 PMCID: PMC3504372 DOI: 10.1155/2012/951010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/19/2012] [Indexed: 12/02/2022]
Abstract
Biochemical and structural analysis of archaeal proteins has enabled us to gain great insight into many eukaryotic processes, simultaneously offering fascinating glimpses into the adaptation and evolution of proteins at the extremes of life. The archaeal PCNAs, central to DNA replication and repair, are no exception. Characterisation of the proteins alone, and in complex with both peptides and protein binding partners, has demonstrated the diversity and subtlety in the regulatory role of these sliding clamps. Equally, studies have provided valuable detailed insight into the adaptation of protein interactions and mechanisms that are necessary for life in extreme environments.
Collapse
|
25
|
Kuba Y, Ishino S, Yamagami T, Tokuhara M, Kanai T, Fujikane R, Daiyasu H, Atomi H, Ishino Y. Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis. Genes Cells 2012; 17:923-37. [PMID: 23078585 DOI: 10.1111/gtc.12007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/30/2012] [Indexed: 11/27/2022]
Abstract
The DNA sliding clamp is a multifunctional protein involved in cellular DNA transactions. In Archaea and Eukaryota, proliferating cell nuclear antigen (PCNA) is the sliding clamp. The ring-shaped PCNA encircles double-stranded DNA within its central hole and tethers other proteins on DNA. The majority of Crenarchaeota, a subdomain of Archaea, have multiple PCNA homologues, and they are capable of forming heterotrimeric rings for their functions. In contrast, most organisms in Euryarchaeota, the other major subdomain, have a single PCNA forming a homotrimeric ring structure. Among the Euryarchaeota whose genome is sequenced, Thermococcus kodakarensis is the only species with two genes encoding PCNA homologues on its genome. We cloned the two genes from the T. kodakarensis genome, and the gene products, PCNA1 and PCNA2, were characterized. PCNA1 stimulated the DNA synthesis reactions of the two DNA polymerases, PolB and PolD, from T. kodakarensis in vitro. PCNA2, however, only had an effect on PolB. We were able to disrupt the gene for PCNA2, whereas gene disruption for PCNA1 was not possible, suggesting that PCNA1 is essential for DNA replication. The sensitivities of the Δpcna2 mutant strain to ultraviolet irradiation (UV), methyl methanesulfonate (MMS) and mitomycin C (MMC) were indistinguishable from those of the wild-type strain.
Collapse
Affiliation(s)
- Yumani Kuba
- Department of Bioscience & Biotechnology, Faculty of Agriculture and Graduate School of Bioresource & Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ishino Y, Ishino S. Rapid progress of DNA replication studies in Archaea, the third domain of life. SCIENCE CHINA-LIFE SCIENCES 2012; 55:386-403. [PMID: 22645083 DOI: 10.1007/s11427-012-4324-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/20/2012] [Indexed: 02/04/2023]
Abstract
Archaea, the third domain of life, are interesting organisms to study from the aspects of molecular and evolutionary biology. Archaeal cells have a unicellular ultrastructure without a nucleus, resembling bacterial cells, but the proteins involved in genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of Eukaryota. Therefore, archaea provide useful model systems to understand the more complex mechanisms of genetic information processing in eukaryotic cells. Moreover, the hyperthermophilic archaea provide very stable proteins, which are especially useful for the isolation of replisomal multicomplexes, to analyze their structures and functions. This review focuses on the history, current status, and future directions of archaeal DNA replication studies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
27
|
Chemnitz Galal W, Pan M, Kelman Z, Hurwitz J. Characterization of DNA primase complex isolated from the archaeon, Thermococcus kodakaraensis. J Biol Chem 2012; 287:16209-19. [PMID: 22351771 DOI: 10.1074/jbc.m111.338145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most organisms, DNA replication is initiated by DNA primases, which synthesize primers that are elongated by DNA polymerases. In this study, we describe the isolation and biochemical characterization of the DNA primase complex and its subunits from the archaeon Thermococcus kodakaraensis. The T. kodakaraensis DNA primase complex is a heterodimer containing stoichiometric levels of the p41 and p46 subunits. The catalytic activity of the complex resides within the p41 subunit. We show that the complex supports both DNA and RNA synthesis, whereas the p41 subunit alone marginally produces RNA and synthesizes DNA chains that are longer than those formed by the complex. We report that the T. kodakaraensis primase complex preferentially interacts with dNTP rather than ribonucleoside triphosphates and initiates RNA as well as DNA chains de novo. The latter findings indicate that the archaeal primase complex, in contrast to the eukaryote homolog, can initiate DNA chain synthesis in the absence of ribonucleoside triphosphates. DNA primers formed by the archaeal complex can be elongated extensively by the T. kodakaraensis DNA polymerase (Pol) B, whereas DNA primers formed by the p41 catalytic subunit alone were not. Supplementation of reactions containing the p41 subunit with the p46 subunit leads to PolB-catalyzed DNA synthesis. We also established a rolling circle reaction using a primed 200-nucleotide circle as the substrate. In the presence of the T. kodakaraensis minichromosome maintenance (MCM) 3' → 5' DNA helicase, PolB, replication factor C, and proliferating cell nuclear antigen, long leading strands (>10 kb) are produced. Supplementation of such reactions with the DNA primase complex supported lagging strand formation as well.
Collapse
Affiliation(s)
- Wiebke Chemnitz Galal
- Program of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | |
Collapse
|
28
|
Pan M, Santangelo TJ, Li Z, Reeve JN, Kelman Z. Thermococcus kodakarensis encodes three MCM homologs but only one is essential. Nucleic Acids Res 2011; 39:9671-80. [PMID: 21821658 PMCID: PMC3239210 DOI: 10.1093/nar/gkr624] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea and eukaryotes. In eukaryotes, this complex is an assembly of six different but related polypeptides (MCM2-7) but, in most archaea, one MCM protein assembles to form a homohexameric complex. Atypically, the Thermococcus kodakarensis genome encodes three archaeal MCM homologs, here designated MCM1-3, although MCM1 and MCM2 are unusual in having long and unique N-terminal extensions. The results reported establish that MCM2 and MCM3 assemble into homohexamers and exhibit DNA binding, helicase and ATPase activities in vitro typical of archaeal MCMs. In contrast, MCM1 does not form homohexamers and although MCM1 binds DNA and has ATPase activity, it has only minimal helicase activity in vitro. Removal of the N-terminal extension had no detectable effects on MCM1 but increased the helicase activity of MCM2. A T. kodakarensis strain with the genes TK0096 (MCM1) and TK1361 (MCM2) deleted has been constructed that exhibits no detectable defects in growth or viability, but all attempts to delete TK1620 (MCM3) have been unsuccessful arguing that that MCM3 is essential and is likely the replicative helicase in T. kodakarensis. The origins and possible function(s) of the three MCM proteins are discussed.
Collapse
Affiliation(s)
- Miao Pan
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|