1
|
Chen X, Li B. Analysis of Co-localized Biosynthetic Gene Clusters Identifies a Membrane-Permeabilizing Natural Product. JOURNAL OF NATURAL PRODUCTS 2024; 87:1694-1703. [PMID: 38949271 DOI: 10.1021/acs.jnatprod.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Combination therapy is an effective strategy to combat antibiotic resistance. Multiple synergistic antimicrobial combinations are produced by enzymes encoded in biosynthetic gene clusters (BGCs) that co-localize on the bacterial genome. This phenomenon led to the hypothesis that mining co-localized BGCs will reveal new synergistic combinations of natural products. Here, we bioinformatically identified 38 pairs of co-localized BGCs, which we predict to produce natural products that are related to known compounds, including polycyclic tetramate macrolactams (PoTeMs). We further showed that ikarugamycin, a PoTeM, increases the membrane permeability of Acinetobacter baumannii and Staphylococcus aureus, which suggests that ikarugamycin might be an adjuvant that facilitates the entry of other natural products. Our work outlines a promising avenue to discover synergistic combinations of natural products by mining bacterial genomes.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Teklemichael AA, Teshima A, Hirata A, Akimoto M, Taniguchi M, Khodakaramian G, Fujimura T, Tokumasu F, Arakawa K, Mizukami S. Discovery of antimalarial drugs from secondary metabolites in actinomycetes culture library. Trop Med Health 2024; 52:47. [PMID: 38982547 PMCID: PMC11232162 DOI: 10.1186/s41182-024-00608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Natural products play a key role as potential sources of biologically active substances for the discovery of new drugs. This study aimed to identify secondary metabolites from actinomycete library extracts that are potent against the asexual stages of Plasmodium falciparum (P. falciparum). METHODS Secondary metabolites from actinomycete library extracts were isolated from culture supernatants by ethyl acetate extraction. Comprehensive screening was performed to identify novel antimalarial compounds from the actinomycete library extracts (n = 28). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and-resistant (Dd2) lines of P. falciparum. The cytotoxicity was then evaluated in primary adult mouse brain (AMB) cells. RESULTS Out of the 28 actinomycete extracts, 17 showed parasite growth inhibition > 50% at a concentration of 50 µg/mL, nine were identified with an IC50 value < 10 µg/mL, and seven suppressed the parasite significantly with an IC50 value < 5 µg/mL. The extracts from Streptomyces aureus strains HUT6003 (Extract ID number: 2), S. antibioticus HUT6035 (8), and Streptomyces sp. strains GK3 (26) and GK7 (27), were found to have the most potent antimalarial activity with IC50 values of 0.39, 0.09, 0.97, and 0.36 µg/mL (against 3D7), and 0.26, 0.22, 0.72, and 0.21 µg/mL (against Dd2), respectively. Among them, Streptomyces antibioticus strain HUT6035 (8) showed the highest antimalarial activity with an IC50 value of 0.09 µg/mL against 3D7 and 0.22 µg/mL against Dd2, and a selective index (SI) of 188 and 73.7, respectively. CONCLUSION Secondary metabolites obtained from the actinomycete extracts showed promising antimalarial activity in vitro against 3D7 and Dd2 cell lines of P. falciparum with minimal toxicity. Therefore, secondary metabolites obtained from actinomycete extracts represent an excellent starting point for the development of antimalarial drug leads.
Collapse
Affiliation(s)
- Awet Alem Teklemichael
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Aiko Teshima
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Asahi Hirata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Momoko Akimoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mayumi Taniguchi
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Gholam Khodakaramian
- Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Takashi Fujimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Fuyuki Tokumasu
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | - Shusaku Mizukami
- Department of Immune Regulation, SHIONOGI Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan.
| |
Collapse
|
3
|
Tang PC, Sánchez-Hevia DL, Westhoff S, Fatsis-Kavalopoulos N, Andersson DI. Within-species variability of antibiotic interactions in Gram-negative bacteria. mBio 2024; 15:e0019624. [PMID: 38391196 PMCID: PMC10936430 DOI: 10.1128/mbio.00196-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Treatments with antibiotic combinations are becoming increasingly important even though the supposed clinical benefits of combinations are, in many cases, unclear. Here, we systematically examined how several clinically used antibiotics interact and affect the antimicrobial efficacy against five especially problematic Gram-negative pathogens. A total of 232 bacterial isolates were tested against different pairwise antibiotic combinations spanning five classes, and the ability of all combinations in inhibiting growth was quantified. Descriptive statistics, principal component analysis (PCA), and Spearman's rank correlation matrix were used to determine the correlations between the different combinations on interaction outcome. Several important conclusions can be drawn from the 696 examined interactions. Firstly, within a species, the interactions are in general conserved but can be isolate-specific for a given antibiotic combination and can range from antagonistic to synergistic. Secondly, additive and antagonistic interactions are the most common observed across species and antibiotics, with 87.1% of isolate-antibiotic combinations being additive, 11.6% antagonistic, and only 0.3% showing synergy. These findings suggest that to achieve the highest precision and efficacy of combination therapy, not only isolate-specific interaction profiling ought to be routinely performed, in particular to avoid using drug combinations that show antagonistic interaction and an expected associated reduction in efficacy, but also discovering rare and potentially valuable synergistic interactions.IMPORTANCEAntibiotic combinations are often used to treat bacterial infections, which aim to increase treatment efficacy and reduce resistance evolution. Typically, it is assumed that one specific antibiotic combination has the same effect on different isolates of the same species, i.e., the interaction is conserved. Here, we tested this idea by examining how several clinically used antibiotics interact and affect the antimicrobial efficacy against several bacterial pathogens. Our results show that, even though within a species the interactions are often conserved, there are also isolate-specific differences for a given antibiotic combination that can range from antagonistic to synergistic. These findings suggest that isolate-specific interaction profiling ought to be performed in clinical microbiology routine to avoid using antagonistic drug combinations that might reduce treatment efficacy.
Collapse
Affiliation(s)
- Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dione L. Sánchez-Hevia
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sanne Westhoff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Xiang MX, Miao CP, Zhang DY, Wang J, Li YQ, Yin M, Tang S. Description and genomic characterization of Cohnella caldifontis sp. nov., isolated from hot springs in Yunnan province, south-west China. Antonie Van Leeuwenhoek 2024; 117:20. [PMID: 38189996 DOI: 10.1007/s10482-023-01908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 01/09/2024]
Abstract
A bacterial strain, Gram staining positive, strictly aerobic, rod-shaped, motile bacterium with flagellum and endospore-forming, designated strain YIM B05605T, was isolated from soil sampled in Hamazui hot springs, Tengchong City, Yunnan province, China. Optimum growth for the strain occurred at pH 7.0 and 45 °C. MK-7 was the main menaquinone in the strain YIM B05605T. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PME), unidentified glycolipid (GL), three unknown aminophospholipids (APLs) and unidentified polarlipid (PL) were part of the polar lipid profile. The major fatty acids were anteiso-C15:0 and iso-C16:0. The DNA G + C content of the type strain was 58.76%. Genome-based phylogenetic analysis confirmed that strain YIM B05605T formed a distinct phylogenetic cluster within the genus Cohnella. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strain YIM B05605T with the most related species C. fontinalis YT-1101T were 73.42% and 15.7%. Functional analysis by NR, Swiss-prot, Pfam, eggNOG, GO, KEGG databases revealed that strain YIM B05605T has 13 genes related to the sulfur cycle, 2 genes related to the nitrogen cycle. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizations, strain YIM B05605T could be classified as a novel species of the genus Cohnella, for which the name Cohnella caldifontis sp. nov., is proposed. The type strain is YIM B05605T (= CGMCC 1.60052T = KCTC 43462T = NBRC 115921T).
Collapse
Affiliation(s)
- Ming-Xian Xiang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Cui-Ping Miao
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Dian-Yan Zhang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Juan Wang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yi-Qing Li
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, People's Republic of China.
| | - ShuKun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China.
- Yunnan Key Laboratory of Fermented Vegetables, Honghe, 661100, People's Republic of China.
| |
Collapse
|
5
|
Mazumdar R, Saikia K, Thakur D. Potentiality of Actinomycetia Prevalent in Selected Forest Ecosystems in Assam, India to Combat Multi-Drug-Resistant Microbial Pathogens. Metabolites 2023; 13:911. [PMID: 37623855 PMCID: PMC10456813 DOI: 10.3390/metabo13080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Actinomycetia are known for their ability to produce a wide range of bioactive secondary metabolites having significant therapeutic importance. This study aimed to explore the potential of actinomycetia as a source of bioactive compounds with antimicrobial properties against multi-drug-resistant (MDR) clinical pathogens. A total of 65 actinomycetia were isolated from two unexplored forest ecosystems, namely the Pobitora Wildlife Sanctuary (PWS) and the Deepor Beel Wildlife Sanctuary (DBWS), located in the Indo-Burma mega-biodiversity hotspots of northeast India, out of which 19 isolates exhibited significant antimicrobial activity. 16S rRNA gene sequencing was used for the identification and phylogenetic analysis of the 19 potent actinomycetia isolates. The results reveal that the most dominant genus among the isolates was Streptomyces (84.21%), followed by rare actinomycetia genera such as Nocardia, Actinomadura, and Nonomuraea. Furthermore, seventeen of the isolates tested positive for at least one antibiotic biosynthetic gene, specifically type II polyketide synthase (PKS-II) and nonribosomal peptide synthetases (NRPSs). These genes are associated with the production of bioactive compounds with antimicrobial properties. Among the isolated strains, three actinomycetia strains, namely Streptomyces sp. PBR1, Streptomyces sp. PBR36, and Streptomyces sp. DBR11, demonstrated the most potent antimicrobial activity against seven test pathogens. This was determined through in vitro antimicrobial bioassays and the minimum inhibitory concentration (MIC) values of ethyl acetate extracts. Gas chromatography-mass spectrometry (GS-MS) and whole-genome sequencing (WGS) of the three strains revealed a diverse group of bioactive compounds and secondary metabolite biosynthetic gene clusters (smBGCs), respectively, indicating their high therapeutic potential. These findings highlight the potential of these microorganisms to serve as a valuable resource for the discovery and development of novel antibiotics and other therapeutics with high therapeutic potential.
Collapse
Affiliation(s)
- Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India;
- Department of Molecular Biology & Biotechnology, Cotton University, Guwahati 781001, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati 781035, India;
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India;
| |
Collapse
|
6
|
Zhang M, Shuang B, Arakawa K. Accumulation of lankamycin derivative with a branched-chain sugar from a blocked mutant of chalcose biosynthesis in Streptomyces rochei 7434AN4. Bioorg Med Chem Lett 2023; 80:129125. [PMID: 36621553 DOI: 10.1016/j.bmcl.2023.129125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Lankamycin, a macrolide antibiotic produced by Streptomyces rochei 7434AN4, exhibits a moderate antimicrobial activity and acts as a synergistic pair with carbocyclic antibiotic lankacidin C by binding to the ribosome exit tunnel. Its biosynthetic gene (lkm) cluster (orf24-orf53) is located on the largest plasmid pSLA2-L (210,614 bp). Our group possesses a variety of lankamycin derivatives and macrolide-modification enzymes including P450 enzymes and glycosyltransferases, which may lead to expand the chemical library of bioactive macrolides. Here we constructed a mutant of a 3-ketoreductase gene lkmCVI (orf42) involved in d-chalcose biosynthesis, and its metabolite was isolated and structure-elucidated. Accumulation of novel lankamycin derivative harboring a branched-chain deoxysugar, 5-O-(4',6'-dideoxy-3'-C-acetyl-d-ribo-hexopyranosyl)-3-O-(4″-O-acetyl-l-arcanosyl)-lankanolide, indicated that LkmCVI acts as a gate keeper enzyme for d-chalcose synthesis in lankamycin biosynthesis.
Collapse
Affiliation(s)
- Mingge Zhang
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Bao Shuang
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; School of Life Sciences, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang 150030, China
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
7
|
Bioinspired computational design of lankacidin derivatives for improvement in antitumor activity. Future Med Chem 2022; 14:1349-1360. [PMID: 36073363 DOI: 10.4155/fmc-2022-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The 17-membered polyketide, lankacidin C, exhibits considerable antitumor activity as a microtubule stabilizer by binding to the paclitaxel binding site. Method: Esterification of the C-7/C-13 hydroxyl in lankacidin C was performed with acetyl, cinnamoyl and hydrocinnamoyl groups and their antitumor activity was assessed to improve the cytotoxicity of lankacidins through bioinspired computational design. Results: Compared with the cytotoxicity of parent lankacidin C against the HeLa cell line, 13-O-cinnamoyl-lankacidin C demonstrated sevenfold higher cytotoxicity. Furthermore, 7,13-di-O-cinnamoyl-lankacidin C exhibited considerable antitumor activity against three tested cell lines. Conclusion: C13-esterification by a cinnamoyl group dramatically improved antitumor activity, in agreement with computational predictions. This finding provides a potential substrate for next-generation lankacidin derivatives with significant antitumor activity.
Collapse
|
8
|
Khairullina ZZ, Makarov GI, Tereshchenkov AG, Buev VS, Lukianov DA, Polshakov VI, Tashlitsky VN, Osterman IA, Sumbatyan NV. Conjugates of Desmycosin with Fragments of Antimicrobial Peptide Oncocin: Synthesis, Antibacterial Activity, Interaction with Ribosome. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:871-889. [PMID: 36180983 DOI: 10.1134/s0006297922090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
Design and synthesis of conjugates consisting of the macrolide antibiotic desmycosin and fragments of the antibacterial peptide oncocin were performed in attempt to develop new antimicrobial compounds. New compounds were shown to bind to the E. coli 70S ribosomes, to inhibit bacterial protein synthesis in vitro, as well as to suppress bacterial growth. The conjugates of N-terminal hexa- and tripeptide fragments of oncocin and 3,2',4''-triacetyldesmycosin were found to be active against some strains of macrolide-resistant bacteria. By simulating molecular dynamics of the complexes of these compounds with the wild-type bacterial ribosomes and with ribosomes, containing A2059G 23S RNA mutation, the specific structural features of their interactions were revealed.
Collapse
Affiliation(s)
| | | | - Andrey G Tereshchenkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Vitaly S Buev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitrii A Lukianov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vadim N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ilya A Osterman
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Natalia V Sumbatyan
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Perlaza-Jiménez L, Tan KS, Piper SJ, Johnson RM, Bamert RS, Stubenrauch CJ, Wright A, Lupton D, Lithgow T, Belousoff MJ. A Structurally Characterized Staphylococcus aureus Evolutionary Escape Route from Treatment with the Antibiotic Linezolid. Microbiol Spectr 2022; 10:e0058322. [PMID: 35736238 PMCID: PMC9431193 DOI: 10.1128/spectrum.00583-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the oxazolidinone family, of which linezolid is the first member to see regular use in the clinic. Here, we report a short time scale selection experiment in which strains of MRSA were subjected to linezolid treatment. Clonal isolates which had evolved a linezolid-resistant phenotype were characterized by whole-genome sequencing. Linezolid-resistant mutants were identified which had accumulated mutations in the ribosomal protein uL3. Multiple clones which had two mutations in uL3 exhibited resistance to linezolid, 2-fold higher than the clinical breakpoint. Ribosomes from this strain were isolated and subjected to single-particle cryo-electron microscopic analysis and compared to the ribosomes from the parent strain. We found that the mutations in uL3 lead to a rearrangement of a loop that makes contact with Helix 90, propagating a structural change over 15 Å away. This distal change swings nucleotide U2504 into the binding site of the antibiotic, causing linezolid resistance. IMPORTANCE Antibiotic resistance poses a critical problem to human health and decreases the utility of these lifesaving drugs. Of particular concern is the "superbug" methicillin-resistant Staphylococcus aureus (MRSA), for which treatment of infection requires the use of last-line antibiotics, including linezolid. In this paper, we characterize the atomic rearrangements which the ribosome, the target of linezolid, undergoes during its evolutionary journey toward becoming drug resistant. Using cryo-electron microscopy, we describe a particular molecular mechanism which MRSA uses to become resistant to linezolid.
Collapse
Affiliation(s)
- Laura Perlaza-Jiménez
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Kher-Shing Tan
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah J. Piper
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rachel M. Johnson
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca S. Bamert
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Christopher J. Stubenrauch
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Alexander Wright
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Lupton
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Belousoff
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Gambushe SM, Zishiri OT, El Zowalaty ME. Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infect Drug Resist 2022; 15:4645-4673. [PMID: 36039321 PMCID: PMC9420067 DOI: 10.2147/idr.s365269] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne and water-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans and may cause serious morbidity and large outbreaks worldwide. People with bloody diarrhea have an increased risk of developing serious complications such as acute renal failure and neurological damage. The hemolytic-uremic syndrome (HUS) is a serious condition, and up to 50% of HUS patients can develop long-term renal dysfunction or blood pressure-related complications. Children aged two to six years have an increased risk of developing HUS. Clinical enteropathogenic Escherichia coli (EPEC) infections show fever, vomiting, and diarrhea. The EPEC reservoir is unknown but is suggested to be an asymptomatic or symptomatic child or an asymptomatic adult carrier. Spreading is often through the fecal-oral route. The prevalence of EPEC in infants is low, and EPEC is highly contagious in children. EPEC disease in children tends to be clinically more severe than other diarrheal infections. Some children experience persistent diarrhea that lasts for more than 14 days. Enterotoxigenic Escherichia coli (ETEC) strains are a compelling cause of the problem of diarrheal disease. ETEC strains are a global concern as the bacteria are the leading cause of acute watery diarrhea in children and the leading cause of traveler’s diarrhea. It is contagious to children and can cause chronic diarrhea that can affect the development and well-being of children. Infections with diarrheagenic E. coli are more common in African countries. Antimicrobial agents should be avoided in the acute phase of the disease since studies showed that antimicrobial agents may increase the risk of HUS in children. The South African National Veterinary Surveillance and Monitoring Programme for Resistance to Antimicrobial Drugs has reported increased antimicrobial resistance in E. coli. Pathogenic bacterial strains have developed resistance to a variety of antimicrobial agents due to antimicrobial misuse. The induced heavy metal tolerance may also enhance antimicrobial resistance. The prevalence of antimicrobial resistance depends on the type of the antimicrobial agent, bacterial strain, dose, time, and mode of administration. Developing countries are severely affected by increased resistance to antimicrobial agents due to poverty, lack of proper hygiene, and clean water, which can lead to bacterial infections with limited treatment options due to resistance.
Collapse
Affiliation(s)
- Sydney M Gambushe
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mohamed E El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75 123, Sweden
| |
Collapse
|
11
|
The physiology and genetics of bacterial responses to antibiotic combinations. Nat Rev Microbiol 2022; 20:478-490. [PMID: 35241807 DOI: 10.1038/s41579-022-00700-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 02/08/2023]
Abstract
Several promising strategies based on combining or cycling different antibiotics have been proposed to increase efficacy and counteract resistance evolution, but we still lack a deep understanding of the physiological responses and genetic mechanisms that underlie antibiotic interactions and the clinical applicability of these strategies. In antibiotic-exposed bacteria, the combined effects of physiological stress responses and emerging resistance mutations (occurring at different time scales) generate complex and often unpredictable dynamics. In this Review, we present our current understanding of bacterial cell physiology and genetics of responses to antibiotics. We emphasize recently discovered mechanisms of synergistic and antagonistic drug interactions, hysteresis in temporal interactions between antibiotics that arise from microbial physiology and interactions between antibiotics and resistance mutations that can cause collateral sensitivity or cross-resistance. We discuss possible connections between the different phenomena and indicate relevant research directions. A better and more unified understanding of drug and genetic interactions is likely to advance antibiotic therapy.
Collapse
|
12
|
Muslimin R, Nishiura N, Teshima A, Do KM, Kodama T, Morita H, Lewis CW, Chan G, Ayoub AT, Arakawa K. Chemoenzymatic synthesis, computational investigation, and antitumor activity of monocyclic lankacidin derivatives. Bioorg Med Chem 2022; 53:116551. [PMID: 34883453 DOI: 10.1016/j.bmc.2021.116551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022]
Abstract
We investigated the importance of the δ-lactone ring (C1-C5) in lankacidin C using chemoenzymatic synthesis and computational prediction and assessing biological activity, including antitumor activity. Pyrroloquinoline quinone-dependent dehydrogenase (Orf23) in Streptomyces rochei was used in the chemoenzymatic synthesis of lankacyclinone C, a novel lankacidin C congener lacking the δ-lactone moiety. Orf23 could convert the monocyclic lankacidinol derivatives, lankacyclinol and 2-epi-lankacyclinol, to the C-24 keto compounds, lankacyclinone C and 2-epi-lankacyclinone C, respectively, elucidating the relaxed substrate specificity of Orf23. Computational prediction using molecular dynamics simulations and the molecular mechanics/generalized Born-surface area protocol indicated that binding energy values of all the monocyclic derivatives are very close to those of lankacidin C, which may reflect a comparable affinity to tubulin. Monocyclic lankacidin derivatives showed moderate antitumor activity when compared with bicyclic lankacidins, suggesting that the δ-lactone moiety is less important for antitumor activity in lankacidin-group antibiotics.
Collapse
Affiliation(s)
- Rukman Muslimin
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Natsumi Nishiura
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Aiko Teshima
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kiep Minh Do
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Cody Wayne Lewis
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Gordon Chan
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Ahmed Taha Ayoub
- Medicinal Chemistry Department, Heliopolis University, 3 Cairo-Belbeis Desert Road, El-Nahda, Qism El-Salam, Cairo 11777, Egypt
| | - Kenji Arakawa
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
13
|
Breiner-Goldstein E, Eyal Z, Matzov D, Halfon Y, Cimicata G, Baum M, Rokney A, Ezernitchi A, Lowell A, Schmidt J, Rozenberg H, Zimmerman E, Bashan A, Valinsky L, Anzai Y, Sherman D, Yonath A. Ribosome-binding and anti-microbial studies of the mycinamicins, 16-membered macrolide antibiotics from Micromonospora griseorubida. Nucleic Acids Res 2021; 49:9560-9573. [PMID: 34417608 PMCID: PMC8450085 DOI: 10.1093/nar/gkab684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023] Open
Abstract
Macrolides have been effective clinical antibiotics for over 70 years. They inhibit protein biosynthesis in bacterial pathogens by narrowing the nascent protein exit tunnel in the ribosome. The macrolide class of natural products consist of a macrolactone ring linked to one or more sugar molecules. Most of the macrolides used currently are semi-synthetic erythromycin derivatives, composed of a 14- or 15-membered macrolactone ring. Rapidly emerging resistance in bacterial pathogens is among the most urgent global health challenges, which render many antibiotics ineffective, including next-generation macrolides. To address this threat and advance a longer-term plan for developing new antibiotics, we demonstrate how 16-membered macrolides overcome erythromycin resistance in clinically isolated Staphylococcus aureus strains. By determining the structures of complexes of the large ribosomal subunit of Deinococcus radiodurans (D50S) with these 16-membered selected macrolides, and performing anti-microbial studies, we identified resistance mechanisms they may overcome. This new information provides important insights toward the rational design of therapeutics that are effective against drug resistant human pathogens.
Collapse
Affiliation(s)
- Elinor Breiner-Goldstein
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Zohar Eyal
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Donna Matzov
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Yehuda Halfon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Giuseppe Cimicata
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Moti Baum
- Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel
| | - Assaf Rokney
- Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel
| | - Analia V Ezernitchi
- Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel
| | - Andrew N Lowell
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Jennifer J Schmidt
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Haim Rozenberg
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Lea Valinsky
- Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel
| | - Yojiro Anzai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-0072, Japan
| | - David H Sherman
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ada Yonath
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| |
Collapse
|
14
|
Abstract
Natural products are constructed by organisms in impressive ways through various highly selective enzyme-catalyzed chemical reactions. Over the past century, there has been considerable interest in understanding and emulating the underlying biosynthetic logic for the target molecule. The successful implementation of a biomimetic strategy usually has some uniquely valuable benefits over other abiotic routes in total synthesis by (1) corroborating the chemical feasibility of a given biogenetic hypothesis and further unraveling some insightful implications for future biosynthetic studies and (2) providing remarkably more concise access to not only the original synthetic target but also diversified biogenetically related congeners, which may result in either the structural reassignment of previously disclosed natural products or the anticipation of undiscovered natural products. However, for the devised essential biomimetic transformation, fine-tuning the optimization of the substrates and the reaction conditions can sometimes be painstakingly challenging. Turning to nature for inspiration can provide additional impetus for methodological innovations.Previously used as oral veterinary drugs, lankacidins have potential as next-generation antibiotics to tackle the problems caused by multidrug-resistant bacteria with novel modes of action (MoAs). The hypersensitive and densely functionalized lactonic core within this family of macrocyclic polyketides poses a formidable challenge for chemical total synthesis and derivatization. In this account, we summarized the evolution of a unified biomimetic approach toward 10 lankacidin antibiotics and their linear biosynthetic intermediates in the longest linear 7-12 steps from readily available starting materials. Our endeavor commenced with an intermolecular bioinspired amido sulfone-based Mannich reaction approach to assemble 2 advanced fragments under mild biphasic organocatalytic conditions. It successfully gave rise to stereodivergent access to 4 C2/C18-isomeric lankacyclinols but failed to efficiently deliver lactone-containing congeners through Stille macrocyclization. Facilitated by the thermolysis chemistry of N,O-acetal to generate the requisite N-acyl-1-azahexatriene species, we realized the projected Mannich macrocyclization and eight macrocyclic lankacidins can be produced by orchestrated desilylative manipulations. In this process, we were able to perform structural reassignments of isolankacidinol (7 to 50) and isolankacyclinol (104 to 83) and, for the first time, elucidate the natural occurrence of 2,18-bis-epi-lankacyclinol (84). Moreover, the inability of the current biomimetic route to cofurnish the reported structure of 2,18-seco-lankacidinol A (15) triggered a proposed structural revision that is rooted in reconsidered biogenesis and was confirmed by a divergent synthesis that enabled us to identify the correct isomer (116). Finally, the modular, diversity-oriented design also provided streamlined entries to acyclic 2,18-seco-lankacidinol B (120) and the biosynthetic intermediate LC-KA05 (17) together with its C7-O-deacetylated congeners in all C4/C5-stereochemical variations (18, 127-129), culminating in a need for structural revision to the six-membered lactonic segment in LC-KA05-2. The selection and execution of biomimetic strategies in lankacidin total synthesis give rise to all the previously mentioned advantages at the current stage. The modular-based, late-stage diversified complex construction offers an exceptionally high level of synthetic flexibility for future synthetic forays toward newly isolated or chemically modified congeners within the lankacidin family.
Collapse
Affiliation(s)
- Kuan Zheng
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
15
|
de Vries I, Kwakman T, Lu XJ, Hekkelman ML, Deshpande M, Velankar S, Perrakis A, Joosten RP. New restraints and validation approaches for nucleic acid structures in PDB-REDO. Acta Crystallogr D Struct Biol 2021; 77:1127-1141. [PMID: 34473084 PMCID: PMC8411979 DOI: 10.1107/s2059798321007610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
The quality of macromolecular structure models crucially depends on refinement and validation targets, which optimally describe the expected chemistry. Commonly used software for these two procedures has been designed and developed in a protein-centric manner, resulting in relatively few established features for the refinement and validation of nucleic acid-containing structure models. Here, new nucleic acid-specific approaches implemented in PDB-REDO are described, including a new restraint model using noncovalent geometries (base-pair hydrogen bonding and base-pair stacking) as refinement targets. New validation routines are also presented, including a metric for Watson-Crick base-pair geometry normality (ZbpG). Applying the PDB-REDO pipeline with the new restraint model to the whole Protein Data Bank (PDB) demonstrates an overall positive effect on the quality of nucleic acid-containing structure models. Finally, we discuss examples of improvements in the geometry of specific nucleic acid structures in the PDB. The new PDB-REDO models and pipeline are available at https://pdb-redo.eu/.
Collapse
Affiliation(s)
- Ida de Vries
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tim Kwakman
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Maarten L. Hekkelman
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Mandar Deshpande
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Robbie P. Joosten
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
16
|
Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria. Nat Microbiol 2021; 6:1118-1128. [PMID: 34446927 DOI: 10.1038/s41564-021-00952-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Environmental bacteria, such as Streptomyces spp., produce specialized metabolites that are potent antibiotics and therapeutics. Selected specialized antimicrobials are co-produced and function together synergistically. Co-produced antimicrobials comprise multiple chemical classes and are produced by a wide variety of bacteria in different environmental niches, suggesting that their combined functions are ecologically important. Here, we highlight the exquisite mechanisms that underlie the simultaneous production and functional synergy of 16 sets of co-produced antimicrobials. To date, antibiotic and antifungal discovery has focused mainly on single molecules, but we propose that methods to target co-produced antimicrobials could widen the scope and applications of discovery programs.
Collapse
|
17
|
Morshed MT, Lacey E, Vuong D, Lacey AE, Lean SS, Moggach SA, Karuso P, Chooi YH, Booth TJ, Piggott AM. Chlorinated metabolites from Streptomyces sp. highlight the role of biosynthetic mosaics and superclusters in the evolution of chemical diversity. Org Biomol Chem 2021; 19:6147-6159. [PMID: 34180937 DOI: 10.1039/d1ob00600b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
LCMS-guided screening of a library of biosynthetically talented bacteria and fungi identified Streptomyces sp. MST- as a prolific producer of chlorinated metabolites. We isolated and characterised six new and nine reported compounds from MST-, belonging to three discrete classes - the depsipeptide svetamycins, the indolocarbazole borregomycins and the aromatic polyketide anthrabenzoxocinones. Following genome sequencing of MST-, we describe, for the first time, the svetamycin biosynthetic gene cluster (sve), its mosaic structure and its relationship to several distantly related gene clusters. Our analysis of the sve cluster suggested that the reported stereostructures of the svetamycins may be incorrect. This was confirmed by single-crystal X-ray diffraction analysis, allowing us to formally revise the absolute configurations of svetamycins A-G. We also show that the borregomycins and anthrabenzoxocinones are encoded by a single supercluster (bab) implicating superclusters as potential nucleation points for the evolution of biosynthetic gene clusters. These clusters highlight how individual enzymes and functional subclusters can be co-opted during the formation of biosynthetic gene clusters, providing a rare insight into the poorly understood mechanisms underpinning the evolution of chemical diversity.
Collapse
Affiliation(s)
- Mahmud T Morshed
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia.
| | - Ernest Lacey
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia. and Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Alastair E Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Soo Sum Lean
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Stephen A Moggach
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Peter Karuso
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Thomas J Booth
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
18
|
Wheatley DE, Fontenelle CQ, Kuppala R, Szpera R, Briggs EL, Vendeville JB, Wells NJ, Light ME, Linclau B. Synthesis and Structural Characteristics of all Mono- and Difluorinated 4,6-Dideoxy-d- xylo-hexopyranoses. J Org Chem 2021; 86:7725-7756. [PMID: 34029099 DOI: 10.1021/acs.joc.1c00796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-carbohydrate interactions are implicated in many biochemical/biological processes that are fundamental to life and to human health. Fluorinated carbohydrate analogues play an important role in the study of these interactions and find application as probes in chemical biology and as drugs/diagnostics in medicine. The availability and/or efficient synthesis of a wide variety of fluorinated carbohydrates is thus of great interest. Here, we report a detailed study on the synthesis of monosaccharides in which the hydroxy groups at their 4- and 6-positions are replaced by all possible mono- and difluorinated motifs. Minimization of protecting group use was a key aim. It was found that introducing electronegative substituents, either as protecting groups or as deoxygenation intermediates, was generally beneficial for increasing deoxyfluorination yields. A detailed structural study of this set of analogues demonstrated that dideoxygenation/fluorination at the 4,6-positions caused very little distortion both in the solid state and in aqueous solution. Unexpected trends in α/β anomeric ratios were identified. Increasing fluorine content always increased the α/β ratio, with very little difference between regio- or stereoisomers, except when 4,6-difluorinated.
Collapse
Affiliation(s)
- David E Wheatley
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Clement Q Fontenelle
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Ramakrishna Kuppala
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Robert Szpera
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Edward L Briggs
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | | | - Neil J Wells
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Mark E Light
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
19
|
Cai L, Seiple IB, Li Q. Modular Chemical Synthesis of Streptogramin and Lankacidin Antibiotics. Acc Chem Res 2021; 54:1891-1908. [PMID: 33792282 DOI: 10.1021/acs.accounts.0c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Continued, rapid development of antimicrobial resistance has become worldwide health crisis and a burden on the global economy. Decisive and comprehensive action is required to slow down the spread of antibiotic resistance, including increased investment in antibiotic discovery, sustainable policies that provide returns on investment for newly launched antibiotics, and public education to reduce the overusage of antibiotics, especially in livestock and agriculture. Without significant changes in the current antibiotic pipeline, we are in danger of entering a post-antibiotic era.In this Account, we summarize our recent efforts to develop next-generation streptogramin and lankacidin antibiotics that overcome bacterial resistance by means of modular chemical synthesis. First, we describe our highly modular, scalable route to four natural group A streptogramins antibiotics in 6-8 steps from seven simple chemical building blocks. We next describe the application of this route to the synthesis of a novel library of streptogramin antibiotics informed by in vitro and in vivo biological evaluation and high-resolution cryo-electron microscopy. One lead compound showed excellent inhibitory activity in vitro and in vivo against a longstanding streptogramin-resistance mechanism, virginiamycin acetyltransferase. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.Second, we recount our modular approaches toward lankacidin antibiotics. Lankacidins are a group of polyketide natural products with activity against several strains of Gram-positive bacteria but have not been deployed as therapeutics due to their chemical instability. We describe a route to several diastereomers of 2,18-seco-lankacidinol B in a linear sequence of ≤8 steps from simple building blocks, resulting in a revision of the C4 stereochemistry. We next detail our modular synthesis of several diastereoisomers of iso-lankacidinol that resulted in the structural reassignment of this natural product. These structural revisions raise interesting questions about the biosynthetic origin of lankacidins, all of which possessed uniform stereochemistry prior to these findings. Finally, we summarize the ability of several iso- and seco-lankacidins to inhibit the growth of bacteria and to inhibit translation in vitro, providing important insights into structure-function relationships for the class.
Collapse
Affiliation(s)
- Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, Jiangsu China
| | - Ian B. Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| | - Qi Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
20
|
Teshima A, Kondo H, Tanaka Y, Nindita Y, Misaki Y, Konaka Y, Itakura Y, Tonokawa T, Kinashi H, Arakawa K. Substrate specificity of two cytochrome P450 monooxygenases involved in lankamycin biosynthesis. Biosci Biotechnol Biochem 2021; 85:115-125. [PMID: 33577670 DOI: 10.1093/bbb/zbaa063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022]
Abstract
To elucidate the gross lankamycin biosynthetic pathway including two cytochrome P450 monooxygenases, LkmK and LkmF, we constructed two double mutants of P450 genes in combination with glycosyltransferase genes, lkmL and lkmI. An aglycon 8,15-dideoxylankanolide, a possible substrate for LkmK, was prepared from an lkmK-lkmL double mutant, while a monoglycoside 3-O-l-arcanosyl-8-deoxylankanolide, a substrate for LkmF, was from an lkmF-lkmI double mutant. Bioconversion of lankamycin derivatives was performed in the Escherichia coli recombinant for LkmK and the Streptomyces lividans recombinant for LkmF, respectively. LkmK catalyzes the C-15 hydroxylation on all 15-deoxy derivatives, including 8,15-dideoxylankanolide (a possible substrate), 8,15-dideoxylankamycin, and 15-deoxylankamycin, suggesting the relaxed substrate specificity of LkmK. On the other hand, LkmF hydroxylates the C-8 methine of 3-O-l-anosyl-8-deoxylankanolide. Other 8-deoxy lankamycin/lankanolide derivatives were not oxidized, suggesting the importance of a C-3 l-arcanosyl moiety for substrate recognition by LkmF in lankamycin biosynthesis. Thus, LkmF has a strict substrate specificity in lankamycin biosynthesis.
Collapse
Affiliation(s)
- Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan
| | - Hisashi Kondo
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| | - Yu Tanaka
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yosi Nindita
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuya Misaki
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuji Konaka
- Faculty of Engineering, Hiroshima University, Hiroshima, Japan
| | | | | | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Kavčič B, Tkačik G, Bollenbach T. Minimal biophysical model of combined antibiotic action. PLoS Comput Biol 2021; 17:e1008529. [PMID: 33411759 PMCID: PMC7817058 DOI: 10.1371/journal.pcbi.1008529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/20/2021] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Phenomenological relations such as Ohm's or Fourier's law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial "growth laws," which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.
Collapse
Affiliation(s)
- Bor Kavčič
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Zheng K, Shen D, Zhang B, Hong R. Landscape of Lankacidin Biomimetic Synthesis: Structural Revisions and Biogenetic Implications. J Org Chem 2020; 85:13818-13836. [PMID: 32985194 DOI: 10.1021/acs.joc.0c01930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this report, a unified biomimetic approach to all known macrocyclic lankacidins is presented. By taking advantage of the thermolysis of N,O-acetal to generate the requisite N-acyl-1-azahexatriene species, we eventually realized the biomimetic Mannich macrocyclization, from which all of the macrocyclic lankacidins can be conquered by orchestrated desilylation. The reassignments of the reported structures of isolankacidinol (7 to 10) and the discovery of a recently isolated "lankacyclinol" found to be in fact 2,18-bis-epi-lankacyclinol (72) unraveled the previously underappreciated chemical diversity exhibited by the enzymatic macrocyclization. In addition, the facile elimination/decarboxylation/protonation process for the depletion of C1 under basic conditions resembling a physiological environment may implicate more undiscovered natural products with variable C2/C18 stereochemistries (i.e., 62, 73, and 75). The notable aspect provided by a biomimetic strategy is significantly reducing the step count compared with the two previous entries to macrocyclic lankacidins.
Collapse
Affiliation(s)
- Kuan Zheng
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Defeng Shen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bingbing Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
23
|
Abstract
Lankacidins are a class of polyketide natural products isolated from Streptomyces spp. that show promising antimicrobial activity. Owing to their complex molecular architectures and chemical instability, structural assignment and derivatization of lankacidins are challenging tasks. Herein we describe three fully synthetic approaches to lankacidins that enable access to new structural variability within the class. We use these routes to systematically generate stereochemical derivatives of both cyclic and acyclic lankacidins. Additionally, we access a new series of lankacidins bearing a methyl group at the C4 position, a modification intended to increase chemical stability. In the course of this work, we discovered that the reported structures for two natural products of the lankacidin class were incorrect, and we determine the correct structures of 2,18-seco-lankacidinol B and iso-lankacidinol. We also evaluate the ability of several iso- and seco-lankacidins to inhibit the growth of bacteria and to inhibit translation in vitro. This work grants insight into the rich chemical complexity of this class of antibiotics and provides an avenue for further structural derivatization.
Collapse
Affiliation(s)
- Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jinagsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037 Jiangsu, China
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Yanmin Yao
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Seul Ki Yeon
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
24
|
Teshima A, Hadae N, Tsuda N, Arakawa K. Functional Analysis of P450 Monooxygenase SrrO in the Biosynthesis of Butenolide-Type Signaling Molecules in Streptomyces rochei. Biomolecules 2020; 10:biom10091237. [PMID: 32854353 PMCID: PMC7564063 DOI: 10.3390/biom10091237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics lankacidin and lankamycin, and their biosynthesis is tightly controlled by butenolide-type signaling molecules SRB1 and SRB2. SRBs are synthesized by SRB synthase SrrX, and induce lankacidin and lankamycin production at 40 nM concentration. We here investigated the role of a P450 monooxygenase gene srrO (orf84), which is located adjacent to srrX (orf85), in SRB biosynthesis. An srrO mutant KA54 accumulated lankacidin and lankamycin at a normal level when compared with the parent strain. To elucidate the chemical structures of the signaling molecules accumulated in KA54 (termed as KA54-SRBs), this mutant was cultured (30 L) and the active components were purified. Two active components (KA54-SRB1 and KA54-SRB2) were detected in ESI-MS and chiral HPLC analysis. The molecular formulae for KA54-SRB1 and KA54-SRB2 are C15H26O4 and C16H28O4, whose values are one oxygen smaller and two hydrogen larger when compared with those for SRB1 and SRB2, respectively. Based on extensive NMR analysis, the signaling molecules in KA54 were determined to be 6'-deoxo-SRB1 and 6'-deoxo-SRB2. Gel shift analysis indicated that a ligand affinity of 6'-deoxo-SRB1 to the specific receptor SrrA was 100-fold less than that of SRB1. We performed bioconversion of the synthetic 6'-deoxo-SRB1 in the Streptomyces lividans recombinant carrying SrrO-expression plasmid. Substrate 6'-deoxo-SRB1 was converted through 6'-deoxo-6'-hydroxy-SRB1 to SRB1 in a time-dependent manner. Thus, these results clearly indicated that SrrO catalyzes the C-6' oxidation at a final step in SRB biosynthesis.
Collapse
Affiliation(s)
- Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Nozomi Hadae
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Naoto Tsuda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Correspondence: ; Tel./Fax: +81-82-424-7767
| |
Collapse
|
25
|
Kavčič B, Tkačik G, Bollenbach T. Mechanisms of drug interactions between translation-inhibiting antibiotics. Nat Commun 2020; 11:4013. [PMID: 32782250 PMCID: PMC7421507 DOI: 10.1038/s41467-020-17734-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/14/2020] [Indexed: 02/03/2023] Open
Abstract
Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by "translation bottlenecks": points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of "continuous epistasis" in bacterial physiology.
Collapse
Affiliation(s)
- Bor Kavčič
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, Zülpicher Str. 77, D-50937, Cologne, Germany.
| |
Collapse
|
26
|
Zhang Y, Zhang J, Ponomareva LV, Cui Z, Van Lanen SG, Thorson JS. Sugar-Pirating as an Enabling Platform for the Synthesis of 4,6-Dideoxyhexoses. J Am Chem Soc 2020; 142:9389-9395. [PMID: 32330028 DOI: 10.1021/jacs.9b13766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An efficient divergent synthetic strategy that leverages the natural product spectinomycin to access uniquely functionalized monosaccharides is described. Stereoselective 2'- and 3'-reduction of key spectinomycin-derived intermediates enabled facile access to all eight possible 2,3-stereoisomers of 4,6-dideoxyhexoses as well as representative 3,4,6-trideoxysugars and 3,4,6-trideoxy-3-aminohexoses. In addition, the method was applied to the synthesis of two functionalized sugars commonly associated with macrolide antibiotics-the 3-O-alkyl-4,6-dideoxysugar d-chalcose and the 3-N-alkyl-3,4,6-trideoxysugar d-desosamine.
Collapse
Affiliation(s)
- Yinan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
27
|
Roy S, Roy S, Kar M, Chakraborty A, Kumar A, Delogu F, Asthana S, Hande MP, Banerjee B. Combined treatment with cisplatin and the tankyrase inhibitor XAV-939 increases cytotoxicity, abrogates cancer-stem-like cell phenotype and increases chemosensitivity of head-and-neck squamous-cell carcinoma cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:503084. [DOI: 10.1016/j.mrgentox.2019.503084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
|
28
|
Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat Commun 2019; 10:2519. [PMID: 31175275 PMCID: PMC6555806 DOI: 10.1038/s41467-019-10409-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/06/2019] [Indexed: 11/08/2022] Open
Abstract
The ribosome, the largest RNA-containing macromolecular machinery in cells, requires metal ions not only to maintain its three-dimensional fold but also to perform protein synthesis. Despite the vast biochemical data regarding the importance of metal ions for efficient protein synthesis and the increasing number of ribosome structures solved by X-ray crystallography or cryo-electron microscopy, the assignment of metal ions within the ribosome remains elusive due to methodological limitations. Here we present extensive experimental data on the potassium composition and environment in two structures of functional ribosome complexes obtained by measurement of the potassium anomalous signal at the K-edge, derived from long-wavelength X-ray diffraction data. We elucidate the role of potassium ions in protein synthesis at the three-dimensional level, most notably, in the environment of the ribosome functional decoding and peptidyl transferase centers. Our data expand the fundamental knowledge of the mechanism of ribosome function and structural integrity.
Collapse
|
29
|
Ayoub AT, Elrefaiy MA, Arakawa K. Computational Prediction of the Mode of Binding of Antitumor Lankacidin C to Tubulin. ACS OMEGA 2019; 4:4461-4471. [PMID: 31459641 PMCID: PMC6648929 DOI: 10.1021/acsomega.8b03470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 06/10/2023]
Abstract
Lankacidin C, which is an antibiotic produced by the organism Streptomyces rochei, shows considerable antitumor activity. The mechanism of its antitumor activity remained elusive for decades until it was recently shown to overstabilize microtubules by binding at the taxol binding site of tubulin, causing mitotic arrest followed by apoptosis. However, the exact binding mode of lankacidin C inside the tubulin binding pocket remains unknown, an issue that impedes proper structure-based design, modification, and optimization of the drug. Here, we have used computational methods to predict the most likely binding mode of lankacidin C to tubulin. We employed ensemble-based docking in different software packages, supplemented with molecular dynamics simulation and subsequent binding-energy prediction. The molecular dynamics simulations performed on lankacidin C were collectively 1.1 μs long. Also, a multiple-trajectory approach was performed to assess the stability of different potential binding modes. The identified binding mode could serve as an ideal starting point for structural modification and optimization of lankacidin C to enhance its affinity to the tubulin binding site and therefore improve its antitumor activity.
Collapse
Affiliation(s)
- Ahmed Taha Ayoub
- Medicinal
Chemistry Department, Heliopolis University, 3 Cairo-Belbeis Desert Road, El-Nahda, Qism El-Salam, Cairo 11777, Egypt
| | - Mohamed Ali Elrefaiy
- Center
of X-ray Determination for Structure of Matter (CXDS), Zewail City of Science and Technology, 6th of October City, Giza 12588, Egypt
| | - Kenji Arakawa
- Department
of Molecular Biotechnology, Graduate School of Advanced Sciences of
Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8530, Japan
| |
Collapse
|
30
|
Abstract
The medical treatment of infectious diseases often requires combination therapies that blend two molecules to enhance drug efficacy. Nature does the same. In a new article, Mrak et al. identify and functionally characterize natural products from Streptomyces rapamycinicus that show synergistic antifungal activity with the well-known immunosuppressant metabolite rapamycin, produced by the same strain. The genomic co-association of the two biosynthetic gene clusters paves the way toward new strategies to discover synergistic pairs of antibiotics through large-scale genome mining.
Collapse
Affiliation(s)
- Mohammad Alanjary
- From the Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Marnix H Medema
- From the Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
31
|
Yamauchi Y, Nindita Y, Hara K, Umeshiro A, Yabuuchi Y, Suzuki T, Kinashi H, Arakawa K. Quinoprotein dehydrogenase functions at the final oxidation step of lankacidin biosynthesis in Streptomyces rochei 7434AN4. J Biosci Bioeng 2018; 126:145-152. [DOI: 10.1016/j.jbiosc.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 10/14/2022]
|
32
|
Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annu Rev Biochem 2018; 87:451-478. [PMID: 29570352 DOI: 10.1146/annurev-biochem-062917-011942] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have developed resistance to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors, and in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules.
Collapse
Affiliation(s)
- Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;
| | - Dejian Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; .,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA.,Current affiliation: Department of Microbiology and Immunology, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
33
|
Tracanna V, de Jong A, Medema MH, Kuipers OP. Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev 2018; 41:417-429. [PMID: 28402441 DOI: 10.1093/femsre/fux014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
The bacterial kingdom provides a major source of antimicrobials that can either be directly applied or used as scaffolds to further improve their functionality in the host. The rapidly increasing amount of bacterial genomic, metabolomic and transcriptomic data offers unique opportunities to apply a variety of approaches to mine for existing and novel antimicrobials. Here, we discuss several powerful mining approaches to identify novel molecules with antimicrobial activity across structurally diverse natural products, including ribosomally synthesized and posttranslationally modified peptides, nonribosomal peptides and polyketides. We not only discuss the direct mining of genomes based on identification of biosynthetic gene clusters, but also describe more advanced and integrative approaches in ecology-based mining, functionality-based mining and mode-of-action-based mining. These efforts are likely to accelerate the discovery and development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Vittorio Tracanna
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands
| | - Anne de Jong
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9726AG Groningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9726AG Groningen, The Netherlands
| |
Collapse
|
34
|
Lupton D, Belousoff MJ. The redesign of oxazolidinone antibiotics in response to Staphylococcus aureus. Future Microbiol 2017; 12:1113-1117. [PMID: 28876083 DOI: 10.2217/fmb-2017-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- David Lupton
- School of Chemistry, Monash University, Clayton 3800, Australia
| | - Matthew J Belousoff
- Infection & Immunity Program, Biomedicine Discovery Institute & Department of Microbiology, Monash University, Clayton 3800, Australia
| |
Collapse
|
35
|
Zheng K, Shen D, Hong R. Biomimetic Synthesis of Lankacidin Antibiotics. J Am Chem Soc 2017; 139:12939-12942. [DOI: 10.1021/jacs.7b08500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kuan Zheng
- Key
Laboratory of Synthetic Chemistry of Natural Substances, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Defeng Shen
- Key
Laboratory of Synthetic Chemistry of Natural Substances, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ran Hong
- Key
Laboratory of Synthetic Chemistry of Natural Substances, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
36
|
Wekselman I, Zimmerman E, Davidovich C, Belousoff M, Matzov D, Krupkin M, Rozenberg H, Bashan A, Friedlander G, Kjeldgaard J, Ingmer H, Lindahl L, Zengel JM, Yonath A. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel. Structure 2017; 25:1233-1241.e3. [PMID: 28689968 DOI: 10.1016/j.str.2017.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 05/08/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Erythromycin is a clinically useful antibiotic that binds to an rRNA pocket in the ribosomal exit tunnel. Commonly, resistance to erythromycin is acquired by alterations of rRNA nucleotides that interact with the drug. Mutations in the β hairpin of ribosomal protein uL22, which is rather distal to the erythromycin binding site, also generate resistance to the antibiotic. We have determined the crystal structure of the large ribosomal subunit from Deinococcus radiodurans with a three amino acid insertion within the β hairpin of uL22 that renders resistance to erythromycin. The structure reveals a shift of the β hairpin of the mutated uL22 toward the interior of the exit tunnel, triggering a cascade of structural alterations of rRNA nucleotides that propagate to the erythromycin binding pocket. Our findings support recent studies showing that the interactions between uL22 and specific sequences within nascent chains trigger conformational rearrangements in the exit tunnel.
Collapse
Affiliation(s)
- Itai Wekselman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ella Zimmerman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Davidovich
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew Belousoff
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Donna Matzov
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Krupkin
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilgi Friedlander
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jette Kjeldgaard
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksbergc, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksbergc, Denmark
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
37
|
Affiliation(s)
- Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| |
Collapse
|
38
|
Abstract
An unorthodox, surprising mechanism of resistance to the antibiotic linezolid was revealed by cryo-electron microscopy (cryo-EM) in the 70S ribosomes from a clinical isolate of Staphylococcus aureus. This high-resolution structural information demonstrated that a single amino acid deletion in ribosomal protein uL3 confers linezolid resistance despite being located 24 Å away from the linezolid binding pocket in the peptidyl-transferase center. The mutation induces a cascade of allosteric structural rearrangements of the rRNA that ultimately results in the alteration of the antibiotic binding site. The growing burden on human health caused by various antibiotic resistance mutations now includes prevalent Staphylococcus aureus resistance to last-line antimicrobial drugs such as linezolid and daptomycin. Structure-informed drug modification represents a frontier with respect to designing advanced clinical therapies, but success in this strategy requires rapid, facile means to shed light on the structural basis for drug resistance (D. Brown, Nat Rev Drug Discov 14:821–832, 2015, https://doi.org/10.1038/nrd4675). Here, detailed structural information demonstrates that a common mechanism is at play in linezolid resistance and provides a step toward the redesign of oxazolidinone antibiotics, a strategy that could thwart known mechanisms of linezolid resistance.
Collapse
|
39
|
Osterman IA, Komarova ES, Shiryaev DI, Korniltsev IA, Khven IM, Lukyanov DA, Tashlitsky VN, Serebryakova MV, Efremenkova OV, Ivanenkov YA, Bogdanov AA, Sergiev PV, Dontsova OA. Sorting Out Antibiotics' Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors. Antimicrob Agents Chemother 2016; 60:7481-7489. [PMID: 27736765 PMCID: PMC5119032 DOI: 10.1128/aac.02117-16] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals.
Collapse
Affiliation(s)
- Ilya A Osterman
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Ekaterina S Komarova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russia
| | - Dmitry I Shiryaev
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Ilya A Korniltsev
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Irina M Khven
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russia
| | - Dmitry A Lukyanov
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Vadim N Tashlitsky
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Marina V Serebryakova
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Olga V Efremenkova
- G. F. Gauze Institute for Search for New Antibiotics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Yan A Ivanenkov
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russia
| | - Alexey A Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Olga A Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
40
|
Ayoub AT, Abou El-Magd RM, Xiao J, Lewis CW, Tilli TM, Arakawa K, Nindita Y, Chan G, Sun L, Glover M, Klobukowski M, Tuszynski J. Antitumor Activity of Lankacidin Group Antibiotics Is Due to Microtubule Stabilization via a Paclitaxel-like Mechanism. J Med Chem 2016; 59:9532-9540. [DOI: 10.1021/acs.jmedchem.6b01264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmed Taha Ayoub
- Department
of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Medicinal
Chemistry Department, Heliopolis University, Cairo 11777, Egypt
| | - Rabab M. Abou El-Magd
- Department
of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- City for Scientific Research and Technology Applications, Alexandria, 21934 Egypt
| | - Jack Xiao
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Cody Wayne Lewis
- Department
of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- Cancer
Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2J7, Canada
| | - Tatiana Martins Tilli
- National Institute of Science and Technology for Innovation in Neglected Diseases, Rio de Janeiro, 21040-361 Brazil
| | - Kenji Arakawa
- Department
of Molecular Biotechnology, Graduate School of Advanced Sciences of
Matter, Hiroshima University, Hiroshima 739-8530, Japan
| | - Yosi Nindita
- Department
of Molecular Biotechnology, Graduate School of Advanced Sciences of
Matter, Hiroshima University, Hiroshima 739-8530, Japan
| | - Gordon Chan
- Department
of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- Cancer
Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2J7, Canada
| | - Luxin Sun
- Department
of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Mark Glover
- Department
of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Mariusz Klobukowski
- Department
of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Jack Tuszynski
- Department
of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| |
Collapse
|
41
|
Abstract
The sheer molecular scale of the ribosome is intimidating to the traditional drug designer. By analyzing the ribosome as a series of 12 key target sites, this review seeks to make the ribosome ligand design process more manageable. Analysis of recently evaluated ribosomal structures, particularly those with bound antibiotics, indicates where the ligand target sites are located. This review employs current research data to map antibiotic binding across the ribosome. A number of neighboring ligand-binding sites are often contiguous and can be combined. Ligands that bind in close proximity can be combined into hybrid structures. The different ways antibiotics disrupt ribosomal function are also discussed. Antibiotics tend to inhibit conformational changes that are essential to the ribosomal mechanism.
Collapse
|
42
|
Auerbach-Nevo T, Baram D, Bashan A, Belousoff M, Breiner E, Davidovich C, Cimicata G, Eyal Z, Halfon Y, Krupkin M, Matzov D, Metz M, Rufayda M, Peretz M, Pick O, Pyetan E, Rozenberg H, Shalev-Benami M, Wekselman I, Zarivach R, Zimmerman E, Assis N, Bloch J, Israeli H, Kalaora R, Lim L, Sade-Falk O, Shapira T, Taha-Salaime L, Tang H, Yonath A. Ribosomal Antibiotics: Contemporary Challenges. Antibiotics (Basel) 2016; 5:antibiotics5030024. [PMID: 27367739 PMCID: PMC5039520 DOI: 10.3390/antibiotics5030024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 11/30/2022] Open
Abstract
Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.
Collapse
Affiliation(s)
- Tamar Auerbach-Nevo
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - David Baram
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Matthew Belousoff
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Elinor Breiner
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Chen Davidovich
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Giuseppe Cimicata
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Zohar Eyal
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Yehuda Halfon
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Miri Krupkin
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Markus Metz
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Mruwat Rufayda
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Moshe Peretz
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ophir Pick
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Erez Pyetan
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Itai Wekselman
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Raz Zarivach
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ella Zimmerman
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Nofar Assis
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Joel Bloch
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Hadar Israeli
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Rinat Kalaora
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Lisha Lim
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ofir Sade-Falk
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Tal Shapira
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Leena Taha-Salaime
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Hua Tang
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
43
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
44
|
Mundus J, Flyvbjerg KF, Kirpekar F. Identification of the methyltransferase targeting C2499 in Deinococcus radiodurans 23S ribosomal RNA. Extremophiles 2016; 20:91-9. [PMID: 26590840 PMCID: PMC4690841 DOI: 10.1007/s00792-015-0800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023]
Abstract
The bacterium Deinococcus radiodurans-like all other organisms-introduces nucleotide modifications into its ribosomal RNA. We have previously found that the bacterium contains a Carbon-5 methylation on cytidine 2499 of its 23S ribosomal RNA, which is so far the only modified version of cytidine 2499 reported. Using homology search, we identified the open reading frame DR_0049 as the primary candidate gene for the methyltransferase that modifies cytidine 2499. Mass spectrometric analysis demonstrated that recombinantly expressed DR0049 protein methylates E. coli cytidine 2499 both in vitro and in vivo. We also inactivated the DR_0049 gene in D. radiodurans through insertion of a chloramphenicol resistance cassette. This resulted in complete absence of the cytidine 2499 methylation, which all together demonstrates that DR_0049 encodes the methyltransferase producing m(5)C2499 in D. radiodurans 23S rRNA. Growth experiments disclosed that inactivation of DR_0049 is associated with a severe growth defect, but available ribosome structures show that cytidine 2499 is positioned very similar in D. radiodurans harbouring the modification and E. coli without the modification. Hence there is no obvious structure-based explanation for the requirement for the C2499 posttranscriptional modification in D. radiodurans.
Collapse
Affiliation(s)
- Julie Mundus
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Karen Freund Flyvbjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
45
|
Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, Rozenberg H, Bashan A, Yonath A. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci U S A 2015; 112:E5805-14. [PMID: 26464510 PMCID: PMC4629319 DOI: 10.1073/pnas.1517952112] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of bacterial multidrug resistance to antibiotics threatens to cause regression to the preantibiotic era. Here we present the crystal structure of the large ribosomal subunit from Staphylococcus aureus, a versatile Gram-positive aggressive pathogen, and its complexes with the known antibiotics linezolid and telithromycin, as well as with a new, highly potent pleuromutilin derivative, BC-3205. These crystal structures shed light on specific structural motifs of the S. aureus ribosome and the binding modes of the aforementioned antibiotics. Moreover, by analyzing the ribosome structure and comparing it with those of nonpathogenic bacterial models, we identified some unique internal and peripheral structural motifs that may be potential candidates for improving known antibiotics and for use in the design of selective antibiotic drugs against S. aureus.
Collapse
Affiliation(s)
- Zohar Eyal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Krupkin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Itai Wekselman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Ella Zimmerman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
46
|
Kunitake H, Hiramatsu T, Kinashi H, Arakawa K. Isolation and Biosynthesis of an Azoxyalkene Compound Produced by a Multiple Gene Disruptant ofStreptomyces rochei. Chembiochem 2015; 16:2237-43. [DOI: 10.1002/cbic.201500393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Hirofumi Kunitake
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Takahiro Hiramatsu
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| |
Collapse
|
47
|
Blockage of the early step of lankacidin biosynthesis caused a large production of pentamycin, citreodiol and epi-citreodiol in Streptomyces rochei. J Antibiot (Tokyo) 2014; 68:328-33. [PMID: 25464973 DOI: 10.1038/ja.2014.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/23/2014] [Accepted: 11/06/2014] [Indexed: 01/07/2023]
Abstract
In our effort to find the key intermediates of lankacidin biosynthesis in Streptomyces rochei, three UV-active compounds were isolated from mutant FS18, a gene disruptant of lkcA encoding a non-ribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) hybrid enzyme. Their structures were elucidated on the basis of spectroscopic data of NMR and MS. Two compounds of a higher mobile spot on silica gel TLC (Rf=0.45 in CHCl3-MeOH=20:1) were determined to be an epimeric mixture of citreodiol and epi-citreodiol at the C-6 position in the ratio of 2:1. In contrast, the compound of a lower mobile spot (Rf=~0 in CHCl3-MeOH=20:1) was identical to a 28-membered polyene macrolide pentamycin. The yields of citreodiols and pentamycin in FS18 were 5- and 250-fold higher compared with the parent strain. Introduction of a second mutation of srrX, coding a biosynthetic gene of the signaling molecules SRBs, into mutant FS18 did not affect the production of three metabolites. Thus, their production was not regulated by the SRB signaling molecules in contrast to lankacidin or lankamycin.
Collapse
|
48
|
Tang Y, Nielsen H, Masquida B, Gardner PP, Johansen SD. Molecular characterization of a new member of the lariat capping twin-ribozyme introns. Mob DNA 2014; 5:25. [PMID: 25342998 PMCID: PMC4167309 DOI: 10.1186/1759-8753-5-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Twin-ribozyme introns represent a complex class of mobile group I introns that harbour a lariat capping (LC) ribozyme and a homing endonuclease gene embedded in a conventional self-splicing group I ribozyme (GIR2). Twin-ribozyme introns have so far been confined to nucleolar DNA in Naegleria amoeboflagellates and the myxomycete Didymium iridis. RESULTS We characterize structural organization, catalytic properties and molecular evolution of a new twin-ribozyme intron in Allovahlkampfia (Heterolobosea). The intron contains two ribozyme domains with different functions in ribosomal RNA splicing and homing endonuclease mRNA maturation. We found Allovahlkampfia GIR2 to be a typical group IC1 splicing ribozyme responsible for addition of the exogenous guanosine cofactor (exoG), exon ligation and circularization of intron RNA. The Allovahlkampfia LC ribozyme, by contrast, represents an efficient self-cleaving ribozyme that generates a small 2',5' lariat cap at the 5' end of the homing endonuclease mRNA, and thus contributes to intron mobility. CONCLUSIONS The discovery of a twin-ribozyme intron in a member of Heterolobosea expands the distribution pattern of LC ribozymes. We identify a putative regulatory RNA element (AP2.1) in the Allovahlkampfia LC ribozyme that involves homing endonuclease mRNA coding sequences as an important structural component.
Collapse
Affiliation(s)
- Yunjia Tang
- RNA and Molecular Pathology group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH-building Breivika, N-9037 Tromsø, Norway
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Benoît Masquida
- Génétique Moléculaire, Génomique, Microbiologie, IPCB, Université de Strasbourg, CNRS, Strasbourg, France
| | - Paul P Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Steinar D Johansen
- RNA and Molecular Pathology group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH-building Breivika, N-9037 Tromsø, Norway
| |
Collapse
|
49
|
Arakawa K. Genetic and biochemical analysis of the antibiotic biosynthetic gene clusters on the Streptomyces linear plasmid. Biosci Biotechnol Biochem 2014; 78:183-9. [PMID: 25036669 DOI: 10.1080/09168451.2014.882761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We extensively analyzed the giant linear plasmid pSLA2-L in Streptomyces rochei 7434AN4, a producer of two structurally unrelated polyketide antibiotics, lankacidin and lankamycin. It was found that amine oxidase LkcE oxidizes an acyclic amine to an imine, which is in turn converted to the 17-membered carbocyclic lankacidin. Heterologous expression and translational fusion experiments indicated the modular-iterative mixed polyketide biosynthesis of lankacidin. Concerning to lankamycin biosynthesis, starter unit biosynthesis and the post-PKS modification pathway were elucidated by feeding and gene inactivation experiments. It was shown that pSLA2-L contains many regulatory genes, which constitute the signaling molecule/receptor system for antibiotic production and morphological differentiation in this strain. Two signaling molecules, SRB1 and SRB2, that induce production of lankacidin and lankamycin were further isolated and their structures were elucidated. Each contains a 2,3-disubstituted butenolide skeleton, and the stereochemistry at C-1' position is crucial for inducing activity.
Collapse
Affiliation(s)
- Kenji Arakawa
- a Department of Molecular Biotechnology , Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
50
|
Abstract
The ribosome is one of the main antibiotic targets in the bacterial cell. Crystal structures of naturally produced antibiotics and their semi-synthetic derivatives bound to ribosomal particles have provided unparalleled insight into their mechanisms of action, and they are also facilitating the design of more effective antibiotics for targeting multidrug-resistant bacteria. In this Review, I discuss the recent structural insights into the mechanism of action of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance, in addition to the approaches that are being pursued for the production of improved drugs that inhibit bacterial protein synthesis.
Collapse
|