1
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
2
|
Resnick A. Chronic fluid flow is an environmental modifier of renal epithelial function. PLoS One 2011; 6:e27058. [PMID: 22046444 PMCID: PMC3203937 DOI: 10.1371/journal.pone.0027058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/10/2011] [Indexed: 12/16/2022] Open
Abstract
Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca(++), which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5(th) decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression.
Collapse
Affiliation(s)
- Andrew Resnick
- Department of Physics, Cleveland State University, Cleveland, Ohio, United States of America.
| |
Collapse
|
3
|
Kher R, Sha EC, Escobar MR, Andreoli EM, Wang P, Xu WM, Wandinger-Ness A, Bacallao RL. Ectopic expression of cadherin 8 is sufficient to cause cyst formation in a novel 3D collagen matrix renal tubule culture. Am J Physiol Cell Physiol 2011; 301:C99-C105. [PMID: 21389276 DOI: 10.1152/ajpcell.00151.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While a variety of genetic mutations have been shown to be associated with renal cyst formation, mechanisms of renal cyst formation are largely unknown. In prior communications we described alterations in E-cadherin assembly in cultured cystic epithelial cells (Charron AJ, Nakamura S, Bacallao R, Wandinger-Ness A. J Cell Biol 149: 111-124, 2000). Using the same cell line we assayed cadherin expression by RT-PCR using primer pairs that anneal to highly conserved sequences of cadherin genes but flank informative regions of cadherins. Using this approach we found that autosomal dominant polycystic kidney disease (ADPKD) cells express cadherin 8, a neuronal cadherin with limited expression in the kidney. Immunohistochemistry confirmed cadherin 8 expression in cystic epithelia. To test the functional significance of cadherin 8 expression in renal epithelial cells, we adapted a three-dimensional collagen culture method in which HK-2 cells form tubule structures and microinjected adenovirus into the matrix space surrounding tubule structures. Adenovirus expressing cadherin 8 under the control of a tet promoter caused cyst structures to grow out of the tubules when coinjected with adenovirus expressing a tet transactivator. Microinjection of single adenovirus expressing either tet transactivator or cadherin 8 failed to cause cyst formation. When doxycycline was added to the culture, following coinjection of adenovirus, there was a dose-response reduction in cadherin 8 expression and cyst formation. Similarly, HK-2 cells transfected with Flag-tagged cadherin 8 form cysts in addition to tubular structures. HK-2 cells transfected with Flag-tagged N-cadherin do not form cysts. These data suggest that ectopic expression of cadherin 8 in renal epithelial cells is sufficient to cause the morphogenic pattern of cyst formation.
Collapse
Affiliation(s)
- Rajesh Kher
- Division of Nephrology, Richard L. Roudebush Department of Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cook SA, Collin GB, Bronson RT, Naggert JK, Liu DP, Akeson EC, Davisson MT. A mouse model for Meckel syndrome type 3. J Am Soc Nephrol 2009; 20:753-64. [PMID: 19211713 DOI: 10.1681/asn.2008040412] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Meckel-Gruber syndrome type 3 (MKS3; OMIM 607361) is a severe autosomal recessive disorder characterized by bilateral polycystic kidney disease. Other malformations associated with MKS3 include cystic changes in the liver, polydactyly, and brain abnormalities (occipital encephalocele, hydrocephalus, and Dandy Walker-type cerebellar anomalies). The disorder is hypothesized to be caused by defects in primary cilia. In humans, the underlying mutated gene, TMEM67, encodes transmembrane protein 67, also called meckelin (OMIM 609884), which is an integral protein of the renal epithelial cell and membrane of the primary cilium. Here, we describe a spontaneous deletion of the mouse ortholog, Tmem67, which results in polycystic kidney disease and death by 3 wk after birth. Hydrocephalus also occurs in some mutants. We verified the mutated gene by transgenic rescue and characterized the phenotype with microcomputed tomography, histology, scanning electron microscopy, and immunohistochemistry. This mutant provides a mouse model for MKS3 and adds to the growing set of mammalian models essential for studying the role of the primary cilium in kidney function.
Collapse
Affiliation(s)
- Susan A Cook
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The primary cilium is a microtubule-based nonmotile organelle that is found on most cells in the mammalian body. Once regarded as a vestigial organelle, it has been recently shown to play unforeseen roles in mammalian physiology and tissue homeostasis. In kidney epithelial cells, the primary cilium plays a fundamental role in tubule organization and function and it is now considered to serve as a versatile mechanosensor and chemosensor. Diseases related to kidney primary cilia include autosomal polycystic kidney disease, recessive polycystic kidney disease, Bardet-Biedl syndrome, and nephronophthisis. Multiple proteins whose functions are disrupted in cystic kidney diseases have been localized in the primary cilium. This review provides a general introduction to the cell biology and function of renal primary cilia and an overview of cilia-related kidney diseases.
Collapse
|
6
|
Abstract
While the functions of many of the proteins located in or associated with the photoreceptor cilia are poorly understood, disruption of the function of these proteins may result in a wide variety of phenotypes ranging from isolated retinal degeneration to more pleiotropic phenotypes. Systemic findings include neurosensory hearing loss, developmental delay, situs-inversus, infertility, disorders of limb and digit development, obesity, kidney disease, liver disease, and respiratory disease. The concept of "retinal ciliopathies" brings to attention the importance of further molecular analysis of this organelle as well as provides a potential common target for therapies for these disorders. The retinal ciliopathies include retinitis pigmentosa, macular degeneration, cone-dystrophy, cone-rod dystrophy, Leber congenital amaurosis, as well as retinal degenerations associated with Usher syndrome, primary ciliary dyskinesia, Senior-Loken syndrome, Joubert syndrome, Bardet-Biedl syndrome, Laurence-Moon syndrome, McKusick-Kaufman syndrome, and Biemond syndrome. Mutations for these disorders have been found in retinitis pigmentosa-1 (RP1), retinitis pigmentosa GTPase regulator (RPGR), retinitis pigmentosa GTPase regulator interacting protein (RPGR-IP), as well as the Usher, Bardet-Biedl, and nephronophthisis genes. Other systemic disorders associated with retinal degenerations that may also involve ciliary abnormalities include: Alstrom, Edwards-Sethi, Ellis-van Creveld, Jeune, Meckel-Gruber, Orofaciodigital Type 9, and Gurrieri syndromes. Understanding these conditions as ciliopathies may help the ophthalmologist to recognize associations between seemingly unrelated diseases and have a high degree of suspicion that a systemic finding may be present.
Collapse
Affiliation(s)
- N A Adams
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
7
|
Condac E, Silasi-Mansat R, Kosanke S, Schoeb T, Towner R, Lupu F, Cummings RD, Hinsdale ME. Polycystic disease caused by deficiency in xylosyltransferase 2, an initiating enzyme of glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 2007; 104:9416-21. [PMID: 17517600 PMCID: PMC1890509 DOI: 10.1073/pnas.0700908104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Indexed: 01/12/2023] Open
Abstract
The basic biochemical mechanisms underlying many heritable human polycystic diseases are unknown despite evidence that most cases are caused by mutations in members of several protein families, the most prominent being the polycystin gene family, whose products are found on the primary cilia, or due to mutations in posttranslational processing and transport. Inherited polycystic kidney disease, the most prevalent polycystic disease, currently affects approximately 500,000 people in the United States. Decreases in proteoglycans (PGs) have been found in tissues and cultured cells from patients who suffer from autosomal dominant polycystic kidney disease, and this PG decrease has been hypothesized to be responsible for cystogenesis. This is possible because alterations in PG concentrations would be predicted to disrupt many homeostatic mechanisms of growth, development, and metabolism. To test this hypothesis, we have generated mice lacking xylosyltransferase 2 (XylT2), an enzyme involved in PG biosynthesis. Here we show that inactivation of XylT2 results in a substantial reduction in PGs and a phenotype characteristic of many aspects of polycystic liver and kidney disease, including biliary epithelial cysts, renal tubule dilation, organ fibrosis, and basement membrane abnormalities. Our findings demonstrate that alterations in PG concentrations can occur due to loss of XylT2, and that reduced PGs can induce cyst development.
Collapse
Affiliation(s)
| | | | - Stanley Kosanke
- Department of Pathology, University of Oklahoma, 940 Stanton L. Young Boulevard, BMSB, Room 203, Health Sciences Center, Oklahoma City, OK 73104
| | - Trenton Schoeb
- Department of Genetics, University of Alabama at Birmingham, Volker Hall, 402, 1670 University Boulevard, Birmingham, AL 35294-0019
| | - Rheal Towner
- Free Radical Biology and Aging Research Program, 825 Northeast 13th Street, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, 4001 Rollins Research Center, Atlanta, GA 30322; and
| | - Myron E. Hinsdale
- *Cardiovascular Biology Research Program
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73104
| |
Collapse
|
8
|
Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN, Whelan S, Morgan NV, Goranson E, Gissen P, Lilliquist S, Aligianis IA, Ward CJ, Pasha S, Punyashthiti R, Malik Sharif S, Batman PA, Bennett CP, Woods CG, McKeown C, Bucourt M, Miller CA, Cox P, Algazali L, Trembath RC, Torres VE, Attie-Bitach T, Kelly DA, Maher ER, Gattone VH, Harris PC, Johnson CA. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet 2006; 38:191-6. [PMID: 16415887 DOI: 10.1038/ng1713] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 11/17/2005] [Indexed: 01/06/2023]
Abstract
Meckel-Gruber syndrome is a severe autosomal, recessively inherited disorder characterized by bilateral renal cystic dysplasia, developmental defects of the central nervous system (most commonly occipital encephalocele), hepatic ductal dysplasia and cysts and polydactyly. MKS is genetically heterogeneous, with three loci mapped: MKS1, 17q21-24 (ref. 4); MKS2, 11q13 (ref. 5) and MKS3 (ref. 6). We have refined MKS3 mapping to a 12.67-Mb interval (8q21.13-q22.1) that is syntenic to the Wpk locus in rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. Positional cloning of the Wpk gene suggested a MKS3 candidate gene, TMEM67, for which we identified pathogenic mutations for five MKS3-linked consanguineous families. MKS3 is a previously uncharacterized, evolutionarily conserved gene that is expressed at moderate levels in fetal brain, liver and kidney but has widespread, low levels of expression. It encodes a 995-amino acid seven-transmembrane receptor protein of unknown function that we have called meckelin.
Collapse
Affiliation(s)
- Ursula M Smith
- Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, University of Birmingham Medical School, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Smith JC, Northey JGB, Garg J, Pearlman RE, Siu KWM. Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res 2005; 4:909-19. [PMID: 15952738 DOI: 10.1021/pr050013h] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To improve the utility of increasingly large numbers of available unannotated and initially poorly annotated genomic sequences for proteome analysis, we demonstrate that effective protein identification can be made on a large and unannotated genome. The strategy developed is to translate the unannotated genome sequence into amino acid sequence encoding putative proteins in all six reading frames, to identify peptides by tandem mass spectrometry (MS/MS), to localize them on the genome sequence, and to preliminarily annotate the protein via a similarity search by BLAST. These tasks have been optimized and automated. Optimization to obtain multiple peptide matches in effect extends the searchable region and results in more robust protein identification. The viability of this strategy is demonstrated with the identification of 223 cilia proteins in the unicellular eukaryotic model organism Tetrahymena thermophila, whose initial genomic sequence draft was released in November 2003. To the best of our knowledge, this is the first demonstration of large-scale protein identification based on such a large, unannotated genome. Of the 223 cilia proteins, 84 have no similarity to proteins in NCBI's nonredundant (nr) database. This methodology allows identifying the locations of the genes encoding these novel proteins, which is a necessary first step to downstream functional genomic experimentation.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
10
|
Delmas P. Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch 2005; 451:264-76. [PMID: 15889307 DOI: 10.1007/s00424-005-1431-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 12/19/2022]
Abstract
Transient receptor potential (TRP) channel proteins are divided into seven subgroups that are currently designated as TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPN (NOMP-C, from no mechanoreceptor potential-C), TRPA (ankyrin-like with transmembrane domains 1) and TRPP (polycystin). TRPC, TRPV and TRPM are related to canonical TRP proteins whereas TRPN, TRPA and TRPP (polycystin) are more divergent. Most TRP channels are linked to sensory stimuli, including phototransduction, thermosensation and mechanosensation. The TRPP subfamily was named after its founding member, polycystin kidney disease-2 (PKD2), a gene product mutated in many cases of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is a major inherited nephropathy, affecting over 1:1,000 of the worldwide population, characterized by the progressive development of fluid-filled cysts from the tubules and collecting ducts of affected kidneys. Loss-of-function mutations in either polycystin-2, a non-selective cation channel, or polycystin-1 (PKD1), a large plasma membrane integral protein, give rise to ADPKD. PKD1 and PKD2 are thought to function together as part of a multiprotein receptor/ion-channel complex or independently and may be involved in transducing Ca(2+)-dependent mechanosensitive signals in response to cilia bending in renal epithelial cells and endodermally derived cells. Further information on the growing number and physiological properties of these TRP-polycystins is the basis of this review.
Collapse
Affiliation(s)
- Patrick Delmas
- Faculté de Médecine, IFR Jean Roche, Laboratoire de Neurophysiologie Cellulaire, CNRS-UMR 6150, Bd. Pierre Dramard, 13916 Marseille Cedex 20, France.
| |
Collapse
|
11
|
Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 2004; 322:1374-83. [PMID: 15336986 DOI: 10.1016/j.bbrc.2004.08.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Indexed: 01/26/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a major, inherited nephropathy affecting over 1:1000 of the worldwide population. It is a systemic condition with frequent hepatic and cardiovascular manifestations in addition to the progressive development of fluid-filled cysts from the tubules and collecting ducts of affected kidneys. The pathogenesis of cyst formation is currently thought to involve increased proliferation of epithelial cells, mild dedifferentiation, and fluid accumulation. In the past decade, study of ADPKD led to the discovery of a unique family of highly complex proteins, the polycystins. Loss-of-function mutations in either of two polycystin proteins, polycystin-1 or polycystin-2, give rise to ADPKD. These proteins are thought to function together as part of a multiprotein complex that may initiate Ca2+ signals, directing attention to the regulation of intracellular Ca2+ as a possible misstep that participates in cyst formation. Here we review what is known about the Ca2+ signaling functions of polycystin proteins and focus on findings that have significantly advanced our physiological insight. Special attention is paid to the recently discovered role of these proteins in the mechanotransduction of the renal primary cilium and the model it suggests.
Collapse
Affiliation(s)
- Patrick Delmas
- Laboratoire de Neurophysiologie Cellulaire, CNRS-UMR 6150, Faculté de Médecine, IFR Jean Roche, Bd. Pierre Dramard, 13916 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
12
|
Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development 2004; 131:1449-62. [PMID: 15023929 DOI: 10.1242/dev.01089] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Branching morphogenesis in the kidney is a tightly regulated, complex process and its disruption potentially can lead to a broad spectrum of diseases, ranging from rare hereditary syndromes to common conditions such as hypertension and chronic kidney failure. This review synthesizes data on branching during kidney development derived from in vitro and in vivo rodent studies and to apply them to human diseases. It discusses how the broad organization of molecular interactions during kidney development might provide a mechanistic framework for understanding disorders related to aberrant branching.
Collapse
Affiliation(s)
- Mita M Shah
- Department of Pediatrics, University of California, San Diego, CA 92093-0693, USA
| | | | | | | | | |
Collapse
|