1
|
Liu Y, Han D, Liu L. Temporary Structural Supports for Chemical Protein Synthesis. Angew Chem Int Ed Engl 2025:e202504405. [PMID: 40248862 DOI: 10.1002/anie.202504405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The range of functional proteins that can be prepared by chemical protein synthesis includes those bearing complex modifications and incorporating d-amino acids, and exceeds what can be accessed by biological means, but the technique is still limited by the unfavorable solution behavior of many synthetic protein intermediates in buffer, leading to inefficient ligation, purification, and in vitro folding. One approach to address this limitation is the use of temporary structural supports-chemical modifications, usually solubilizing functionalities such as polyamines or carbohydrates-that are installed on either the backbone or side chains of the synthetic protein intermediates and removed at a later stage of chemical protein synthesis. The basic processes for introducing and removing such temporary structural supports are reminiscent of the canonical protecting groups ubiquitous in organic chemistry. However, unlike the synthesis of small organic molecules, where solubility is rarely an issue, the purpose of temporary structural supports is to modulate the solution behavior of the synthetic protein intermediates to prevent them from aggregation, precipitation, or retention in unfavorable solvation-phase conformations. In this review, we summarize recent advances in the development of temporary structural supports for chemical protein synthesis and organize them into three categories: 1) Temporary structural supports to improve solubility; 2) Temporary structural supports to assist chemical ligation; and 3) Temporary structural supports to promote in vitro folding.
Collapse
Affiliation(s)
- Yanbo Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongyang Han
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Zheng Y, Zhang B, Shi WW, Deng X, Wang TY, Han D, Ren Y, Yang Z, Zhou YK, Kuang J, Wang ZW, Tang S, Zheng JS. An Enzyme-Cleavable Solubilizing-Tag Facilitates the Chemical Synthesis of Mirror-Image Proteins. Angew Chem Int Ed Engl 2024; 63:e202318897. [PMID: 38326236 DOI: 10.1002/anie.202318897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Mirror-image proteins (D-proteins) are useful in biomedical research for purposes such as mirror-image screening for D-peptide drug discovery, but the chemical synthesis of many D-proteins is often low yielding due to the poor solubility or aggregation of their constituent peptide segments. Here, we report a Lys-C protease-cleavable solubilizing tag and its use to synthesize difficult-to-obtain D-proteins. Our tag is easily installed onto multiple amino acids such as DLys, DSer, DThr, and/or the N-terminal amino acid of hydrophobic D-peptides, is impervious to various reaction conditions, such as peptide synthesis, ligation, desulfurization, and transition metal-mediated deprotection, and yet can be completely removed by Lys-C protease under denaturing conditions to give the desired D-protein. The efficacy and practicality of the new method were exemplified in the synthesis of two challenging D-proteins: D-enantiomers of programmed cell death protein 1 IgV domain and SARS-CoV-2 envelope protein, in high yield. This work demonstrates that the enzymatic cleavage of solubilizing tags under denaturing conditions is feasible, thus paving the way for the production of more D-proteins.
Collapse
Affiliation(s)
- Yupeng Zheng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Baochang Zhang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei-Wei Shi
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tong-Yue Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongyang Han
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuxiang Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ziyi Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Kang Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jian Kuang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhi-Wen Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shan Tang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ji-Shen Zheng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
3
|
Callahan AJ, Gandhesiri S, Travaline TL, Reja RM, Lozano Salazar L, Hanna S, Lee YC, Li K, Tokareva OS, Swiecicki JM, Loas A, Verdine GL, McGee JH, Pentelute BL. Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins. Nat Commun 2024; 15:1813. [PMID: 38418820 PMCID: PMC10901774 DOI: 10.1038/s41467-024-45634-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recognition modes but is hindered by the individualized optimization required for D-protein chemical synthesis. We demonstrate a general mirror-image phage display pipeline that utilizes automated flow peptide synthesis to prepare D-proteins in a single run. With this approach, we prepare and characterize 12 D-proteins - almost one third of all reported D-proteins to date. With access to mirror-image protein targets, we describe the successful discovery of six macrocyclic D-peptide binders: three to the oncoprotein MDM2, and three to the E3 ubiquitin ligase CHIP. Reliable production of mirror-image proteins can unlock the full potential of D-peptide drug discovery and streamline the study of mirror-image biology more broadly.
Collapse
Affiliation(s)
- Alex J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Satish Gandhesiri
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Tara L Travaline
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Rahi M Reja
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lia Lozano Salazar
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephanie Hanna
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yen-Chun Lee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
| | - Kunhua Li
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Olena S Tokareva
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Jean-Marie Swiecicki
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
- Relay Therapeutics, Inc., 399 Binney Street, 2nd Floor, Cambridge, MA, 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gregory L Verdine
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - John H McGee
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA.
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
4
|
Tanaka S, Narumi T, Mase N, Sato K. Hydrazide-Mediated Solubilizing Strategy for Poorly Soluble Peptides Using a Dialkoxybenzaldehyde Linker. Chem Pharm Bull (Tokyo) 2022; 70:707-715. [PMID: 36184453 DOI: 10.1248/cpb.c22-00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins modified in a controlled manner with artificial moieties such as fluorophores or affinity tags have been shown to be a powerful tool for functional or structural analysis of proteins. A reliable way to prepare proteins with a well-defined modification is protein synthesis. Although many successful syntheses have been reported, the poor aqueous solubility of synthetic intermediates causes difficulty in the chemical synthesis of proteins. Here we describe a solubilizing strategy for poorly soluble peptides which uses chemoselective incorporation of a hydrophilic tag onto a hydrazide in a peptide. We found that a hydrophilic tag possessing a dialkoxybenzaldehyde moiety can react with peptide hydrazides through reductive N-alkylation. No protecting groups are required for this reaction, and peptides modified in this way show enhanced solubility and consequently good peak separation during HPLC purification. The tag can be removed subsequently by treatment with trifluoroacetic acid to generate a free hydrazide, which can be converted in a one-pot reaction to a thioester for further modification. This method was validated by synthesis of a Lys63-linked ubiquitin dimer derivative. This late-stage solubilization can be applied in principal to any peptide and opens the possibility of the synthesis of proteins that have previously been considered inaccessible due to their poor solubility.
Collapse
Affiliation(s)
- Shoko Tanaka
- Graduate School of Science and Technology, Shizuoka University
| | - Tetsuo Narumi
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| | - Nobuyuki Mase
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| | - Kohei Sato
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
5
|
Jacobsen MT, Spaltenstein P, Giesler RJ, Chou DHC, Kay MS. Improved Handling of Peptide Segments Using Side Chain-Based "Helping Hand" Solubilizing Tools. Methods Mol Biol 2022; 2530:81-107. [PMID: 35761044 DOI: 10.1007/978-1-0716-2489-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maintaining high, or even sufficient, solubility of every peptide segment in chemical protein synthesis (CPS) remains a critical challenge; insolubility of just a single peptide segment can thwart a total synthesis venture. Multiple approaches have been used to address this challenge, most commonly by employing a chemical tool to temporarily improve peptide solubility. In this chapter, we discuss chemical tools for introducing semipermanent solubilizing sequences (termed helping hands) at the side chains of Lys and Glu residues. We describe the synthesis, incorporation by Fmoc-SPPS, and cleavage conditions for utilizing these two tools. For Lys sites, we discuss the Fmoc-Ddap-OH dimedone-based linker, which is achiral, synthesized in one step, can be introduced directly at primary amines, and is removed using hydroxylamine (or hydrazine). For Glu sites, we detail the new Fmoc-SPPS building block, Fmoc-Glu(AlHx)-OH, which can be prepared in an efficient process over two purifications. Solubilizing sequences are introduced directly on-resin and later cleaved with palladium-catalyzed transfer under aqueous conditions to restore a native Glu side chain. These two chemical tools are straightforward to prepare and implement, and we anticipate continued usage in "difficult" peptide segments following the protocols described herein.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Division of Diabetes and Endocrinology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Riley J Giesler
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Danny Hung-Chieh Chou
- Division of Diabetes and Endocrinology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Michael S Kay
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Liu J, Wei T, Tan Y, Liu H, Li X. Enabling chemical protein (semi)synthesis via reducible solubilizing tags (RSTs). Chem Sci 2022; 13:1367-1374. [PMID: 35222920 PMCID: PMC8809390 DOI: 10.1039/d1sc06387a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
The reducible solubilizing tag strategy served as a simple and powerful method for the chemical synthesis and semi-synthesis via Ser/Thr ligation and Cys/Pen ligation of extensive self-assembly peptides, membrane proteins with poor solubility.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Giesler RJ, Spaltenstein P, Jacobsen MT, Xu W, Maqueda M, Kay MS. A glutamic acid-based traceless linker to address challenging chemical protein syntheses. Org Biomol Chem 2021; 19:8821-8829. [PMID: 34585207 PMCID: PMC8604549 DOI: 10.1039/d1ob01611c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.
Collapse
Affiliation(s)
- Riley J Giesler
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Michael T Jacobsen
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA
| | - Weiliang Xu
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| |
Collapse
|
8
|
Sato K, Tanaka S, Wang J, Ishikawa K, Tsuda S, Narumi T, Yoshiya T, Mase N. Late-Stage Solubilization of Poorly Soluble Peptides Using Hydrazide Chemistry. Org Lett 2021; 23:1653-1658. [PMID: 33570416 DOI: 10.1021/acs.orglett.1c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel late-stage solubilization of peptides using hydrazides is described. A solubilizing tag was attached through a selective N-alkylation at a hydrazide moiety with the aid of a 2-picoline-borane complex in 50% acetic acid-hexafluoro-2-propanol. The tag, which tolerates ligation and desulfurization conditions, can be detached by a Cu-mediated selective oxidative hydrolysis of the N-alkyl hydrazide. This new method was validated through the synthesis of HIV-1 protease.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Shoko Tanaka
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Junzhen Wang
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kenya Ishikawa
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Shugo Tsuda
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tetsuo Narumi
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Taku Yoshiya
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
9
|
Abboud SA, Cisse EH, Doudeau M, Bénédetti H, Aucagne V. A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl peptide segments used in native chemical ligation. Chem Sci 2021; 12:3194-3201. [PMID: 34164087 PMCID: PMC8179351 DOI: 10.1039/d0sc06001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
One of the main limitations encountered during the chemical synthesis of proteins through native chemical ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment counterparts, using a straightforward synthetic approach that can be easily automated from commercially available building blocks, and applied it to a well-known problematic target, SUMO-2.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - El Hadji Cisse
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| |
Collapse
|
10
|
|
11
|
Masuda S, Tsuda S, Yoshiya T. A trimethyllysine-containing trityl tag for solubilizing hydrophobic peptides. Org Biomol Chem 2019; 17:10228-10236. [PMID: 31782417 DOI: 10.1039/c9ob02253h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hydrophobic membrane peptides/proteins having low water solubility are often difficult to prepare. To overcome this issue, temporal introduction of solubilizing tags has been demonstrated to be beneficial. Following our recent work on the solubilization of a difficult target by using a hydrophilic oligo-Lys tag bearing a trityl linker (Trt-K method), this paper describes a comparative study of the solubilizing abilities of several peptidic trityl tags containing Lys, Arg, Glu, Asn, Nε-tri-Me-Lys or Cys-sulfonate using two hydrophobic model peptides. Among the tags evaluated, that containing Nε-tri-Me-Lys exhibits superior solubilizing ability.
Collapse
Affiliation(s)
- Shun Masuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | - Shugo Tsuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | - Taku Yoshiya
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
12
|
Zhang B, Deng Q, Zuo C, Yan B, Zuo C, Cao XX, Zhu TF, Zheng JS, Liu L. Ligation of Soluble but Unreactive Peptide Segments in the Chemical Synthesis of Haemophilus Influenzae DNA Ligase. Angew Chem Int Ed Engl 2019; 58:12231-12237. [PMID: 31250514 DOI: 10.1002/anie.201905149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 01/28/2023]
Abstract
During the total chemical synthesis of the water-soluble globular Haemophilus Influenzae DNA ligase (Hin-Lig), we observed the surprising phenomenon of a soluble peptide segment that failed to undergo native chemical ligation. Based on dynamic light scattering and transmission electron microscopy experiments, we determined that the peptide formed soluble colloidal particles in a homogeneous solution containing 6 m guanidine hydrochloride. Conventional peptide performance-improving strategies, such as installation of a terminal/side-chain Arg tag or O-acyl isopeptide, failed to enable the reaction, presumably because of their inability to disrupt the formation of soluble colloidal particles. However, a removable backbone modification strategy recently developed for the synthesis of membrane proteins did disrupt the formation of the colloids, and the desired ligation of this soluble but unreactive system was eventually accomplished. This work demonstrates that an appropriate solution dispersion state, in addition to good peptide solubility, is a prerequisite for successful peptide ligation.
Collapse
Affiliation(s)
- Baochang Zhang
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiang Deng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chong Zuo
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bingjia Yan
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Zuo
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiu-Xiu Cao
- School of Life Sciences, University of Science and Technology of China, and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230026, China
| | - Ting F Zhu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China, and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230026, China
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Zhang B, Deng Q, Zuo C, Yan B, Zuo C, Cao X, Zhu TF, Zheng J, Liu L. Ligation of Soluble but Unreactive Peptide Segments in the Chemical Synthesis of
Haemophilus Influenzae
DNA Ligase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baochang Zhang
- Tsinghua–Peking Joint Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Qiang Deng
- School of Life SciencesTsinghua University Beijing 100084 China
| | - Chong Zuo
- Tsinghua–Peking Joint Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Bingjia Yan
- Tsinghua–Peking Joint Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Chao Zuo
- Tsinghua–Peking Joint Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Xiu‐Xiu Cao
- School of Life SciencesUniversity of Science and Technology of China, and High Magnetic Field LaboratoryChinese Academy of Sciences Hefei 230026 China
| | - Ting F. Zhu
- School of Life SciencesTsinghua University Beijing 100084 China
| | - Ji‐Shen Zheng
- School of Life SciencesUniversity of Science and Technology of China, and High Magnetic Field LaboratoryChinese Academy of Sciences Hefei 230026 China
| | - Lei Liu
- Tsinghua–Peking Joint Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
14
|
Tsuda S, Masuda S, Yoshiya T. Solubilizing Trityl‐Type Tag To Synthesize Asx/Glx‐Containing Peptides. Chembiochem 2019; 20:2063-2069. [DOI: 10.1002/cbic.201900193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shun Masuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| |
Collapse
|
15
|
Yoshiya T, Tsuda S, Masuda S. Development of Trityl Group Anchored Solubilizing Tags for Peptide and Protein Synthesis. Chembiochem 2019; 20:1906-1913. [DOI: 10.1002/cbic.201900105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shugo Tsuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shun Masuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| |
Collapse
|
16
|
Li Y, Tran AH, Danishefsky SJ, Tan Z. Chemical biology of glycoproteins: From chemical synthesis to biological impact. Methods Enzymol 2019; 621:213-229. [PMID: 31128780 DOI: 10.1016/bs.mie.2019.02.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have demonstrated the feasibility and robustness of chemical synthesis for the production of homogeneously glycosylated protein forms (glycoforms). By taking advantage of the unmatchable flexibility and precision provided by chemical synthesis, the quantitative effects of glycosylation were obtained using chemical glycobiology approaches. These findings greatly advanced our fundamental knowledge of glycosylation. More importantly, analysis of these findings has led to the development of glycoengineering guidelines for rationally improving the properties of peptides and proteins. In this chapter, we present the key experimental steps for chemical biology studies of protein glycosylation, with the aim of facilitating and promoting research in this important but significantly underexplored area of biology.
Collapse
Affiliation(s)
- Yaohao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Amy H Tran
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Samuel J Danishefsky
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Zhongping Tan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States.
| |
Collapse
|
17
|
Zhao DD, Fan XW, Hao H, Zhang HL, Guo Y. Temporary Solubilizing Tags Method for the Chemical Synthesis of Hydrophobic Proteins. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666181211121758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrophobic proteins, as one of the cellular protein classifications, play an essential function in maintaining the normal life cycle of living cells. Researches on the structure and function of hydrophobic proteins promote the exploration of the causes of major diseases, and development of new therapeutic agents for disease treatment. However, the poor water solubility of hydrophobic proteins creates problems for their preparation, separation, characterization and functional studies. The temporary solubilizing tags are considered a practical strategy to effectively solve the poor water solubility problem of hydrophobic proteins. This strategy can significantly improve the water solubility of hydrophobic peptides/proteins, making them like water-soluble peptides/proteins easy to be purified, characterized. More importantly, the temporary solubilizing tags can be removed after protein synthesis, so thus the structure and function of the hydrophobic proteins are not affected. At present, temporary solubilizing tags have been successfully used to prepare many important hydrophobic proteins such as membrane proteins, lipoproteins and chaperones. In this review, we summarize the recent researches and applications of temporary solubilizing tags.
Collapse
Affiliation(s)
- Dong-Dong Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Xiao-Wen Fan
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - He Hao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Hong-Li Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Ye Guo
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| |
Collapse
|
18
|
Hayashi G, Yanase M, Nakatsuka Y, Okamoto A. Simultaneous and Traceless Ligation of Peptide Fragments on DNA Scaffold. Biomacromolecules 2019; 20:1246-1253. [PMID: 30677290 DOI: 10.1021/acs.biomac.8b01655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peptide ligation is an indispensable step in the chemical synthesis of target peptides and proteins that are difficult to synthesize at once by a solid-phase synthesis. The ligation reaction is generally conducted with two peptide fragments at a high aqueous concentration to increase the reaction rate; however, this often causes unpredictable aggregation and precipitation of starting or resulting peptides due to their hydrophobicities. Here, we have developed a novel peptide ligation strategy harnessing the two intrinsic characteristics of oligodeoxynucleotides (ODNs), i.e., their hydrophilicity and hybridization ability, which allowed increases in the water solubility of peptides and the reaction kinetics due to the proximity effect, respectively. Peptide-ODN conjugates that can be cleaved to regenerate native peptide sequences were synthesized using novel lysine derivatives containing conjugation handles and photolabile linkers, via solid-phase peptide synthesis and subsequent conjugation to 15-mer ODNs. Two complementary conjugates were applied to carbodiimide-mediated peptide ligation on a DNA scaffold, and the subsequent DNA removal was conducted by photoirradiation in a traceless fashion. This DNA scaffold-assisted ligation resulted in a significant acceleration of the reaction kinetics and enabled ligation of a hydrophobic peptide at a micromolar concentration. On the basis of this chemistry, a simultaneous ligation of three different peptide fragments on two different DNA scaffolds has been conducted for the first time.
Collapse
Affiliation(s)
- Gosuke Hayashi
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Masafumi Yanase
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yu Nakatsuka
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan.,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| |
Collapse
|
19
|
Brailsford JA, Stockdill JL, Axelrod AJ, Peterson MT, Vadola PA, Johnston EV, Danishefsky SJ. Total Chemical Synthesis of Human Thyroid-Stimulating Hormone (hTSH) β-Subunit: Application of Arginine-tagged Acetamidomethyl (Acm R) Protecting Groups. Tetrahedron 2018; 74:1951-1956. [PMID: 30853725 PMCID: PMC6402344 DOI: 10.1016/j.tet.2018.02.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The β-subunit of human thyroid stimulating hormone (hTSH) has been synthesized as a single glycoform bearing a chitobiose disaccharide at the native glycosylation site. Key to the successful completion of this synthesis was the introduction of an arginine-tagged acetamidomethyl group, which served to greatly facilitate handling of a glycopeptide fragment with poor aqueous solubility. This general solution to the challenge of working with intractable peptides is expected to find wide use in protein synthesis.
Collapse
Affiliation(s)
- John A Brailsford
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Jennifer L Stockdill
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Abram J Axelrod
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Michael T Peterson
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Paul A Vadola
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Eric V Johnston
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Samuel J Danishefsky
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
20
|
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Easy-to-Attach/Detach Solubilizing-Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein. Angew Chem Int Ed Engl 2018; 57:2105-2109. [DOI: 10.1002/anie.201711546] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hiroyuki Ishiba
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Kumiko Yoshizawa-Kumagaye
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
21
|
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Easy-to-Attach/Detach Solubilizing-Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hiroyuki Ishiba
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Kumiko Yoshizawa-Kumagaye
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
22
|
Chaffey PK, Guan X, Li Y, Tan Z. Using Chemical Synthesis To Study and Apply Protein Glycosylation. Biochemistry 2018; 57:413-428. [PMID: 29309128 DOI: 10.1021/acs.biochem.7b01055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein glycosylation is one of the most common post-translational modifications and can influence many properties of proteins. Abnormal protein glycosylation can lead to protein malfunction and serious disease. While appreciation of glycosylation's importance is growing in the scientific community, especially in recent years, a lack of homogeneous glycoproteins with well-defined glycan structures has made it difficult to understand the correlation between the structure of glycoproteins and their properties at a quantitative level. This has been a significant limitation on rational applications of glycosylation and on optimizing glycoprotein properties. Through the extraordinary efforts of chemists, it is now feasible to use chemical synthesis to produce collections of homogeneous glycoforms with systematic variations in amino acid sequence, glycosidic linkage, anomeric configuration, and glycan structure. Such a technical advance has greatly facilitated the study and application of protein glycosylation. This Perspective highlights some representative work in this research area, with the goal of inspiring and encouraging more scientists to pursue the glycosciences.
Collapse
Affiliation(s)
- Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
23
|
Chemical synthesis of membrane proteins by the removable backbone modification method. Nat Protoc 2017; 12:2554-2569. [DOI: 10.1038/nprot.2017.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Jbara M, Maity SK, Brik A. Palladium in der chemischen Synthese und Modifizierung von Proteinen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702370] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemie; Technion - Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
25
|
Jbara M, Maity SK, Brik A. Palladium in the Chemical Synthesis and Modification of Proteins. Angew Chem Int Ed Engl 2017; 56:10644-10655. [DOI: 10.1002/anie.201702370] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
26
|
Jacobsen MT, Erickson PW, Kay MS. Aligator: A computational tool for optimizing total chemical synthesis of large proteins. Bioorg Med Chem 2017; 25:4946-4952. [PMID: 28651912 DOI: 10.1016/j.bmc.2017.05.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Patrick W Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States.
| |
Collapse
|
27
|
Li JB, Tang S, Zheng JS, Tian CL, Liu L. Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins. Acc Chem Res 2017; 50:1143-1153. [PMID: 28374993 DOI: 10.1021/acs.accounts.7b00001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical synthesis can produce water-soluble globular proteins bearing specifically designed modifications. These synthetic molecules have been used to study the biological functions of proteins and to improve the pharmacological properties of protein drugs. However, the above advances notwithstanding, membrane proteins (MPs), which comprise 20-30% of all proteins in the proteomes of most eukaryotic cells, remain elusive with regard to chemical synthesis. This difficulty stems from the strong hydrophobic character of MPs, which can cause considerable handling issues during ligation, purification, and characterization steps. Considerable efforts have been made to improve the solubility of transmembrane peptides for chemical ligation. These methods can be classified into two main categories: the manipulation of external factors and chemical modification of the peptide. This Account summarizes our research advances in the development of chemical modification especially the two generations of removable backbone modification (RBM) strategy for the chemical synthesis of MPs. In the first RBM generation, we install a removable modification group at the backbone amide of Gly within the transmembrane peptides. In the second RBM generation, the RBM group can be installed into all primary amino acid residues. The second RBM strategy combines the activated intramolecular O-to-N acyl transfer reaction, in which a phenyl group remains unprotected during the coupling process, which can play a catalytic role to generate the activated phenyl ester to assist in the formation of amide. The key feature of the RBM group is its switchable stability in trifluoroacetic acid. The stability of these backbone amide N-modifications toward TFA can be modified by regulating the electronic effects of phenol groups. The free phenol group is acylated to survive the TFA deprotection step, while the acyl phenyl ester will be quantitatively hydrolyzed in a neutral aqueous solution, and the free phenol group increases the electron density of the benzene ring to make the RBM labile to TFA. The transmembrane peptide segment bearing RBM groups behaves like a water-soluble peptide during fluorenylmethyloxycarbonyl based solid-phase peptide synthesis (Fmoc SPPS), ligation, purification, and characterization. The quantitative removal of the RBM group can be performed to obtain full-length MPs. The RBM strategy was used to prepare the core transmembrane domain Kir5.1[64-179] not readily accessible by recombinant protein expression, the influenza A virus M2 proton channel with phosphorylation, the cation-specific ion channel p7 from the hepatitis C virus with site-specific NMR isotope labels, and so on. The RBM method enables the practical engineering of small- to medium-sized MPs or membrane protein domains to address fundamental questions in the biochemical, biophysical, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jia-Bin Li
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Chang-Lin Tian
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
28
|
Effect of position-specific single-point mutations and biophysical characterization of amyloidogenic peptide fragments identified from lattice corneal dystrophy patients. Biochem J 2017; 474:1705-1725. [PMID: 28381645 PMCID: PMC5632800 DOI: 10.1042/bcj20170125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022]
Abstract
Corneal stromal dystrophies are a group of genetic disorders that may be caused by mutations in the transforming growth factor β-induced (TGFBI) gene which results in the aggregation and deposition of mutant proteins in various layers of the cornea. The type of amino acid substitution dictates the age of onset, anatomical location of the deposits, morphological features of deposits (amyloid, amorphous powder or a mixture of both forms) and the severity of disease presentation. It has been suggested that abnormal turnover and aberrant proteolytic processing of the mutant proteins result in the accumulation of insoluble protein deposits. Using mass spectrometry, we identified increased abundance of a 32 amino acid-long peptide in the 4th fasciclin-like domain-1 (FAS-1) domain of transforming growth factor β-induced protein (amino acid 611-642) in the amyloid deposits of the patients with lattice corneal dystrophies (LCD). In vitro studies demonstrated that the peptide readily formed amyloid fibrils under physiological conditions. Clinically relevant substitution (M619K, N622K, N622H, G623R and H626R) of the truncated peptide resulted in profound changes in the kinetics of amyloid formation, thermal stability of the amyloid fibrils and cytotoxicity of fibrillar aggregates, depending on the position and the type of the amino acid substitution. The results suggest that reduction in the overall net charge, nature and position of cationic residue substitution determines the amyloid aggregation propensity and thermal stability of amyloid fibrils.
Collapse
|
29
|
Jacobsen MT, Petersen ME, Ye X, Galibert M, Lorimer GH, Aucagne V, Kay MS. A Helping Hand to Overcome Solubility Challenges in Chemical Protein Synthesis. J Am Chem Soc 2016; 138:11775-82. [PMID: 27532670 DOI: 10.1021/jacs.6b05719] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although native chemical ligation (NCL) and related chemoselective ligation approaches provide an elegant method to stitch together unprotected peptides, the handling and purification of insoluble and aggregation-prone peptides and assembly intermediates create a bottleneck to routinely preparing large proteins by completely synthetic means. In this work, we introduce a new general tool, Fmoc-Ddae-OH, N-Fmoc-1-(4,4-dimethyl-2,6-dioxocyclo-hexylidene)-3-[2-(2-aminoethoxy)ethoxy]-propan-1-ol, a heterobifunctional traceless linker for temporarily attaching highly solubilizing peptide sequences ("helping hands") onto insoluble peptides. This tool is implemented in three simple and nearly quantitative steps: (i) on-resin incorporation of the linker at a Lys residue ε-amine, (ii) Fmoc-SPPS elongation of a desired solubilizing sequence, and (iii) in-solution removal of the solubilizing sequence using mild aqueous hydrazine to cleave the Ddae linker after NCL-based assembly. Successful introduction and removal of a Lys6 helping hand is first demonstrated in two model systems (Ebola virus C20 peptide and the 70-residue ribosomal protein L31). It is then applied to the challenging chemical synthesis of the 97-residue co-chaperonin GroES, which contains a highly insoluble C-terminal segment that is rescued by a helping hand. Importantly, the Ddae linker can be cleaved in one pot following NCL or desulfurization. The purity, structure, and chaperone activity of synthetic l-GroES were validated with respect to a recombinant control. Additionally, the helping hand enabled synthesis of d-GroES, which was inactive in a heterochiral mixture with recombinant GroEL, providing additional insight into chaperone specificity. Ultimately, this simple, robust, and easy-to-use tool is expected to be broadly applicable for the synthesis of challenging peptides and proteins.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Mark E Petersen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Xiang Ye
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Mathieu Galibert
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - George H Lorimer
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| |
Collapse
|
30
|
Maity SK, Mann G, Jbara M, Laps S, Kamnesky G, Brik A. Palladium-Assisted Removal of a Solubilizing Tag from a Cys Side Chain To Facilitate Peptide and Protein Synthesis. Org Lett 2016; 18:3026-9. [PMID: 27268382 DOI: 10.1021/acs.orglett.6b01442] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible attachment of solubilizing tags to hydrophobic peptides to facilitate their purification and ligation is an essential yet challenging task in chemical protein synthesis. The efficient palladium-assisted removal of the solubilizing tag linked to the Cys side chain is reported. The strategy was applied for the efficient preparation of histone protein H4 from two fragments via one-pot operation of ligation, removal of the solubilizing tag, and desulfurization.
Collapse
Affiliation(s)
- Suman Kumar Maity
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Muhammad Jbara
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Shay Laps
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| |
Collapse
|
31
|
Engelhard M. Quest for the chemical synthesis of proteins. J Pept Sci 2016; 22:246-51. [DOI: 10.1002/psc.2880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Martin Engelhard
- Max Planck Institute for Molecular Physiology; Otto-Hahn-Str. 17 Dortmund 44227 Germany
| |
Collapse
|
32
|
Zuo C, Tang S, Zheng JS. Chemical synthesis and biophysical applications of membrane proteins. J Pept Sci 2014; 21:540-9. [DOI: 10.1002/psc.2721] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Chao Zuo
- High Magnetic Field Laboratory; Chinese Academy of Sciences; Hefei 230031 China
- Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Shan Tang
- Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Ji-Shen Zheng
- High Magnetic Field Laboratory; Chinese Academy of Sciences; Hefei 230031 China
| |
Collapse
|
33
|
Zheng JS, Yu M, Qi YK, Tang S, Shen F, Wang ZP, Xiao L, Zhang L, Tian CL, Liu L. Expedient total synthesis of small to medium-sized membrane proteins via Fmoc chemistry. J Am Chem Soc 2014; 136:3695-704. [PMID: 24559202 DOI: 10.1021/ja500222u] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Total chemical synthesis provides a unique approach for the access to uncontaminated, monodisperse, and more importantly, post-translationally modified membrane proteins. In the present study we report a practical procedure for expedient and cost-effective synthesis of small to medium-sized membrane proteins in multimilligram scale through the use of automated Fmoc chemistry. The key finding of our study is that after the attachment of a removable arginine-tagged backbone modification group, the membrane protein segments behave almost the same as ordinary water-soluble peptides in terms of Fmoc solid-phase synthesis, ligation, purification, and mass spectrometry characterization. The efficiency and practicality of the new method is demonstrated by the successful preparation of Ser64-phosphorylated M2 proton channel from influenza A virus and the membrane-embedded domain of an inward rectifier K(+) channel protein Kir5.1. Functional characterizations of these chemically synthesized membrane proteins indicate that they provide useful and otherwise-difficult-to-access materials for biochemistry and biophysics studies.
Collapse
Affiliation(s)
- Ji-Shen Zheng
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guan X, Chaffey PK, Zeng C, Tan Z. New Methods for Chemical Protein Synthesis. Top Curr Chem (Cham) 2014; 363:155-92. [DOI: 10.1007/128_2014_599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Banerjee V, Kar RK, Datta A, Parthasarathi K, Chatterjee S, Das KP, Bhunia A. Use of a small peptide fragment as an inhibitor of insulin fibrillation process: a study by high and low resolution spectroscopy. PLoS One 2013; 8:e72318. [PMID: 24009675 PMCID: PMC3756998 DOI: 10.1371/journal.pone.0072318] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/10/2013] [Indexed: 01/13/2023] Open
Abstract
A non-toxic, nine residue peptide, NIVNVSLVK is shown to interfere with insulin fibrillation by various biophysical methods. Insulin undergoes conformational changes under certain stress conditions leading to amyloid fibrils. Fibrillation of insulin poses a problem in its long-term storage, reducing its efficacy in treating type II diabetes. The dissociation of insulin oligomer to monomer is the key step for the onset of fibrillation. The time course of insulin fibrillation at 62°C using Thioflavin T fluorescence shows an increase in the lag time from 120 min without peptide to 236 min with peptide. Transmission electron micrographs show branched insulin fibrils in its absence and less inter-fibril association in its presence. Upon incubation at 62°C and pH 2.6, insulin lost some α-helical structure as seen by Fourier transformed infra-red spectroscopy (FT-IR), but if the peptide is added, secondary structure is almost fully maintained for 3 h, though lost partially at 4 h. FT-IR spectroscopy also shows that insulin forms the cross beta structure indicative of fibrils beyond 2 h, but in the presence of the peptide, α-helix retention is seen till 4 h. Both size exclusion chromatography and dynamic light scattering show that insulin primarily exists as trimer, whose conversion to a monomer is resisted by the peptide. Saturation transfer difference nuclear magnetic resonance confirms that the hydrophobic residues in the peptide are in close contact with an insulin hydrophobic groove. Molecular dynamics simulations in conjunction with principal component analyses reveal how the peptide interrupts insulin fibrillation. In vitro hemolytic activity of the peptide showed insignificant cytotoxicity against HT1080 cells. The insulin aggregation is probed due to the inter play of two key residues, Phe(B24) and Tyr(B26) monitored from molecular dynamics simulations studies. Further new peptide based leads may be developed from this nine residue peptide.
Collapse
Affiliation(s)
| | - Rajiv K. Kar
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | - Aritreyee Datta
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | | | - Subhrangsu Chatterjee
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | - Kali P. Das
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Anirban Bhunia
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
36
|
Wilson RM, Dong S, Wang P, Danishefsky SJ. The winding pathway to erythropoietin along the chemistry-biology frontier: a success at last. Angew Chem Int Ed Engl 2013; 52:7646-65. [PMID: 23775885 PMCID: PMC4729195 DOI: 10.1002/anie.201301666] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 11/09/2022]
Abstract
The total synthesis of a homogeneous erythropoietin (EPO), possessing the native amino acid sequence and chitobiose glycans at each of the three wild-type sites of N glycosylation, has been accomplished in our laboratory. We provide herein an account of our decade-long research effort en route to this formidable target compound. The optimization of the synergy of the two bedrock sciences we now call biology and chemistry was central to the success of the synthesis of EPO.
Collapse
Affiliation(s)
- Rebecca M. Wilson
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Suwei Dong
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Ping Wang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Samuel J. Danishefsky
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
- Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027
| |
Collapse
|
37
|
Wilson RM, Dong S, Wang P, Danishefsky SJ. Der gewundene Pfad zum Erythropoietin entlang der Grenze von Chemie und Biologie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Huang YC, Li YM, Chen Y, Pan M, Li YT, Yu L, Guo QX, Liu L. Synthesis of Autophagosomal Marker Protein LC3-II under Detergent-Free Conditions. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Huang YC, Li YM, Chen Y, Pan M, Li YT, Yu L, Guo QX, Liu L. Synthesis of Autophagosomal Marker Protein LC3-II under Detergent-Free Conditions. Angew Chem Int Ed Engl 2013; 52:4858-62. [DOI: 10.1002/anie.201209523] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/06/2013] [Indexed: 11/10/2022]
|
40
|
Wang P, Dong S, Brailsford JA, Iyer K, Townsend SD, Zhang Q, Hendrickson RC, Shieh J, Moore MAS, Danishefsky SJ. At last: erythropoietin as a single glycoform. Angew Chem Int Ed Engl 2012; 51:11576-84. [PMID: 23012228 PMCID: PMC3500780 DOI: 10.1002/anie.201206090] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Indexed: 01/21/2023]
Affiliation(s)
- Ping Wang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - Suwei Dong
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - John A. Brailsford
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - Karthik Iyer
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - Steven D. Townsend
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - Qiang Zhang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - Ronald C. Hendrickson
- Department of Pharmacology and Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - JaeHung Shieh
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - Malcolm A. S. Moore
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
| | - Samuel J. Danishefsky
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA). Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
| |
Collapse
|
41
|
Wang P, Aussedat B, Vohra Y, Danishefsky SJ. An advance in the chemical synthesis of homogeneous N-linked glycopolypeptides by convergent aspartylation. Angew Chem Int Ed Engl 2012; 51:11571-5. [PMID: 23011954 PMCID: PMC3500778 DOI: 10.1002/anie.201205038] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/17/2012] [Indexed: 12/12/2022]
Abstract
We describe a useful advance in glycopeptide synthesis. We have developed a one-flask aspartylation/deprotection method, wherein long peptide fragments, bearing proximal pseudoproline functionality are merged with complex glycan domains. Following aspartylation, acidmediated global deprotection reveals the elaborated glycopeptide. The temporary pseudoproline functionality serves to suppress formation of aspartimide side products during solid phase peptide synthesis and aspartylation.
Collapse
Affiliation(s)
- Ping Wang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
42
|
Amide-based derivatives of β-alanine hydroxamic acid as histone deacetylase inhibitors: Attenuation of potency through resonance effects. Bioorg Med Chem Lett 2012; 22:6200-4. [DOI: 10.1016/j.bmcl.2012.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 01/27/2023]
|
43
|
Wang P, Aussedat B, Vohra Y, Danishefsky SJ. An Advance in the Chemical Synthesis of Homogeneous N-Linked Glycopolypeptides by Convergent Aspartylation. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Wang P, Dong S, Brailsford JA, Iyer K, Townsend SD, Zhang Q, Hendrickson RC, Shieh J, Moore MAS, Danishefsky SJ. At Last: Erythropoietin as a Single Glycoform. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Dong S, Shang S, Li J, Tan Z, Dean T, Maeda A, Gardella TJ, Danishefsky SJ. Engineering of therapeutic polypeptides through chemical synthesis: early lessons from human parathyroid hormone and analogues. J Am Chem Soc 2012; 134:15122-9. [PMID: 22891619 DOI: 10.1021/ja306637u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Application of chemical synthesis to gain access to high purity hPTH as well as more stable analogues was accomplished through a menu of extended NCL followed by metal free dethiylation.
Collapse
Affiliation(s)
- Suwei Dong
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dong S, Shang S, Tan Z, Danishefsky SJ. Toward Homogeneous Erythropoietin: Application of Metal Free Dethiylation in the Chemical Synthesis of the Ala79-Arg166 Glycopeptide Domain. Isr J Chem 2011; 51:968-976. [PMID: 23585694 DOI: 10.1002/ijch.201100077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We describe herein the assembly of hEPO(79-166), a key glycopeptide segment en route to erythropoietin, in minimally protected form. Key to the success of this synthetic endeavor was the application of our two-step cysteine-free native chemical ligation strategy, by which we achieved formal ligation at alanine and proline residues through the use of an N-terminal amino acid surrogate presenting a readily removable thiol functionality.
Collapse
Affiliation(s)
- Suwei Dong
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
47
|
Shen F, Huang YC, Tang S, Chen YX, Liu L. Chemical Synthesis of Integral Membrane Proteins: Methods and Applications. Isr J Chem 2011. [DOI: 10.1002/ijch.201100076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Abstract
Native chemical ligation (NCL) is widely applicable for building proteins in the laboratory. Since the discovery of this method, many strategies have been developed to enhance its capability and efficiency. Because of the poor reactivity of proline thioesters, ligation at a C-terminal proline site is not readily accomplished. Here, we demonstrate that ligation at an N-terminal protein is feasible using the combined logic of NCL and metal-free dethiylation (MFD).
Collapse
Affiliation(s)
- Shiying Shang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, USA
| | | | | | | |
Collapse
|