1
|
Männel C, Ramos-Sanchez J, Obrig H, Ahissar M, Schaadt G. Perceptual anchoring: Children with dyslexia benefit less than controls from contextual repetitions in speech processing. Clin Neurophysiol 2024; 166:117-128. [PMID: 39153460 DOI: 10.1016/j.clinph.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Individuals with dyslexia perceive and utilize statistical features in the auditory input deficiently. The present study investigates whether affected children also benefit less from repeating context tones as perceptual anchors for subsequent speech processing. METHODS In an event-related potential study, eleven-year-old children with dyslexia (n = 21) and without dyslexia (n = 20) heard syllable pairs, with the first syllable either receiving a constant pitch (anchor) or variable pitch (no-anchor), while second syllables were identical across conditions. RESULTS Children with and without dyslexia showed smaller auditory P2 responses to constant-pitch versus variable-pitch first syllables, while only control children additionally showed smaller N1 and faster P1 responses. This suggests less automatic processing of anchor repetitions in dyslexia. For the second syllables, both groups showed faster P2 responses following anchor than no-anchor first syllables, but only controls additionally showed smaller P2 responses. CONCLUSIONS Children with and without dyslexia show differences in anchor effects. While both groups seem to allocate less attention to speech stimuli after contextual repetitions, children with dyslexia display less facilitation in speech processing from acoustic anchors. SIGNIFICANCE Altered anchoring in the linguistic domain may contribute to the difficulties of individuals with dyslexia in establishing long-term representations of speech.
Collapse
Affiliation(s)
- Claudia Männel
- Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University of Leipzig, Liebigstr. 16, 04103 Leipzig, Germany.
| | - Jessica Ramos-Sanchez
- Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD Nijmegen, Netherlands
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University of Leipzig, Liebigstr. 16, 04103 Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Merav Ahissar
- ELSC Center for Brain Research, Hebrew University of Jerusalem
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Education and Psychology, Freie Universität Berlin, Schwendenerstr. 33, 14195 Berlin, Germany
| |
Collapse
|
2
|
Yamane Y. Adaptation of the inferior temporal neurons and efficient visual processing. Front Behav Neurosci 2024; 18:1398874. [PMID: 39132448 PMCID: PMC11310006 DOI: 10.3389/fnbeh.2024.1398874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Numerous studies examining the responses of individual neurons in the inferior temporal (IT) cortex have revealed their characteristics such as two-dimensional or three-dimensional shape tuning, objects, or category selectivity. While these basic selectivities have been studied assuming that their response to stimuli is relatively stable, physiological experiments have revealed that the responsiveness of IT neurons also depends on visual experience. The activity changes of IT neurons occur over various time ranges; among these, repetition suppression (RS), in particular, is robustly observed in IT neurons without any behavioral or task constraints. I observed a similar phenomenon in the ventral visual neurons in macaque monkeys while they engaged in free viewing and actively fixated on one consistent object multiple times. This observation indicates that the phenomenon also occurs in natural situations during which the subject actively views stimuli without forced fixation, suggesting that this phenomenon is an everyday occurrence and widespread across regions of the visual system, making it a default process for visual neurons. Such short-term activity modulation may be a key to understanding the visual system; however, the circuit mechanism and the biological significance of RS remain unclear. Thus, in this review, I summarize the observed modulation types in IT neurons and the known properties of RS. Subsequently, I discuss adaptation in vision, including concepts such as efficient and predictive coding, as well as the relationship between adaptation and psychophysical aftereffects. Finally, I discuss some conceptual implications of this phenomenon as well as the circuit mechanisms and the models that may explain adaptation as a fundamental aspect of visual processing.
Collapse
Affiliation(s)
- Yukako Yamane
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
3
|
Clusella P, Manubens-Gil L, Garcia-Ojalvo J, Dierssen M. Modeling the impact of neuromorphological alterations in Down syndrome on fast neural oscillations. PLoS Comput Biol 2024; 20:e1012259. [PMID: 38968294 PMCID: PMC11253980 DOI: 10.1371/journal.pcbi.1012259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
Cognitive disorders, including Down syndrome (DS), present significant morphological alterations in neuron architectural complexity. However, the relationship between neuromorphological alterations and impaired brain function is not fully understood. To address this gap, we propose a novel computational model that accounts for the observed cell deformations in DS. The model consists of a cross-sectional layer of the mouse motor cortex, composed of 3000 neurons. The network connectivity is obtained by accounting explicitly for two single-neuron morphological parameters: the mean dendritic tree radius and the spine density in excitatory pyramidal cells. We obtained these values by fitting reconstructed neuron data corresponding to three mouse models: wild-type (WT), transgenic (TgDyrk1A), and trisomic (Ts65Dn). Our findings reveal a dynamic interplay between pyramidal and fast-spiking interneurons leading to the emergence of gamma activity (∼40 Hz). In the DS models this gamma activity is diminished, corroborating experimental observations and validating our computational methodology. We further explore the impact of disrupted excitation-inhibition balance by mimicking the reduction recurrent inhibition present in DS. In this case, gamma power exhibits variable responses as a function of the external input to the network. Finally, we perform a numerical exploration of the morphological parameter space, unveiling the direct influence of each structural parameter on gamma frequency and power. Our research demonstrates a clear link between changes in morphology and the disruption of gamma oscillations in DS. This work underscores the potential of computational modeling to elucidate the relationship between neuron architecture and brain function, and ultimately improve our understanding of cognitive disorders.
Collapse
Affiliation(s)
- Pau Clusella
- Department of Mathematics, Universitat Politècnica de Catalunya, Manresa, Spain
| | - Linus Manubens-Gil
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mara Dierssen
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Systems Neurology and Neurotherapies, Hospital del Mar Research Institute, Barcelona, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| |
Collapse
|
4
|
Chandrasekaran AN, Vermani A, Gupta P, Steinmetz N, Moore T, Sridharan D. Dissociable components of attention exhibit distinct neuronal signatures in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadi0645. [PMID: 38306428 PMCID: PMC10836731 DOI: 10.1126/sciadv.adi0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Attention can be deployed in multiple forms and facilitates behavior by influencing perceptual sensitivity and choice bias. Attention is also associated with a myriad of changes in sensory neural activity. Yet, the relationship between the behavioral components of attention and the accompanying changes in neural activity remains largely unresolved. We examined this relationship by quantifying sensitivity and bias in monkeys performing a task that dissociated eye movement responses from the focus of covert attention. Unexpectedly, bias, not sensitivity, increased at the focus of covert attention, whereas sensitivity increased at the location of planned eye movements. Furthermore, neuronal activity within visual area V4 varied robustly with bias, but not sensitivity, at the focus of covert attention. In contrast, correlated variability between neuronal pairs was lowest at the location of planned eye movements, and varied with sensitivity, but not bias. Thus, dissociable behavioral components of attention exhibit distinct neuronal signatures within the visual cortex.
Collapse
Affiliation(s)
| | - Ayesha Vermani
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
| | - Priyanka Gupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
| | - Nicholas Steinmetz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
- Computer Science and Automation, Indian Institute of Science, Bangalore, KA, India
| |
Collapse
|
5
|
Tian Y, Yin J, Wang C, He Z, Xie J, Feng X, Zhou Y, Ma T, Xie Y, Li X, Yang T, Ren C, Li C, Zhao Z. An Ultraflexible Electrode Array for Large-Scale Chronic Recording in the Nonhuman Primate Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302333. [PMID: 37870175 PMCID: PMC10667845 DOI: 10.1002/advs.202302333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Single-unit (SU) recording in nonhuman primates (NHPs) is indispensible in the quest of how the brain works, yet electrodes currently used for the NHP brain are limited in signal longevity, stability, and spatial coverage. Using new structural materials, microfabrication, and penetration techniques, we develop a mechanically robust ultraflexible, 1 µm thin electrode array (MERF) that enables pial penetration and high-density, large-scale, and chronic recording of neurons along both vertical and horizontal cortical axes in the nonhuman primate brain. Recording from three monkeys yields 2,913 SUs from 1,065 functional recording channels (up to 240 days), with some SUs tracked for up to 2 months. Recording from the primary visual cortex (V1) reveals that neurons with similar orientation preferences for visual stimuli exhibited higher spike correlation. Furthermore, simultaneously recorded neurons in different cortical layers of the primary motor cortex (M1) show preferential firing for hand movements of different directions. Finally, it is shown that a linear decoder trained with neuronal spiking activity across M1 layers during monkey's hand movements can be used to achieve on-line control of cursor movement. Thus, the MERF electrode array offers a new tool for basic neuroscience studies and brain-machine interface (BMI) applications in the primate brain.
Collapse
Affiliation(s)
- Yixin Tian
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Jiapeng Yin
- Shanghai Center for Brain Science and Brain‐Inspired TechnologyShanghai201602China
- Lingang LaboratoryShanghai200031China
| | - Chengyao Wang
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Zhenliang He
- Lingang LaboratoryShanghai200031China
- Institute of NeuroscienceState Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Jingyi Xie
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaoshan Feng
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Yang Zhou
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Tianyu Ma
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yang Xie
- Lingang LaboratoryShanghai200031China
- Institute of NeuroscienceKey Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Xue Li
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Tianming Yang
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chi Ren
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Chengyu Li
- Lingang LaboratoryShanghai200031China
- Institute of NeuroscienceState Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Zhengtuo Zhao
- Institute of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
6
|
Yamane Y, Ito J, Joana C, Fujita I, Tamura H, Maldonado PE, Doya K, Grün S. Neuronal Population Activity in Macaque Visual Cortices Dynamically Changes through Repeated Fixations in Active Free Viewing. eNeuro 2023; 10:ENEURO.0086-23.2023. [PMID: 37798110 PMCID: PMC10591287 DOI: 10.1523/eneuro.0086-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
During free viewing, we move our eyes and fixate on objects to recognize the visual scene of our surroundings. To investigate the neural representation of objects in this process, we studied individual and population neuronal activity in three different visual regions of the brains of macaque monkeys (Macaca fuscata): the primary and secondary visual cortices (V1, V2) and the inferotemporal cortex (IT). We designed a task where the animal freely selected objects in a stimulus image to fixate on while we examined the relationship between spiking activity, the order of fixations, and the fixated objects. We found that activity changed across repeated fixations on the same object in all three recorded areas, with observed reductions in firing rates. Furthermore, the responses of individual neurons became sparser and more selective with individual objects. The population activity for individual objects also became distinct. These results suggest that visual neurons respond dynamically to repeated input stimuli through a smaller number of spikes, thereby allowing for discrimination between individual objects with smaller energy.
Collapse
Affiliation(s)
- Yukako Yamane
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Junji Ito
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany
| | - Cristian Joana
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ichiro Fujita
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Tamura
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Osaka 565-0871, Japan
| | - Pedro E Maldonado
- Department of Neuroscience and Instituto de Neurosciencia Biomedica (BNI), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Kenji Doya
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany
- Theoretical Systems Neurobiology, Rheinisch Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen 52056, Germany
| |
Collapse
|
7
|
Westerberg JA, Schall JD, Woodman GF, Maier A. Feedforward attentional selection in sensory cortex. Nat Commun 2023; 14:5993. [PMID: 37752171 PMCID: PMC10522696 DOI: 10.1038/s41467-023-41745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Salient objects grab attention because they stand out from their surroundings. Whether this phenomenon is accomplished by bottom-up sensory processing or requires top-down guidance is debated. We tested these alternative hypotheses by measuring how early and in which cortical layer(s) neural spiking distinguished a target from a distractor. We measured synaptic and spiking activity across cortical columns in mid-level area V4 of male macaque monkeys performing visual search for a color singleton. A neural signature of attentional capture was observed in the earliest response in the input layer 4. The magnitude of this response predicted response time and accuracy. Errant behavior followed errant selection. Because this response preceded top-down influences and arose in the cortical layer not targeted by top-down connections, these findings demonstrate that feedforward activation of sensory cortex can underlie attentional priority.
Collapse
Affiliation(s)
- Jacob A Westerberg
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA.
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Jeffrey D Schall
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
- Vision: Science to Applications Program, York University, Toronto, ON, M3J 1P3, Canada
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada
| | - Geoffrey F Woodman
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, 37240, USA
| | - Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, 37240, USA
| |
Collapse
|
8
|
Debes SR, Dragoi V. Suppressing feedback signals to visual cortex abolishes attentional modulation. Science 2023; 379:468-473. [PMID: 36730414 DOI: 10.1126/science.ade1855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023]
Abstract
Attention improves perception by enhancing the neural encoding of sensory information. A long-standing hypothesis is that cortical feedback projections carry top-down signals to influence sensory coding. However, this hypothesis has never been tested to establish causal links. We used viral tools to label feedback connections from cortical area V4 targeting early visual cortex (area V1). While monkeys performed a visual-spatial attention task, inactivating feedback axonal terminals in V1 without altering local intracortical and feedforward inputs reduced the response gain of single cells and impaired the accuracy of neural populations for encoding external stimuli. These effects are primarily manifested in the superficial layers of V1 and propagate to downstream area V4. Attention enhances sensory coding across visual cortex by specifically altering the strength of corticocortical feedback in a layer-dependent manner.
Collapse
Affiliation(s)
- Samantha R Debes
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX 77030, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
9
|
Herrera B, Westerberg JA, Schall MS, Maier A, Woodman GF, Schall JD, Riera JJ. Resolving the mesoscopic missing link: Biophysical modeling of EEG from cortical columns in primates. Neuroimage 2022; 263:119593. [PMID: 36031184 PMCID: PMC9968827 DOI: 10.1016/j.neuroimage.2022.119593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022] Open
Abstract
Event-related potentials (ERP) are among the most widely measured indices for studying human cognition. While their timing and magnitude provide valuable insights, their usefulness is limited by our understanding of their neural generators at the circuit level. Inverse source localization offers insights into such generators, but their solutions are not unique. To address this problem, scientists have assumed the source space generating such signals comprises a set of discrete equivalent current dipoles, representing the activity of small cortical regions. Based on this notion, theoretical studies have employed forward modeling of scalp potentials to understand how changes in circuit-level dynamics translate into macroscopic ERPs. However, experimental validation is lacking because it requires in vivo measurements of intracranial brain sources. Laminar local field potentials (LFP) offer a mechanism for estimating intracranial current sources. Yet, a theoretical link between LFPs and intracranial brain sources is missing. Here, we present a forward modeling approach for estimating mesoscopic intracranial brain sources from LFPs and predict their contribution to macroscopic ERPs. We evaluate the accuracy of this LFP-based representation of brain sources utilizing synthetic laminar neurophysiological measurements and then demonstrate the power of the approach in vivo to clarify the source of a representative cognitive ERP component. To that end, LFP was measured across the cortical layers of visual area V4 in macaque monkeys performing an attention demanding task. We show that area V4 generates dipoles through layer-specific transsynaptic currents that biophysically recapitulate the ERP component through the detailed forward modeling. The constraints imposed on EEG production by this method also revealed an important dissociation between computational and biophysical contributors. As such, this approach represents an important bridge between laminar microcircuitry, through the mesoscopic activity of cortical columns to the patterns of EEG we measure at the scalp.
Collapse
Affiliation(s)
- Beatriz Herrera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | - Jacob A. Westerberg
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, 301 Wilson Hall, Nashville, TN 37240, United States,Corresponding author. (J.A. Westerberg)
| | - Michelle S. Schall
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Alexander Maier
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Geoffrey F. Woodman
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, 111 21st Avenue South, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Jeffrey D. Schall
- Centre for Vision Research, Departments of Biology and Psychology, Vision: Science to Applications Program, York University, Toronto, ON M3J 1P3, Canada
| | - Jorge J. Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| |
Collapse
|
10
|
Li Y, Wang T, Yang Y, Dai W, Wu Y, Li L, Han C, Zhong L, Li L, Wang G, Dou F, Xing D. Cascaded normalizations for spatial integration in the primary visual cortex of primates. Cell Rep 2022; 40:111221. [PMID: 35977486 DOI: 10.1016/j.celrep.2022.111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022] Open
Abstract
Spatial integration of visual information is an important function in the brain. However, neural computation for spatial integration in the visual cortex remains unclear. In this study, we recorded laminar responses in V1 of awake monkeys driven by visual stimuli with grating patches and annuli of different sizes. We find three important response properties related to spatial integration that are significantly different between input and output layers: neurons in output layers have stronger surround suppression, smaller receptive field (RF), and higher sensitivity to grating annuli partially covering their RFs. These interlaminar differences can be explained by a descriptive model composed of two global divisions (normalization) and a local subtraction. Our results suggest suppressions with cascaded normalizations (CNs) are essential for spatial integration and laminar processing in the visual cortex. Interestingly, the features of spatial integration in convolutional neural networks, especially in lower layers, are different from our findings in V1.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lianfeng Li
- China Academy of Launch Vehicle Technology, Beijing 100076, China
| | - Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lvyan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Beach SD, Lim SJ, Cardenas-Iniguez C, Eddy MD, Gabrieli JDE, Perrachione TK. Electrophysiological correlates of perceptual prediction error are attenuated in dyslexia. Neuropsychologia 2022; 165:108091. [PMID: 34801517 PMCID: PMC8807066 DOI: 10.1016/j.neuropsychologia.2021.108091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
A perceptual adaptation deficit often accompanies reading difficulty in dyslexia, manifesting in poor perceptual learning of consistent stimuli and reduced neurophysiological adaptation to stimulus repetition. However, it is not known how adaptation deficits relate to differences in feedforward or feedback processes in the brain. Here we used electroencephalography (EEG) to interrogate the feedforward and feedback contributions to neural adaptation as adults with and without dyslexia viewed pairs of faces and words in a paradigm that manipulated whether there was a high probability of stimulus repetition versus a high probability of stimulus change. We measured three neural dependent variables: expectation (the difference between prestimulus EEG power with and without the expectation of stimulus repetition), feedforward repetition (the difference between event-related potentials (ERPs) evoked by an expected change and an unexpected repetition), and feedback-mediated prediction error (the difference between ERPs evoked by an unexpected change and an expected repetition). Expectation significantly modulated prestimulus theta- and alpha-band EEG in both groups. Unexpected repetitions of words, but not faces, also led to significant feedforward repetition effects in the ERPs of both groups. However, neural prediction error when an unexpected change occurred instead of an expected repetition was significantly weaker in dyslexia than the control group for both faces and words. These results suggest that the neural and perceptual adaptation deficits observed in dyslexia reflect the failure to effectively integrate perceptual predictions with feedforward sensory processing. In addition to reducing perceptual efficiency, the attenuation of neural prediction error signals would also be deleterious to the wide range of perceptual and procedural learning abilities that are critical for developing accurate and fluent reading skills.
Collapse
Affiliation(s)
- Sara D. Beach
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Program in Speech and Hearing Bioscience and Technology, Harvard University, 260 Longwood Avenue, Boston, MA 02115 U.S.A
| | - Sung-Joo Lim
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215 U.S.A
| | - Carlos Cardenas-Iniguez
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Marianna D. Eddy
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Tyler K. Perrachione
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215 U.S.A.,Correspondence: Tyler K. Perrachione, Ph.D., Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, Phone: +1.617.358.7410,
| |
Collapse
|
12
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
13
|
Peter A, Stauch BJ, Shapcott K, Kouroupaki K, Schmiedt JT, Klein L, Klon-Lipok J, Dowdall JR, Schölvinck ML, Vinck M, Schmid MC, Fries P. Stimulus-specific plasticity of macaque V1 spike rates and gamma. Cell Rep 2021; 37:110086. [PMID: 34879273 PMCID: PMC8674536 DOI: 10.1016/j.celrep.2021.110086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/28/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022] Open
Abstract
When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here, we show in awake macaque area V1 that both repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects show some persistence on the timescale of minutes. Gamma increases are specific to the presented stimulus location. Further, repetition effects on gamma and on firing rates generalize to images of natural objects. These findings support the notion that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters.
Collapse
Affiliation(s)
- Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany.
| | - Benjamin Johannes Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Katharine Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Kleopatra Kouroupaki
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Joscha Tapani Schmiedt
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Liane Klein
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Jarrod Robert Dowdall
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Marieke Louise Schölvinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michael Christoph Schmid
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; University of Fribourg, Faculty of Science and Medicine, Chemin du Musée 5, 1700 Fribourg, Switzerland; Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle NE2 4HH, UK
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Khateb M, Schiller J, Schiller Y. State-Dependent Synchrony and Functional Connectivity in the Primary and Secondary Whisker Somatosensory Cortices. Front Syst Neurosci 2021; 15:713397. [PMID: 34616281 PMCID: PMC8489558 DOI: 10.3389/fnsys.2021.713397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Synchronized activity plays an important role in sensory coding and memory and is a hallmark of functional network connectivity. However, the effect of sensory activation on synchronization and cortical functional connectivity is largely unknown. In this study, we investigated the effect of whisker activation on synchronization and functional connectivity of the primary (wS1) and secondary (wS2) whisker somatosensory cortices at the single-cell level. The results showed that during the spontaneous pre-stimulus state, neurons tended to be functionally connected with nearby neurons which shared similar tuning characteristics. Whisker activation using either ramp-and-hold stimulation or artificial whisking against sandpaper has significantly reduced the average overall pairwise synchronization and functional connectivity within the wS1 barrel and wS2 cortices. Whisker stimulation disconnected approximately a third of neuronal pairs that were functionally connected during the unstimulated state. Nearby neurons with congruent tuning properties were more likely to remain functionally connected during whisker activation. The findings of this study indicated that cortical somatosensory networks are organized in non-random small world networks composed of neurons sharing relatively similar tuning properties. Sensory whisker activation intensifies these properties and further subdivides the cortical network into smaller more functionally uniform subnetworks, which possibly serve to increase the computational capacity of the network.
Collapse
Affiliation(s)
- Mohamed Khateb
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
15
|
Wason TD. A model integrating multiple processes of synchronization and coherence for information instantiation within a cortical area. Biosystems 2021; 205:104403. [PMID: 33746019 DOI: 10.1016/j.biosystems.2021.104403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
What is the form of dynamic, e.g., sensory, information in the mammalian cortex? Information in the cortex is modeled as a coherence map of a mixed chimera state of synchronous, phasic, and disordered minicolumns. The theoretical model is built on neurophysiological evidence. Complex spatiotemporal information is instantiated through a system of interacting biological processes that generate a synchronized cortical area, a coherent aperture. Minicolumn elements are grouped in macrocolumns in an array analogous to a phased-array radar, modeled as an aperture, a "hole through which radiant energy flows." Coherence maps in a cortical area transform inputs from multiple sources into outputs to multiple targets, while reducing complexity and entropy. Coherent apertures can assume extremely large numbers of different information states as coherence maps, which can be communicated among apertures with corresponding very large bandwidths. The coherent aperture model incorporates considerable reported research, integrating five conceptually and mathematically independent processes: 1) a damped Kuramoto network model, 2) a pumped area field potential, 3) the gating of nearly coincident spikes, 4) the coherence of activity across cortical lamina, and 5) complex information formed through functions in macrocolumns. Biological processes and their interactions are described in equations and a functional circuit such that the mathematical pieces can be assembled the same way the neurophysiological ones are. The model can be conceptually convolved over the specifics of local cortical areas within and across species. A coherent aperture becomes a node in a graph of cortical areas with a corresponding distribution of information.
Collapse
Affiliation(s)
- Thomas D Wason
- North Carolina State University, Department of Biological Sciences, Meitzen Laboratory, Campus Box 7617, 128 David Clark Labs, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
16
|
Abstract
An established theoretical model, predictive coding, states that the brain is constantly building models (signifying changing predictions) of the environment. The brain does this by forming predictions and signaling sensory inputs which deviate from predictions (“prediction errors”). Various hypotheses exist about how predictive coding could be implemented in the brain. We recorded neural spiking and oscillations with laminar resolution in a network of cortical areas as monkeys performed a working memory task with changing stimulus predictability. Predictability modulated the patterns of feedforward/feedback flow, cortical layers, and oscillations used to process a visual stimulus. These data support the theory of predictive coding but suggest an alternate model for its neural implementation: predictive routing. In predictive coding, experience generates predictions that attenuate the feeding forward of predicted stimuli while passing forward unpredicted “errors.” Different models have suggested distinct cortical layers, and rhythms implement predictive coding. We recorded spikes and local field potentials from laminar electrodes in five cortical areas (visual area 4 [V4], lateral intraparietal [LIP], posterior parietal area 7A, frontal eye field [FEF], and prefrontal cortex [PFC]) while monkeys performed a task that modulated visual stimulus predictability. During predictable blocks, there was enhanced alpha (8 to 14 Hz) or beta (15 to 30 Hz) power in all areas during stimulus processing and prestimulus beta (15 to 30 Hz) functional connectivity in deep layers of PFC to the other areas. Unpredictable stimuli were associated with increases in spiking and in gamma-band (40 to 90 Hz) power/connectivity that fed forward up the cortical hierarchy via superficial-layer cortex. Power and spiking modulation by predictability was stimulus specific. Alpha/beta power in LIP, FEF, and PFC inhibited spiking in deep layers of V4. Area 7A uniquely showed increases in high-beta (∼22 to 28 Hz) power/connectivity to unpredictable stimuli. These results motivate a conceptual model, predictive routing. It suggests that predictive coding may be implemented via lower-frequency alpha/beta rhythms that “prepare” pathways processing-predicted inputs by inhibiting feedforward gamma rhythms and associated spiking.
Collapse
|
17
|
Fabbrini F, Vogels R. Within- and between-hemifield generalization of repetition suppression in inferior temporal cortex. J Neurophysiol 2020; 125:120-139. [PMID: 33174507 DOI: 10.1152/jn.00361.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The decrease in response with stimulus repetition is a common property observed in many sensory brain areas. This repetition suppression (RS) is ubiquitous in neurons of macaque inferior temporal (IT) cortex, the end-stage of the ventral visual pathway. The neural mechanisms of RS in IT are still unclear, and one possibility is that it is inherited from areas upstream to IT that show also RS. Since neurons in IT have larger receptive fields compared with earlier visual areas, we examined the inheritance hypothesis by presenting adapter and test stimuli at widely different spatial locations along both vertical and horizontal meridians and across hemifields. RS was present for distances between adapter and test stimuli up to 22° and when the two stimuli were presented in different hemifields. Also, we examined the position tolerance of the stimulus selectivity of adaptation by comparing the responses to a test stimulus following the same (repetition trial) or a different (alternation trial) adapter at a position different from the test stimulus. Stimulus-selective adaptation was still present and consistently stronger in the later phase of the response for distances up to 18°. Finally, we observed stimulus-selective adaptation in repetition trials even without a measurable excitatory response to the adapter stimulus. To accommodate these and previous data, we propose that at least part of the stimulus-selective adaptation in IT is based on short-term plasticity mechanisms within IT and/or reflects top-down activity from areas downstream to IT.NEW & NOTEWORTHY Neurons in inferior temporal cortex reduce their response when stimuli are repeated. To assess whether this repetition suppression is inherited from upstream visual areas, we examined the extent of its spatial generalization. We observed stimulus-selective adaptation when adapter and test stimuli were presented at widely different spatial positions and in different hemifields. These data suggest that at least part of the repetition suppression originates within inferior temporal cortex and/or reflects feedback from downstream areas.
Collapse
Affiliation(s)
- Francesco Fabbrini
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rufin Vogels
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Zarei M, Parto Dezfouli M, Jahed M, Daliri MR. Adaptation Modulates Spike-Phase Coupling Tuning Curve in the Rat Primary Auditory Cortex. Front Syst Neurosci 2020; 14:55. [PMID: 32848646 PMCID: PMC7416672 DOI: 10.3389/fnsys.2020.00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2020] [Indexed: 12/02/2022] Open
Abstract
Adaptation is an important mechanism that causes a decrease in the neural response both in terms of local field potentials (LFP) and spiking activity. We previously showed this reduction effect in the tuning curve of the primary auditory cortex. Moreover, we revealed that a repeated stimulus reduces the neural response in terms of spike-phase coupling (SPC). In the current study, we examined the effect of adaptation on the SPC tuning curve. To this end, employing the phase-locking value (PLV) method, we estimated the spike-LFP coupling. The data was obtained by a simultaneous recording from four single-electrodes in the primary auditory cortex of 15 rats. We first investigated whether the neural system may use spike-LFP phase coupling in the primary auditory cortex to encode sensory information. Secondly, we investigated the effect of adaptation on this potential SPC tuning. Our data showed that the coupling between spikes’ times and the LFP phase in beta oscillations represents sensory information (different stimulus frequencies), with an inverted bell-shaped tuning curve. Furthermore, we showed that adaptation to a specific frequency modulates SPC tuning curve of the adapter and its neighboring frequencies. These findings could be useful for interpretation of feature representation in terms of SPC and the underlying neural mechanism of adaptation.
Collapse
Affiliation(s)
- Mohammad Zarei
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,School of Electrical Engineering, Sharif University of Technology (SUT), Tehran, Iran
| | - Mohsen Parto Dezfouli
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mehran Jahed
- School of Electrical Engineering, Sharif University of Technology (SUT), Tehran, Iran
| | - Mohammad Reza Daliri
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
19
|
Layer-Specific Contributions to Imagined and Executed Hand Movements in Human Primary Motor Cortex. Curr Biol 2020; 30:1721-1725.e3. [PMID: 32220318 DOI: 10.1016/j.cub.2020.02.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022]
Abstract
The human ability to imagine motor actions without executing them (i.e., motor imagery) is crucial to a number of cognitive functions, including motor planning and learning, and has been shown to improve response times and accuracy of subsequent motor actions [1, 2]. Although these behavioral findings suggest the possibility that imagined movements directly influence primary motor cortex (M1), how this might occur remains unknown [3]. Here, we use a non-blood-oxygen-level-dependent (BOLD) method for collecting fMRI data, called vascular space occupancy (VASO) [4, 5], to measure neural activations across cortical laminae in M1 while participants either tapped their thumb and forefinger together or simply imagined doing so. We report that, whereas executed movements (i.e., finger tapping) evoked neural responses in both the superficial layers of M1 that receive cortical input and the deep layers of M1 that send output to the spinal cord to support movement, imagined movements evoked responses in superficial cortical layers only. Furthermore, we found that finger tapping preceded by both imagined and executed movements showed a reduced response in the superficial layers (repetition suppression) coupled with a heightened response in the deep layers (repetition enhancement). Taken together, our results provide evidence for a mechanism whereby imagined movements can directly affect motor performance and might explain how neural repetition effects lead to improvements in behavior (e.g., repetition priming).
Collapse
|
20
|
Korzeniewska A, Wang Y, Benz HL, Fifer MS, Collard M, Milsap G, Cervenka MC, Martin A, Gotts SJ, Crone NE. Changes in human brain dynamics during behavioral priming and repetition suppression. Prog Neurobiol 2020; 189:101788. [PMID: 32198060 DOI: 10.1016/j.pneurobio.2020.101788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/13/2020] [Accepted: 03/13/2020] [Indexed: 11/29/2022]
Abstract
Behavioral responses to a perceptual stimulus are typically faster with repeated exposure to the stimulus (behavioral priming). This implicit learning mechanism is critical for survival but impaired in a variety of neurological disorders, including Alzheimer's disease. Many studies of the neural bases for behavioral priming have encountered an interesting paradox: in spite of faster behavioral responses, repeated stimuli usually elicit weaker neural responses (repetition suppression). Several neurophysiological models have been proposed to resolve this paradox, but noninvasive techniques for human studies have had insufficient spatial-temporal precision for testing their predictions. Here, we used the unparalleled precision of electrocorticography (ECoG) to analyze the timing and magnitude of task-related changes in neural activation and propagation while patients named novel vs repeated visual objects. Stimulus repetition was associated with faster verbal responses and decreased neural activation (repetition suppression) in ventral occipito-temporal cortex (VOTC) and left prefrontal cortex (LPFC). Interestingly, we also observed increased neural activation (repetition enhancement) in LPFC and other recording sites. Moreover, with analysis of high gamma propagation we observed increased top-down propagation from LPFC into VOTC, preceding repetition suppression. The latter results indicate that repetition suppression and behavioral priming are associated with strengthening of top-down network influences on perceptual processing, consistent with predictive coding models of repetition suppression, and they support a central role for changes in large-scale cortical dynamics in achieving more efficient and rapid behavioral responses.
Collapse
Affiliation(s)
- Anna Korzeniewska
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA.
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| | - Heather L Benz
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| | - Matthew S Fifer
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| | - Max Collard
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| | - Griffin Milsap
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| | - Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, 20852, USA
| | - Stephen J Gotts
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, 20852, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| |
Collapse
|
21
|
García-Rosales F, Röhrig D, Weineck K, Röhm M, Lin YH, Cabral-Calderin Y, Kössl M, Hechavarria JC. Laminar specificity of oscillatory coherence in the auditory cortex. Brain Struct Funct 2019; 224:2907-2924. [PMID: 31456067 DOI: 10.1007/s00429-019-01944-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Empirical evidence suggests that, in the auditory cortex (AC), the phase relationship between spikes and local-field potentials (LFPs) plays an important role in the processing of auditory stimuli. Nevertheless, unlike the case of other sensory systems, it remains largely unexplored in the auditory modality whether the properties of the cortical columnar microcircuit shape the dynamics of spike-LFP coherence in a layer-specific manner. In this study, we directly tackle this issue by addressing whether spike-LFP and LFP-stimulus phase synchronization are spatially distributed in the AC during sensory processing, by performing laminar recordings in the cortex of awake short-tailed bats (Carollia perspicillata) while animals listened to conspecific distress vocalizations. We show that, in the AC, spike-LFP and LFP-stimulus synchrony depend significantly on cortical depth, and that sensory stimulation alters the spatial and spectral patterns of spike-LFP phase-locking. We argue that such laminar distribution of coherence could have functional implications for the representation of naturalistic auditory stimuli at a cortical level.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| | - Dennis Röhrig
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Kristin Weineck
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Mira Röhm
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Yi-Hsuan Lin
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Yuranny Cabral-Calderin
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322, Frankfurt/Main, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
22
|
Synergistic Coding of Visual Information in Columnar Networks. Neuron 2019; 104:402-411.e4. [PMID: 31399280 DOI: 10.1016/j.neuron.2019.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
Abstract
Incoming stimuli are encoded collectively by populations of cortical neurons, which transmit information by using a neural code thought to be predominantly redundant. Redundant coding is widely believed to reflect a design choice whereby neurons with overlapping receptive fields sample environmental stimuli to convey similar information. Here, we performed multi-electrode laminar recordings in awake monkey V1 to report significant synergistic interactions between nearby neurons within a cortical column. These interactions are clustered non-randomly across cortical layers to form synergy and redundancy hubs. Homogeneous sub-populations comprising synergy hubs decode stimulus information significantly better compared to redundancy hubs or heterogeneous sub-populations. Mechanistically, synergistic interactions emerge from the stimulus dependence of correlated activity between neurons. Our findings suggest a refinement of the prevailing ideas regarding coding schemes in sensory cortex: columnar populations can efficiently encode information due to synergistic interactions even when receptive fields overlap and shared noise between cells is high.
Collapse
|
23
|
Gong X, Li W, Liang H. Spike-field Granger causality for hybrid neural data analysis. J Neurophysiol 2019; 122:809-822. [DOI: 10.1152/jn.00246.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurotechnological innovations allow for simultaneous recording at various scales, ranging from spiking activity of individual neurons to large neural populations’ local field potentials (LFPs). This capability necessitates developing multiscale analysis of spike-field activity. A joint analysis of the hybrid neural data is crucial for bridging the scales between single neurons and local networks. Granger causality is a fundamental measure to evaluate directional influences among neural signals. However, it is mainly limited to inferring causal influence between the same type of signals—either LFPs or spike trains—and not well developed between two different signal types. Here we propose a model-free, nonparametric spike-field Granger causality measure for hybrid data analysis. Our measure is distinct from existing methods in that we use “binless” spikes (precise spike timing) rather than “binned” spikes (spike counts within small consecutive time windows). The latter clearly distort the information in the mixed analysis of spikes and LFP. Therefore, our spectral estimate of spike trains is directly applied to the neural point process itself, i.e., sequences of spike times rather than spike counts. Our measure is validated by an extensive set of simulated data. When the measure is applied to LFPs and spiking activity simultaneously recorded from visual areas V1 and V4 of monkeys performing a contour detection task, we are able to confirm computationally the long-standing experimental finding of the input-output relationship between LFPs and spikes. Importantly, we demonstrate that spike-field Granger causality can be used to reveal the modulatory effects that are inaccessible by traditional methods, such that spike→LFP Granger causality is modulated by the behavioral task, whereas LFP→spike Granger causality is mainly related to the average synaptic input. NEW & NOTEWORTHY It is a pressing question to study the directional interactions between local field potential (LFP) and spiking activity. In this report, we propose a model-free, nonparametric spike-field Granger causality measure that can be used to reveal directional influences between spikes and LFPs. This new measure is crucial for bridging the scales between single neurons and neural networks; hence it represents an important step to explicate how the brain orchestrates information processing.
Collapse
Affiliation(s)
- Xiajing Gong
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Wu Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hualou Liang
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Westerberg JA, Cox MA, Dougherty K, Maier A. V1 microcircuit dynamics: altered signal propagation suggests intracortical origins for adaptation in response to visual repetition. J Neurophysiol 2019; 121:1938-1952. [PMID: 30917065 PMCID: PMC6589708 DOI: 10.1152/jn.00113.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/22/2022] Open
Abstract
Repetitive visual stimulation profoundly changes sensory processing in the primary visual cortex (V1). We show how the associated adaptive changes are linked to an altered flow of synaptic activation across the V1 laminar microcircuit. Using repeated visual stimulation, we recorded layer-specific responses in V1 of two fixating monkeys. We found that repetition-related spiking suppression was most pronounced outside granular V1 layers that receive the main retinogeniculate input. This repetition-related response suppression was robust to alternating stimuli between the eyes, in line with the notion that repetition-related adaptation is predominantly of cortical origin. Most importantly, current source density (CSD) analysis, which provides an estimate of local net depolarization, revealed that synaptic processing during repeated stimulation was most profoundly affected within supragranular layers, which harbor the bulk of cortico-cortical connections. Direct comparison of the temporal evolution of laminar CSD and spiking activity showed that stimulus repetition first affected supragranular synaptic currents, which translated into a reduction of stimulus-evoked spiking across layers. Together, these results suggest that repetition induces an altered state of intracortical processing that underpins visual adaptation. NEW & NOTEWORTHY Our survival depends on our brains rapidly adapting to ever changing environments. A well-studied form of adaptation occurs whenever we encounter the same or similar stimuli repeatedly. We show that this repetition-related adaptation is supported by systematic changes in the flow of sensory activation across the laminar cortical microcircuitry of primary visual cortex. These results demonstrate how adaptation impacts neuronal interactions across cortical circuits.
Collapse
Affiliation(s)
- Jacob A Westerberg
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Vanderbilt Vision Research Center, Vanderbilt University , Nashville, Tennessee
| | - Michele A Cox
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Vanderbilt Vision Research Center, Vanderbilt University , Nashville, Tennessee
| | - Kacie Dougherty
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Vanderbilt Vision Research Center, Vanderbilt University , Nashville, Tennessee
| | - Alexander Maier
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Vanderbilt Vision Research Center, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
25
|
Mock VL, Luke KL, Hembrook-Short JR, Briggs F. Phase shifts in high-beta- and low-gamma-band local field potentials predict the focus of visual spatial attention. J Neurophysiol 2019; 121:799-822. [PMID: 30540498 DOI: 10.1152/jn.00469.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The local field potential (LFP) contains rich information about activity in local neuronal populations. However, it has been challenging to establish direct links between LFP modulations and task-relevant behavior or cognitive processes, such as attention. We sought to determine whether LFP amplitude or phase modulations are predictive of the allocation of visual spatial attention. LFPs were recorded simultaneously in multiple early visual brain structures of alert macaque monkeys performing attention-demanding detection and discrimination tasks. Attention directed toward the receptive field of recorded neurons generated systematically larger phase shifts in high-beta- and low-gamma-frequency LFPs compared with LFP phase shifts on trials in which attention was directed away from the receptive field. This attention-mediated temporal advance corresponded to ~10 ms. LFP phase shifts also correlated with reaction times when monkeys were engaged in the tasks. Importantly, attentional modulation of LFP phase was consistent across monkeys, tasks, visual brain structures, and cortical layers. In contrast, attentional modulation of LFP amplitude varied across frequency bands, visual structures/layers, and tasks. Because LFP phase shifts were robust, consistent, and predictive of spatial attention, they could serve as a reliable marker for attention signals in the brain. NEW & NOTEWORTHY Local field potentials (LFPs) reflect the activity of spatially localized populations of neurons. Whether alterations in LFP activity are indicative of cognitive processes, such as attention, is unclear. We found that shifts in the phase of LFPs measured in multiple visual brain areas reliably predicted the focus of spatial attention. LFP phase shifts could therefore serve as a marker for behaviorally relevant attention signals in the brain.
Collapse
Affiliation(s)
- Vanessa L Mock
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine , Rochester, New York.,Program in Experimental and Molecular Medicine, Dartmouth College , Hanover, New Hampshire
| | - Kimberly L Luke
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | - Farran Briggs
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine , Rochester, New York.,Department of Neuroscience, University of Rochester School of Medicine , Rochester, New York.,Department of Brain and Cognitive Sciences, University of Rochester , Rochester, New York.,Center for Visual Science, University of Rochester , Rochester, New York
| |
Collapse
|
26
|
Zarei M, Jahed M, Daliri MR. Introducing a Comprehensive Framework to Measure Spike-LFP Coupling. Front Comput Neurosci 2018; 12:78. [PMID: 30374297 PMCID: PMC6196284 DOI: 10.3389/fncom.2018.00078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023] Open
Abstract
Measuring the coupling of single neuron's spiking activities to the local field potentials (LFPs) is a method to investigate neuronal synchronization. The most important synchronization measures are phase locking value (PLV), spike field coherence (SFC), pairwise phase consistency (PPC), and spike-triggered correlation matrix synchronization (SCMS). Synchronization is generally quantified using the PLV and SFC. PLV and SFC methods are either biased on the spike rates or the number of trials. To resolve these problems the PPC measure has been introduced. However, there are some shortcomings associated with the PPC measure which is unbiased only for very high spike rates. However evaluating spike-LFP phase coupling (SPC) for short trials or low number of spikes is a challenge in many studies. Lastly, SCMS measures the correlation in terms of phase in regions around the spikes inclusive of the non-spiking events which is the major difference between SCMS and SPC. This study proposes a new framework for predicting a more reliable SPC by modeling and introducing appropriate machine learning algorithms namely least squares, Lasso, and neural networks algorithms where through an initial trend of the spike rates, the ideal SPC is predicted for neurons with low spike rates. Furthermore, comparing the performance of these three algorithms shows that the least squares approach provided the best performance with a correlation of 0.99214 and R2 of 0.9563 in the training phase, and correlation of 0.95969 and R2 of 0.8842 in the test phase. Hence, the results show that the proposed framework significantly enhances the accuracy and provides a bias-free basis for small number of spikes for SPC as compared to the conventional methods such as PLV method. As such, it has the general ability to correct for the bias on the number of spike rates.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehran Jahed
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Reza Daliri
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
27
|
Wu PY, Chu YH, Lin JFL, Kuo WJ, Lin FH. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Sci Rep 2018; 8:13287. [PMID: 30185951 PMCID: PMC6125583 DOI: 10.1038/s41598-018-31292-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
Frequency preference and spectral tuning are two cardinal features of information processing in the auditory cortex. However, sounds should not only be processed in separate frequency bands because information needs to be integrated to be meaningful. One way to better understand the integration of acoustic information is to examine the functional connectivity across cortical depths, as neurons are already connected differently across laminar layers. Using a tailored receiver array and surface-based cortical depth analysis, we revealed the frequency-preference as well as tuning-width dependent intrinsic functional connectivity (iFC) across cortical depths in the human auditory cortex using functional magnetic resonance imaging (fMRI). We demonstrated feature-dependent iFC in both core and noncore regions at all cortical depths. The selectivity of frequency-preference dependent iFC was higher at deeper depths than at intermediate and superficial depths in the core region. Both the selectivity of frequency-preference and tuning-width dependent iFC were stronger in the core than in the noncore region at deep cortical depths. Taken together, our findings provide evidence for a cortical depth-specific feature-dependent functional connectivity in the human auditory cortex.
Collapse
Affiliation(s)
- Pu-Yeh Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Ying-Hua Chu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Jo-Fu Lotus Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, 112, Taiwan
| | - Fa-Hsuan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan.
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland.
| |
Collapse
|
28
|
Mock VL, Luke KL, Hembrook-Short JR, Briggs F. Dynamic communication of attention signals between the LGN and V1. J Neurophysiol 2018; 120:1625-1639. [PMID: 29975169 DOI: 10.1152/jn.00224.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Correlations and inferred causal interactions among local field potentials (LFPs) simultaneously recorded in distinct visual brain areas can provide insight into how visual and cognitive signals are communicated between neuronal populations. Based on the known anatomical connectivity of hierarchically organized visual cortical areas and electrophysiological measurements of LFP interactions, a framework for interareal frequency-specific communication has emerged. Our goals were to test the predictions of this framework in the context of the early visual pathways and to understand how attention modulates communication between the visual thalamus and primary visual cortex. We recorded LFPs simultaneously in retinotopically aligned regions of the visual thalamus and primary visual cortex in alert and behaving macaque monkeys trained on a contrast-change detection task requiring covert shifts in visual spatial attention. Coherence and Granger-causal interactions among early visual circuits varied dynamically over different trial periods. Attention significantly enhanced alpha-, beta-, and gamma-frequency interactions, often in a manner consistent with the known anatomy of early visual circuits. However, attentional modulation of communication among early visual circuits was not consistent with a simple static framework in which distinct frequency bands convey directed inputs. Instead, neuronal network interactions in early visual circuits were flexible and dynamic, perhaps reflecting task-related shifts in attention. NEW & NOTEWORTHY Attention alters the way we perceive the visual world. For example, attention can modulate how visual information is communicated between the thalamus and cortex. We recorded local field potentials simultaneously in the visual thalamus and cortex to quantify the impact of attention on visual information communication. We found that attentional modulation of visual information communication was not static, but dynamic over the time course of trials.
Collapse
Affiliation(s)
- Vanessa L Mock
- Program in Experimental and Molecular Medicine, Dartmouth College , Hanover, New Hampshire.,Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine , Rochester, New York
| | - Kimberly L Luke
- Physiology and Neurobiology Department, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | - Farran Briggs
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine , Rochester, New York.,Department of Neuroscience, University of Rochester School of Medicine , Rochester, New York.,Department of Brain and Cognitive Sciences, University of Rochester , Rochester, New York.,Center for Visual Science, University of Rochester , Rochester, New York
| |
Collapse
|
29
|
Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression. Psychon Bull Rev 2017; 23:1055-71. [PMID: 27294423 DOI: 10.3758/s13423-015-0855-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Incremental learning models of long-term perceptual and conceptual knowledge hold that neural representations are gradually acquired over many individual experiences via Hebbian-like activity-dependent synaptic plasticity across cortical connections of the brain. In such models, variation in task relevance of information, anatomic constraints, and the statistics of sensory inputs and motor outputs lead to qualitative alterations in the nature of representations that are acquired. Here, the proposal that behavioral repetition priming and neural repetition suppression effects are empirical markers of incremental learning in the cortex is discussed, and research results that both support and challenge this position are reviewed. Discussion is focused on a recent fMRI-adaptation study from our laboratory that shows decoupling of experience-dependent changes in neural tuning, priming, and repetition suppression, with representational changes that appear to work counter to the explicit task demands. Finally, critical experiments that may help to clarify and resolve current challenges are outlined.
Collapse
|
30
|
Chen R, Wang F, Liang H, Li W. Synergistic Processing of Visual Contours across Cortical Layers in V1 and V2. Neuron 2017; 96:1388-1402.e4. [DOI: 10.1016/j.neuron.2017.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/25/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
31
|
Perrachione TK, Del Tufo SN, Winter R, Murtagh J, Cyr A, Chang P, Halverson K, Ghosh SS, Christodoulou JA, Gabrieli JDE. Dysfunction of Rapid Neural Adaptation in Dyslexia. Neuron 2017; 92:1383-1397. [PMID: 28009278 DOI: 10.1016/j.neuron.2016.11.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Abstract
Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment.
Collapse
Affiliation(s)
- Tyler K Perrachione
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Stephanie N Del Tufo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rebecca Winter
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jack Murtagh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Cyr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Chang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelly Halverson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satrajit S Ghosh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joanna A Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Abstract
Aim: Many neurodegenerative diseases have a memory component. Brain structures related to memory are affected by environmental stimuli, and it is difficult to dissociate effects of all behavior of neurons. Materials & methods: Here, visual cortex of mice was stimulated with gratings and dot, and an observation of neuronal activity before and after was made. Bandwidth, firing rate and orientation selectivity index were evaluated. Results: A primary communication between primary visual cortex and short-term memory appeared to show an interesting path to train cognitive circuitry and investigate the basics mechanisms of the neuronal learning. The findings also suggested the interplay between primary visual cortex and short-term plasticity. Conclusion: The properties inside a visual target shape the perception and affect the basic encoding. Using visual cortex, it may be possible to train the memory and improve the recovery of people with cognitive disabilities or memory deficit.
Collapse
Affiliation(s)
- Faustin Armel Etindele Sosso
- Research Center in Neuropsychology & Cognition, University of Montreal, Quebec, Canada
- Department of Biological Sciences, Faculty of Arts & Sciences, University of Montreal, Quebec, Canada
| |
Collapse
|
33
|
Wang L, Wang Y, Fu WL, Cao LH. Modulation of neuronal dynamic range using two different adaptation mechanisms. Neural Regen Res 2017; 12:447-451. [PMID: 28469660 PMCID: PMC5399723 DOI: 10.4103/1673-5374.202931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents) in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered) adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.
Collapse
Affiliation(s)
- Lei Wang
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Ye Wang
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Wen-Long Fu
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Li-Hong Cao
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| |
Collapse
|
34
|
The feature-specific propagation of orientation and direction adaptation from areas 17 to 21a in cats. Sci Rep 2017; 7:390. [PMID: 28341863 PMCID: PMC5428465 DOI: 10.1038/s41598-017-00419-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/21/2017] [Indexed: 11/30/2022] Open
Abstract
Adaptation plays a key role in visual information processing, and investigations on the adaptation across different visual regions will be helpful to understand how information is processed dynamically along the visual streams. Recent studies have found the enhanced adaptation effects in the early visual system (from LGN to V1) and the dorsal stream (from V1 to MT). However, it remains unclear how adaptation effect propagates along the form/orientation stream in the visual system. In this study, we compared the orientation and direction adaptation evoked by drifting gratings and stationary flashing gratings, as well as moving random dots, in areas 17 and 21a simultaneously of cats. Recorded by single-unit and intrinsic signal optical imaging, induced by both top-up and biased adaptation protocols, the orientation adaptation effect was greater in response decline and preferred orientation shifts in area 21a compared to area 17. However, for the direction adaptation, no difference was observed between these two areas. These results suggest the feature-specific propagation of the adaptation effect along the visual stream.
Collapse
|
35
|
Montefusco-Siegmund R, Leonard TK, Hoffman KL. Hippocampal gamma-band Synchrony and pupillary responses index memory during visual search. Hippocampus 2017; 27:425-434. [PMID: 28032676 DOI: 10.1002/hipo.22702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 01/20/2023]
Abstract
Memory for scenes is supported by the hippocampus, among other interconnected structures, but the neural mechanisms related to this process are not well understood. To assess the role of the hippocampus in memory-guided scene search, we recorded local field potentials and multiunit activity from the hippocampus of macaques as they performed goal-directed search tasks using natural scenes. We additionally measured pupil size during scene presentation, which in humans is modulated by recognition memory. We found that both pupil dilation and search efficiency accompanied scene repetition, thereby indicating memory for scenes. Neural correlates included a brief increase in hippocampal multiunit activity and a sustained synchronization of unit activity to gamma band oscillations (50-70 Hz). The repetition effects on hippocampal gamma synchronization occurred when pupils were most dilated, suggesting an interaction between aroused, attentive processing and hippocampal correlates of recognition memory. These results suggest that the hippocampus may support memory-guided visual search through enhanced local gamma synchrony. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Timothy K Leonard
- Department of Psychology, Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Kari L Hoffman
- Department of Psychology, Department of Biology, Centre for Vision Research, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Perrachione TK, Del Tufo SN, Winter R, Murtagh J, Cyr A, Chang P, Halverson K, Ghosh SS, Christodoulou JA, Gabrieli JDE. Dysfunction of Rapid Neural Adaptation in Dyslexia. Neuron 2016. [PMID: 28009278 DOI: 10.1016/j.neuron.2016.11.020"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment.
Collapse
Affiliation(s)
- Tyler K Perrachione
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Stephanie N Del Tufo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rebecca Winter
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jack Murtagh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Cyr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Chang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelly Halverson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satrajit S Ghosh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joanna A Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Vinck M, Bosman CA. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions. Front Syst Neurosci 2016; 10:35. [PMID: 27199684 PMCID: PMC4842768 DOI: 10.3389/fnsys.2016.00035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 11/15/2022] Open
Abstract
During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that is particularly information-rich and sparse.
Collapse
Affiliation(s)
- Martin Vinck
- School of Medicine, Yale University New Haven, CT, USA
| | - Conrado A Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute, Center for Neuroscience, University of AmsterdamAmsterdam, Netherlands; Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
38
|
Hu M, Li M, Li W, Liang H. Joint analysis of spikes and local field potentials using copula. Neuroimage 2016; 133:457-467. [PMID: 27012500 DOI: 10.1016/j.neuroimage.2016.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/23/2016] [Accepted: 03/13/2016] [Indexed: 10/22/2022] Open
Abstract
Recent technological advances, which allow for simultaneous recording of spikes and local field potentials (LFPs) at multiple sites in a given cortical area or across different areas, have greatly increased our understanding of signal processing in brain circuits. Joint analysis of simultaneously collected spike and LFP signals is an important step to explicate how the brain orchestrates information processing. In this contribution, we present a novel statistical framework based on Gaussian copula to jointly model spikes and LFP. In our approach, we use copula to link separate, marginal regression models to construct a joint regression model, in which the binary-valued spike train data are modeled using generalized linear model (GLM) and the continuous-valued LFP data are modeled using linear regression. Model parameters can be efficiently estimated via maximum-likelihood. In particular, we show that our model offers a means to statistically detect directional influence between spikes and LFP, akin to Granger causality measure, and that we are able to assess its statistical significance by conducting a Wald test. Through extensive simulations, we also show that our method is able to reliably recover the true model used to generate the data. To demonstrate the effectiveness of our approach in real setting, we further apply the method to a mixed neural dataset, consisting of spikes and LFP simultaneously recorded from the visual cortex of a monkey performing a contour detection task.
Collapse
Affiliation(s)
- Meng Hu
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Wu Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hualou Liang
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104.
| |
Collapse
|
39
|
Larsson J, Solomon SG, Kohn A. fMRI adaptation revisited. Cortex 2015; 80:154-60. [PMID: 26703375 DOI: 10.1016/j.cortex.2015.10.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
Adaptation has been widely used in functional magnetic imaging (fMRI) studies to infer neuronal response properties in human cortex. fMRI adaptation has been criticized because of the complex relationship between fMRI adaptation effects and the multiple neuronal effects that could underlie them. Many of the longstanding concerns about fMRI adaptation have received empirical support from neurophysiological studies over the last decade. We review these studies here, and also consider neuroimaging studies that have investigated how fMRI adaptation effects are influenced by high-level perceptual processes. The results of these studies further emphasize the need to interpret fMRI adaptation results with caution, but they also provide helpful guidance for more accurate interpretation and better experimental design. In addition, we argue that rather than being used as a proxy for measurements of neuronal stimulus selectivity, fMRI adaptation may be most useful for studying population-level adaptation effects across cortical processing hierarchies.
Collapse
Affiliation(s)
- Jonas Larsson
- Department of Psychology, Royal Holloway, University of London, Egham, UK.
| | - Samuel G Solomon
- Department of Experimental Psychology, University College London, London, UK.
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
40
|
Bachatene L, Bharmauria V, Cattan S, Chanauria N, Rouat J, Molotchnikoff S. Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity. BMC Neurosci 2015; 16:64. [PMID: 26453336 PMCID: PMC4600218 DOI: 10.1186/s12868-015-0203-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. RESULTS Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a "homeodynamic" manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. CONCLUSIONS Our results support the "homeostatic plasticity concept" giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons.
Collapse
Affiliation(s)
- Lyes Bachatene
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Vishal Bharmauria
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Sarah Cattan
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nayan Chanauria
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jean Rouat
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Stéphane Molotchnikoff
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
41
|
Opris I, Gerhardt GA, Hampson RE, Deadwyler SA. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure. Front Syst Neurosci 2015; 9:79. [PMID: 26074787 PMCID: PMC4448003 DOI: 10.3389/fnsys.2015.00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/06/2015] [Indexed: 02/01/2023] Open
Abstract
Prefrontal cortical activity in primate brain plays a critical role in cognitive processes involving working memory and the executive control of behavior. Groups of prefrontal cortical neurons within specified cortical layers along cortical minicolumns differentially generate inter- and intra-laminar firing to process relevant information for goal oriented behavior. However, it is not yet understood how cocaine modulates such differential firing in prefrontal cortical layers. Rhesus macaque nonhuman primates (NHPs) were trained in a visual delayed match-to-sample (DMS) task while the activity of prefrontal cortical neurons (areas 46, 8 and 6) was recorded simultaneously with a custom multielectrode array in cell layers 2/3 and 5. Animals were reinforced with juice for correct responses. The first half of the recording session (control) was conducted following saline injection and in the second half of the same session cocaine was administered. Prefrontal neuron activity with respect to inter- and intra-laminar firing in layers 2/3 and 5 was assessed in the DMS task before and after the injection of cocaine. Results showed that firing rates of both pyramidal cells and interneurons increased on Match phase presentation and the Match Response (MR) in both control and cocaine halves of the session. Differential firing under cocaine vs. control in the Match phase was increased for interneurons but decreased for pyramidal cells. In addition, functional' interactions between prefrontal pyramidal cells in layer 2/3 and 5 decreased while intra-laminar cross-correlations in both layers increased. These neural recordings demonstrate that prefrontal neurons differentially encode and process information within and between cortical cell layers via cortical columns which is disrupted in a differential manner by cocaine: administration.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Greg A. Gerhardt
- Department of Anatomy and Neurobiology, University of KentuckyKentucky, KY, USA
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| |
Collapse
|
42
|
Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA. Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods 2015; 244:104-13. [PMID: 24954713 PMCID: PMC4595476 DOI: 10.1016/j.jneumeth.2014.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/25/2023]
Abstract
The mammalian prefrontal cortex known as the seat of high brain functions uses a six layer distribution of minicolumnar neurons to coordinate the integration of sensory information and the selection of relevant signals for goal driven behavior. To reveal the complex functionality of these columnar microcircuits we employed simultaneous recordings with several configurations of biomorphic microelectrode arrays (MEAs) within cortical layers in adjacent minicolumns, in four nohuman primates (NHPs) performing a delayed match-to-sample (DMS) visual discrimination task. We examined: (1) the functionality of inter-laminar, and inter-columnar interactions between pairs of cells in the same or different minicolumns by use of normalized cross-correlation histograms (CCH), (2) the modulation of glutamate concentration in layer 2/3, and (3) the potential interactions within these microcircuits. The results demonstrate that neurons in both infra-granular and supra-granular layers interact through inter-laminar loops, as well as through intra-laminar to produce behavioral response signals. These results provide new insights into the manner in which prefrontal cortical microcircuitry integrates sensory stimuli used to provide behaviorally relevant signals that may be implemented in brain computer/machine interfaces (BCI/BMIs) during performance of the task.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Joshua L Fuqua
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Greg A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Samuel A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
43
|
Abstract
How an object is perceived depends on the temporal context in which it is encountered. Sensory signals in the brain also depend on temporal context, a phenomenon often referred to as adaptation. Traditional descriptions of adaptation effects emphasize various forms of response fatigue in single neurons, which grow in strength with exposure to a stimulus. Recent work on vision, and other sensory modalities, has shown that this description has substantial shortcomings. Here we review our emerging understanding of how adaptation alters the balance between excitatory and suppressive signals, how effects depend on adaptation duration, and how adaptation influences representations that are distributed within and across multiple brain structures. This work points to a sophisticated set of mechanisms for adjusting to recent sensory experience, and suggests new avenues for understanding their function.
Collapse
Affiliation(s)
- Samuel G Solomon
- Institute for Behavioural Neuroscience, University College London, London, UK; Department of Experimental Psychology, University College London, London, UK.
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
44
|
Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J Neurosci 2014; 34:5355-69. [PMID: 24719113 DOI: 10.1523/jneurosci.5127-13.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated whether a frontal area that lacks granular layer IV, supplementary eye field, exhibits features of laminar circuitry similar to those observed in primary sensory areas. We report, for the first time, visually evoked local field potentials (LFPs) and spiking activity recorded simultaneously across all layers of agranular frontal cortex using linear electrode arrays. We calculated current source density from the LFPs and compared the laminar organization of evolving sinks to those reported in sensory areas. Simultaneous, transient synaptic current sinks appeared first in layers III and V followed by more prolonged current sinks in layers I/II and VI. We also found no variation of single- or multi-unit visual response latency across layers, and putative pyramidal neurons and interneurons displayed similar response latencies. Many units exhibited pronounced discharge suppression that was strongest in superficial relative to deep layers. Maximum discharge suppression also occurred later in superficial than in deep layers. These results are discussed in the context of the canonical cortical microcircuit model originally formulated to describe early sensory cortex. The data indicate that agranular cortex resembles sensory areas in certain respects, but the cortical microcircuit is modified in nontrivial ways.
Collapse
|
45
|
Cattan S, Bachatene L, Bharmauria V, Jeyabalaratnam J, Milleret C, Molotchnikoff S. Comparative analysis of orientation maps in areas 17 and 18 of the cat primary visual cortex following adaptation. Eur J Neurosci 2014; 40:2554-63. [DOI: 10.1111/ejn.12616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah Cattan
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| | - Lyes Bachatene
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| | - Vishal Bharmauria
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| | - Jeyadarshan Jeyabalaratnam
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| | - Chantal Milleret
- Neural Bases of Spatial Memory and Navigation; CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL); Paris France
| | - Stéphane Molotchnikoff
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| |
Collapse
|
46
|
Hirabayashi T, Miyashita Y. Computational principles of microcircuits for visual object processing in the macaque temporal cortex. Trends Neurosci 2014; 37:178-87. [DOI: 10.1016/j.tins.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 01/04/2023]
|
47
|
Noda T, Kanzaki R, Takahashi H. Amplitude and phase-locking adaptation of neural oscillation in the rat auditory cortex in response to tone sequence. Neurosci Res 2013; 79:52-60. [PMID: 24239971 DOI: 10.1016/j.neures.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
Sensory adaptation allows stimulus sensitivity to be dynamically modulated according to stimulus statistics and plays pivotal roles in efficient neural computation. Here, it is hypothesized that in the auditory cortex, phase locking of local field potentials (LFPs) to test tones exhibits an adaptation property, i.e., phase-locking adaptation, which is distinct from the amplitude adaptation of oscillatory components. Series of alternating tone sequences were applied in which the inter-tone interval (ITI) and frequency difference (ΔF) between successive tones were varied. Then, adaptation was characterized by the temporal evolution of the band-specific amplitude and phase locking evoked by the test tones. Differences as well as similarities were revealed between amplitude and phase-locking adaptations. First, both amplitude and phase-locking adaptations were enhanced by short ITIs and small ΔFs. Second, the amplitude adaptation was more effective in a higher frequency band, while the phase-locking adaptation was more effective in a lower frequency band. Third, as with the adaptation of multiunit activities (MUAs), the amplitude adaptation occurred mainly within a second, while the phase-locking showed multi-second adaptation specifically in the gamma band for short ITI and small ΔF conditions. Fourth, the amplitude adaptation and phase-locking adaptation were co-modulated in a within-second time scale, while this co-modulation was not observed in a multi-second time scale. These findings suggest that the amplitude and phase-locking adaptations have different mechanisms and functions. The phase-locking adaptation is likely to play more crucial roles in encoding a temporal structure of stimulus than the amplitude adaptation.
Collapse
Affiliation(s)
- Takahiro Noda
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
48
|
Kaliukhovich DA, De Baene W, Vogels R. Effect of adaptation on object representation accuracy in macaque inferior temporal cortex. J Cogn Neurosci 2013; 25:777-89. [PMID: 23469883 DOI: 10.1162/jocn_a_00355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Stimulus repetition produces a decrease of the response in many cortical areas and different modalities. This adaptation is highly prominent in macaque inferior temporal (IT) neurons. Here we ask how these repetition-induced changes in IT responses affect the accuracy by which IT neurons encode objects. This question bears on the functional consequences of adaptation, which are still unclear. We recorded the responses of single IT neurons to sequences of familiar shapes, each shown for 300 msec with an ISI of the same duration. The difference in shape between the two successively presented stimuli,that is, adapter and test, varied parametrically. The discriminability of the test stimuli was reduced for repeated compared with nonrepeated stimuli. In some conditions for which adapter and test shapes differed, the cross-adaptation resulted in an enhanced discriminability. These single cell results were confirmed in a second experiment in which we recorded multiunit spiking activity using a laminar microelectrode in macaque IT. Two familiar stimuli were presented successively for 500 msec each and separated with an ISI of the same duration. Trials consisted either of a repetition of the same stimulus or of their alternation. Small neuronal populations showed decreased classification accuracy for repeated compared with nonrepeated test stimuli, but classification was enhanced for the test compared with adapter stimuli when the test stimulus differed from recently seen stimuli. These findings suggest that short-term, stimulus-specific adaptation in IT supports efficient coding of stimuli that differ from recently seen ones while impairing the coding of repeated stimuli.
Collapse
|
49
|
Hansen BJ, Chelaru MI, Dragoi V. Correlated variability in laminar cortical circuits. Neuron 2013; 76:590-602. [PMID: 23141070 DOI: 10.1016/j.neuron.2012.08.029] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2012] [Indexed: 11/25/2022]
Abstract
Despite the fact that strong trial-to-trial correlated variability in responses has been reported in many cortical areas, recent evidence suggests that neuronal correlations are much lower than previously thought. Here, we used multicontact laminar probes to revisit the issue of correlated variability in primary visual (V1) cortical circuits. We found that correlations between neurons depend strongly on local network context--whereas neurons in the input (granular) layers showed virtually no correlated variability, neurons in the output layers (supragranular and infragranular) exhibited strong correlations. The laminar dependence of noise correlations is consistent with recurrent models in which neurons in the granular layer receive intracortical inputs from nearby cells, whereas supragranular and infragranular layer neurons receive inputs over larger distances. Contrary to expectation that the output cortical layers encode stimulus information most accurately, we found that the input network offers superior discrimination performance compared to the output networks.
Collapse
Affiliation(s)
- Bryan J Hansen
- Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | |
Collapse
|
50
|
Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA. Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits 2012. [PMID: 23189041 PMCID: PMC3504312 DOI: 10.3389/fncir.2012.00088] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical (PFC) activity in the primate brain emerging from minicolumnar microcircuits plays a critical role in cognitive processes dealing with executive control of behavior. However, the specific operations of columnar laminar processing in prefrontal cortex (PFC) are not completely understood. Here we show via implementation of unique microanatomical recording and stimulating arrays, that minicolumns in PFC are involved in the executive control of behavior in rhesus macaque nonhuman primates (NHPs) performing a delayed-match-to-sample (DMS) task. PFC neurons demonstrate functional interactions between pairs of putative pyramidal cells within specified cortical layers via anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing between inter-laminar (layer 2/3 and layer 5) pairs of neurons participating in the gating of information during the decision making phase of the task with differential correlations between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific information for correct task performance. Such inter-laminar processing was exploited by the interfacing of an online model which delivered stimulation to layer 5 locations in a pattern associated with successful performance thereby closing the columnar loop externally in a manner that mimicked normal processing in the same task. These unique technologies demonstrate that PFC neurons encode and process information via minicolumns which provides a closed loop form of "executive function," hence disruption of such inter-laminar processing could form the bases for cognitive dysfunction in primate brain.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|