1
|
Li Y, Yang L, Hao D, Chen Y, Ye-Lin Y, Li CSR, Li G. Functional Networks of Reward and Punishment Processing and Their Molecular Profiles Predicting the Severity of Young Adult Drinking. Brain Sci 2024; 14:610. [PMID: 38928610 PMCID: PMC11201596 DOI: 10.3390/brainsci14060610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol misuse is associated with altered punishment and reward processing. Here, we investigated neural network responses to reward and punishment and the molecular profiles of the connectivity features predicting alcohol use severity in young adults. We curated the Human Connectome Project data and employed connectome-based predictive modeling (CPM) to examine how functional connectivity (FC) features during wins and losses are associated with alcohol use severity, quantified by Semi-Structured Assessment for the Genetics of Alcoholism, in 981 young adults. We combined the CPM findings and the JuSpace toolbox to characterize the molecular profiles of the network connectivity features of alcohol use severity. The connectomics predicting alcohol use severity appeared specific, comprising less than 0.12% of all features, including medial frontal, motor/sensory, and cerebellum/brainstem networks during punishment processing and medial frontal, fronto-parietal, and motor/sensory networks during reward processing. Spatial correlation analyses showed that these networks were associated predominantly with serotonergic and GABAa signaling. To conclude, a distinct pattern of network connectivity predicted alcohol use severity in young adult drinkers. These "neural fingerprints" elucidate how alcohol misuse impacts the brain and provide evidence of new targets for future intervention.
Collapse
Affiliation(s)
- Yashuang Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA (C.-S.R.L.)
| | - Yiyao Ye-Lin
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Chiang-Shan Ray Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA (C.-S.R.L.)
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| |
Collapse
|
2
|
Konar-Nié M, Guzman-Castillo A, Armijo-Weingart L, Aguayo LG. Aging in nucleus accumbens and its impact on alcohol use disorders. Alcohol 2023; 107:73-90. [PMID: 36087859 DOI: 10.1016/j.alcohol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most widely consumed drugs in the world and prolonged excessive ethanol intake might lead to alcohol use disorders (AUDs), which are characterized by neuroadaptations in different brain regions, such as in the reward circuitry. In addition, the global population is aging, and it appears that they are increasing their ethanol consumption. Although research involving the effects of alcohol in aging subjects is limited, differential effects have been described. For example, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. Interestingly, in the field of the neurobiological basis of ethanol actions, there is a significant dichotomy between what we know about the effects of ethanol on neurochemical targets in young animals and how it might affect them in the aging brain. To be able to understand the distinct effects of ethanol in the aging brain, the following questions need to be answered: (1) How does physiological aging impact the function of an ethanol-relevant region (e.g., the nucleus accumbens)? and (2) How does ethanol affect these neurobiological systems in the aged brain? This review discusses the available data to try to understand how aging affects the nucleus accumbens (nAc) and its neurochemical response to alcohol. The data show that there is little information on the effects of ethanol in aged mice and rats, and that many studies had considered 2-3-month-old mice as adults, which needs to be reconsidered since more recent literature defines 6 months as young adults and >18 months as an older mouse. Considering the actual relevance of an aged worldwide population and that this segment is drinking more frequently, it appears at least reasonable to explore how ethanol affects the brain in adult and aged models.
Collapse
Affiliation(s)
- Macarena Konar-Nié
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile.
| | - Alejandra Guzman-Castillo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Luis Gerardo Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
3
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Yorgason JT, Wadsworth HA, Anderson EJ, Williams BM, Brundage JN, Hedges DM, Stockard AL, Jones ST, Arthur SB, Hansen DM, Schilaty ND, Jang EY, Lee AM, Wallner M, Steffensen SC. Modulation of dopamine release by ethanol is mediated by atypical GABA A receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol 2022; 27:e13108. [PMID: 34713509 DOI: 10.1111/adb.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc). However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABAA Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δ-/-). Ethanol decreased DA release in mice with an IC50 of 80 mM ex vivo and 2.0 g/kg in vivo. GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABAA R agonists inhibited DA release at high concentrations. Typical GABAA R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α4 β3 δ GABAA R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ1 (Rho-1) antagonist TPMPA (10 μM) and reduced significantly in GABAA R δ-/- mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABAA Rs on CINs containing δ- and Rho-subunits.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, Utah, USA
| | - Hillary A Wadsworth
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Elizabeth J Anderson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Benjamin M Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - James N Brundage
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David M Hedges
- Enterprise Information Management, Billings Clinic, Billings, Montana, USA
| | - Alyssa L Stockard
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Stephen T Jones
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Summer B Arthur
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David Micah Hansen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Nathan D Schilaty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Eun Young Jang
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
5
|
Amaral IM, Scheffauer L, Langeder AB, Hofer A, El Rawas R. Rewarding Social Interaction in Rats Increases CaMKII in the Nucleus Accumbens. Biomedicines 2021; 9:1886. [PMID: 34944702 PMCID: PMC8698734 DOI: 10.3390/biomedicines9121886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is known to be involved in the sensitized locomotor responses and drug-seeking behavior to psychostimulants. However, little is known about the contribution of CaMKII signaling in the nucleus accumbens (NAc) in natural rewards such as social interaction. The present experiments explored the implication of CaMKII signaling in drug versus natural reward. In the NAc of rats expressing cocaine or social interaction conditioned place preference (CPP), αCaMKII activation was induced in those expressing social interaction but not cocaine CPP. In order to investigate the role of NAc CaMKII in the expression of reward-related learning of drug versus non-drug stimuli, we inhibited CaMKII through an infusion of KN-93, a CaMKII inhibitor, directly into the NAc shell or core, before the CPP test in a concurrent paradigm in which social interaction was made available in the compartment alternative to the one associated with cocaine during conditioning. Whereas vehicle infusions led to equal preference to both stimuli, inhibition of CaMKII by a KN-93 infusion before the CPP test in the shell but not the core of the NAc shifted the rats' preference toward the cocaine-associated compartment. Altogether, these results suggest that social interaction reward engages CaMKII in the NAc.
Collapse
Affiliation(s)
| | | | | | | | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (L.S.); (A.B.L.); (A.H.)
| |
Collapse
|
6
|
Jin S, Cinar R, Hu X, Lin Y, Luo G, Lovinger DM, Zhang Y, Zhang L. Spinal astrocyte aldehyde dehydrogenase-2 mediates ethanol metabolism and analgesia in mice. Br J Anaesth 2021; 127:296-309. [PMID: 33934892 PMCID: PMC8362281 DOI: 10.1016/j.bja.2021.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Little is known about the targets in the CNS that mediate ethanol analgesia. This study explores the role of spinal astrocyte aldehyde dehydrogenase-2 (ALDH2), a key ethanol-metabolising enzyme, in the analgesic effects of ethanol in mice. METHODS Astrocyte and hepatocyte ALHD2-deficient mice were generated and tested in acute and chronic pain models. Cell-type-specific distribution of ALDH2 was analysed by RNA in situ hybridisation in spinal slices from astrocytic ALDH2-deficient mice and their wild-type littermates. Spinal ethanol metabolites and γ-aminobutyric acid (GABA) content were measured using gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. RESULTS ALDH2 mRNA was expressed in both astrocytes and neurones in spinal cord slices. Astrocyte ALDH2-deficient mice had decreased expression of ALDH2 mRNA in astrocytes, but not in neurones. Astrocyte ALDH2 deficiency inhibited ethanol-derived acetate, but not acetaldehyde content in spinal cord tissues. Depletion of spinal astrocyte ALDH2 selectively inhibited ethanol-induced anti-nociceptive effect, but not the effect of ethanol, on motor function. Astrocyte ALDH2 deficiency abolished ethanol-induced GABA elevation. The ethanol metabolite acetate produced anti-nociception and increased GABA synthesis in a manner similar to ethanol. I.T. delivery of either GABAA or GABAB receptor antagonists prevented ethanol and acetate-induced analgesia. CONCLUSIONS These findings provide evidence that ALDH2 in spinal astrocytes mediates spinal ethanol metabolism and ethanol-induced analgesic effects by promoting GABA synthesis and GABAergic transmission in spinal cord.
Collapse
Affiliation(s)
- Shiyun Jin
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory for Metabolic Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Xudong Hu
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuhong Lin
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Guoxiang Luo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
An Innovatory GABA Receptor Modulator and Liver Oxidase System Microsomal Cytochrome P450 Activator in Patients with Alcoholism. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02327-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Leggio GM, Di Marco R, Gulisano W, D'Ascenzo M, Torrisi SA, Geraci F, Lavanco G, Dahl K, Giurdanella G, Castorina A, Aitta-Aho T, Aceto G, Bucolo C, Puzzo D, Grassi C, Korpi ER, Drago F, Salomone S. Dopaminergic-GABAergic interplay and alcohol binge drinking. Pharmacol Res 2019; 141:384-391. [PMID: 30648615 DOI: 10.1016/j.phrs.2019.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/23/2022]
Abstract
The dopamine D3 receptor (D3R), in the nucleus accumbens (NAc), plays an important role in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We previously reported that genetic deletion or pharmacological blockade of D3R increases GABAA α6 subunit in the ventral striatum. Here we tested the hypothesis that D3R-dependent changes in GABAA α6 subunit in the NAc affect voluntary alcohol intake, by influencing the inhibitory transmission of MSNs. We performed in vivo and ex vivo experiments in D3R knockout (D3R -/-) mice and wild type littermates (D3R +/+). Ro 15-4513, a high affinity α6-GABAA ligand was used to study α6 activity. At baseline, NAc α6 expression was negligible in D3R+/+, whereas it was robust in D3R-/-; other relevant GABAA subunits were not changed. In situ hybridization and qPCR confirmed α6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D3R+/+, but increased it in D3R-/-; this was confirmed by intra-NAc administration of Ro 15-4513 and furosemide, a selective α6-GABAA antagonist. Whole-cell patch-clamp showed peak amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons higher in D3R-/- compared to D3R+/+; Ro 15-4513 reduced the peak amplitude in the NAc of D3R-/-, but not in D3R+/+. We conclude that D3R-dependent enhanced expression of α6 GABAA subunit inhibits voluntary alcohol intake by increasing GABA inhibition in the NAc.
Collapse
Affiliation(s)
- Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Roberta Di Marco
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Marcello D'Ascenzo
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Gianluca Lavanco
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Kristiina Dahl
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Alessandro Castorina
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Teemu Aitta-Aho
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Giuseppe Aceto
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
9
|
Olsen RW, Liang J. Role of GABA A receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain 2017; 10:45. [PMID: 28931433 PMCID: PMC5605989 DOI: 10.1186/s13041-017-0325-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
GABAergic inhibitory transmission is involved in the acute and chronic effects of ethanol on the brain and behavior. One-dose ethanol exposure induces transient plastic changes in GABAA receptor subunit levels, composition, and regional and subcellular localization. Rapid down-regulation of early responder δ subunit-containing GABAA receptor subtypes mediating ethanol-sensitive tonic inhibitory currents in critical neuronal circuits corresponds to rapid tolerance to ethanol's behavioral responses. Slightly slower, α1 subunit-containing GABAA receptor subtypes mediating ethanol-insensitive synaptic inhibition are down-regulated, corresponding to tolerance to additional ethanol behaviors plus cross-tolerance to other GABAergic drugs including benzodiazepines, anesthetics, and neurosteroids, especially sedative-hypnotic effects. Compensatory up-regulation of synaptically localized α4 and α2 subunit-containing GABAA receptor subtypes, mediating ethanol-sensitive synaptic inhibitory currents follow, but exhibit altered physio-pharmacology, seizure susceptibility, hyperexcitability, anxiety, and tolerance to GABAergic positive allosteric modulators, corresponding to heightened alcohol withdrawal syndrome. All these changes (behavioral, physiological, and biochemical) induced by ethanol administration are transient and return to normal in a few days. After chronic intermittent ethanol (CIE) treatment the same changes are observed but they become persistent after 30 or more doses, lasting for at least 120 days in the rat, and probably for life. We conclude that the ethanol-induced changes in GABAA receptors represent aberrant plasticity contributing critically to ethanol dependence and increased voluntary consumption. We suggest that the craving, drug-seeking, and increased consumption in the rat model are tied to ethanol-induced plastic changes in GABAA receptors, importantly the development of ethanol-sensitive synaptic GABAA receptor-mediating inhibitory currents that participate in maintained positive reward actions of ethanol on critical neuronal circuits. These probably disinhibit nerve endings of inhibitory GABAergic neurons on dopamine reward circuit cells, and limbic system circuits mediating anxiolysis in hippocampus and amygdala. We further suggest that the GABAA receptors contributing to alcohol dependence in the rat and presumably in human alcohol use disorders (AUD) are the ethanol-induced up-regulated subtypes containing α4 and most importantly α2 subunits. These mediate critical aspects of the positive reinforcement of ethanol in the dependent chronic user while alleviating heightened withdrawal symptoms experienced whenever ethanol is absent. The speculative conclusions based on firm observations are readily testable.
Collapse
Affiliation(s)
- Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Jing Liang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
10
|
Melón LC, Nolan ZT, Colar D, Moore EM, Boehm SL. Activation of extrasynaptic δ-GABA A receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion. Horm Behav 2017; 95:65-75. [PMID: 28765080 PMCID: PMC5623082 DOI: 10.1016/j.yhbeh.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
Abstract
Recent reports support higher than expected rates of binge alcohol consumption among women and girls. Unfortunately, few studies have assessed the mechanisms underlying this pattern of intake in females. Studies in males suggest that alcohol concentrations relevant to the beginning stages of binge intoxication may selectively target tonic GABAergic inhibition mediated by GABAA receptor subtypes expressing the δ-subunit protein (δ-GABAARs). Indeed, administration of agonists that interact with these δ-GABAARs prior to alcohol access can abolish binge drinking behavior in male mice. These δ-GABAARs have also been shown to exhibit estrous-dependent plasticity in regions relevant to drug taking behavior, like the hippocampus and periaqueductal gray. The present experiments were designed to determine whether the estrous cycle would alter binge drinking, or our ability to modulate this pattern of alcohol use with THIP, an agonist with high selectivity and efficacy at δ-GABAARs. Using the Drinking-in-the-Dark (DID) binge-drinking model, regularly cycling female mice were given 2h of daily access to alcohol (20%v/v). Vaginal cytology or vaginal impedance was assessed after drinking sessions to track estrous status. There was no fluctuation in binge drinking associated with the estrous cycle. Both Intra-posterior-VTA administration of THIP and systemic administration of the drug was also associated with an estrous cycle dependent reduction in drinking behavior. Pre-treatment with finasteride to inhibit synthesis of 5α-reduced neurosteroids did not disrupt THIP's effects. Analysis of δ-subunit mRNA from posterior-VTA enriched tissue samples revealed that expression of this GABAA receptor subunit is elevated during diestrus in this region. Taken together, these studies demonstrate that δGABAARs in the VTA are an important target for binge drinking in females and confirm that the estrous cycle is an important moderator of the pharmacology of this GABAA receptor subtype.
Collapse
Affiliation(s)
- Laverne C Melón
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Delphine Colar
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Stephen L Boehm
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Liang J, Olsen RW. Alcohol use disorders and current pharmacological therapies: the role of GABA(A) receptors. Acta Pharmacol Sin 2014; 35:981-93. [PMID: 25066321 PMCID: PMC4125717 DOI: 10.1038/aps.2014.50] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/16/2014] [Indexed: 12/18/2022]
Abstract
Alcohol use disorders (AUD) are defined as alcohol abuse and alcohol dependence, which create large problems both for society and for the drinkers themselves. To date, no therapeutic can effectively solve these problems. Understanding the underlying mechanisms leading to AUD is critically important for developing effective and safe pharmacological therapies. Benzodiazepines (BZs) are used to reduce the symptoms of alcohol withdrawal syndrome. However, frequent use of BZs causes cross-tolerance, dependence, and cross-addiction to alcohol. The FDA-approved naltrexone and acamprosate have shown mixed results in clinical trials. Naltrexone is effective to treat alcohol dependence (decreased length and frequency of drinking bouts), but its severe side effects, including withdrawal symptoms, are difficult to overcome. Acamprosate showed efficacy for treating alcohol dependence in European trials, but two large US trials have failed to confirm the efficacy. Another FDA-approved medication, disulfiram, does not diminish craving, and it causes a peripheral neuropathy. Kudzu is the only natural medication mentioned by the National Institute on Alcohol Abuse and Alcoholism, but its mechanisms of action are not yet established. It has been recently shown that dihydromyricetin, a flavonoid purified from Hovenia, has unique effects on GABAA receptors and blocks ethanol intoxication and withdrawal in alcoholic animal models. In this article, we review the role of GABAA receptors in the treatment of AUD and currently available and potentially novel pharmacological agents.
Collapse
Affiliation(s)
- Jing Liang
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Tabakoff B, Hoffman PL. The neurobiology of alcohol consumption and alcoholism: an integrative history. Pharmacol Biochem Behav 2013; 113:20-37. [PMID: 24141171 PMCID: PMC3867277 DOI: 10.1016/j.pbb.2013.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/17/2023]
Abstract
Studies of the neurobiological predisposition to consume alcohol (ethanol) and to transition to uncontrolled drinking behavior (alcoholism), as well as studies of the effects of alcohol on brain function, started a logarithmic growth phase after the repeal of the 18th Amendment to the United States Constitution. Although the early studies were primitive by current technological standards, they clearly demonstrated the effects of alcohol on brain structure and function, and by the end of the 20th century left little doubt that alcoholism is a "disease" of the brain. This review traces the history of developments in the understanding of ethanol's effects on the most prominent inhibitory and excitatory systems of brain (GABA and glutamate neurotransmission). This neurobiological information is integrated with knowledge of ethanol's actions on other neurotransmitter systems to produce an anatomical and functional map of ethanol's properties. Our intent is limited in scope, but is meant to provide context and integration of the actions of ethanol on the major neurobiologic systems which produce reinforcement for alcohol consumption and changes in brain chemistry that lead to addiction. The developmental history of neurobehavioral theories of the transition from alcohol drinking to alcohol addiction is presented and juxtaposed to the neurobiological findings. Depending on one's point of view, we may, at this point in history, know more, or less, than we think we know about the neurobiology of alcoholism.
Collapse
Affiliation(s)
- Boris Tabakoff
- University of Colorado School of Medicine, MS8303, 12800 E. 19 Ave., Aurora, CO 80045 U.S.A
| | - Paula L. Hoffman
- University of Colorado School of Medicine, MS8303, 12800 E. 19 Ave., Aurora, CO 80045 U.S.A
| |
Collapse
|