1
|
Morita M, Miyamura M, Yamaguchi A, Sakamoto T. Analysis of individual matrix particles in the Allende meteorite by high-resolution FIB-TOF-SIMS. ANAL SCI 2022; 38:1039-1046. [PMID: 35751002 DOI: 10.1007/s44211-022-00124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
The matrix in the "Allende meteorite" was analyzed by high-spatial-resolution focused ion beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS), and consisted of fine grains with sizes of several micrometers. It is difficult to analyze the matrix particles individually. As FIB-TOF-SIMS has a high spatial resolution, it can analyze the matrix individually. In addition, if the sample can be smoothed, no other pretreatment is required. By this method, it was clarified that Al, Cr, etc., which were conventionally detected as trace components in mass spectra, existed as fine particles between the matrix particles, rather than as impurities within them. The Al-rich particles did not match the minerals already found in the Allende meteorite matrix. Although the identity of the aluminum-rich particles has not been clarified, the abundance and localization could be observed correctly. Al-rich particles are likely to be affected by metamorphism and have important information to clarify the metamorphism process.
Collapse
Affiliation(s)
- Masato Morita
- Department of Applied Physics, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan
| | - Masatoshi Miyamura
- Department of Applied Physics, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan
| | - Akira Yamaguchi
- National Institute of Polar Research, Tachikawa, Tokyo, 190-8518, Japan
| | - Tetsuo Sakamoto
- Department of Applied Physics, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan.
- Graduate School of Electrical Engineering and Electronics, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
2
|
Heinicke C, Foing B. Human habitats: prospects for infrastructure supporting astronomy from the Moon. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20190568. [PMID: 33222635 PMCID: PMC7739901 DOI: 10.1098/rsta.2019.0568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
There is strong interest in lunar exploration from governmental space agencies, private companies and the public. NASA is about to send humans to the lunar surface again within the next few years, and ESA has proposed the concept of the Moon Village, with the goal of a sustainable human presence and activity on the lunar surface. Although construction of the infrastructure for this permanent human settlement is envisaged for the end of this decade by many, there is no definite mission plan yet. While this may be unsatisfactory for the impatient, this fact actually carries great potential: this is the optimal time to develop a forward-looking science input and influence mission planning. Based on data from recent missions (SMART-1, Kaguya, Chang'E, Chandrayaan-1 and LRO) as well as simulation campaigns (e.g. ILEWG EuroMoonMars), we provide initial input on how astronomy could be incorporated into a future Moon Village, and how the presence of humans (and robots) on the Moon could help deploy and maintain astronomical hardware. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.
Collapse
Affiliation(s)
- C. Heinicke
- ZARM - Center of Applied Space Technology and Microgravity, University of Bremen, Am Fallturm 2, 28359 Bremen, Germany
| | - B. Foing
- ESA/ESTEC and ILEWG, PO Box 299, 2200 AG Noordwijk, The Netherlands
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081–1087, 1081 HV Amsterdam, The Netherlands
- Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
3
|
Krot AN. CHONDRITES AND THEIR COMPONENTS: RECORDS OF EARLY SOLAR SYSTEM PROCESSES. METEORITICS & PLANETARY SCIENCE 2019; 54:1647-1691. [PMID: 31379423 PMCID: PMC6677159 DOI: 10.1111/maps.13350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
AbstractChondrites consist of three major components: refractory inclusions (Ca,Al‐rich inclusions [CAIs] and amoeboid olivine aggregates), chondrules, and matrix. Here, I summarize recent results on the mineralogy, petrology, oxygen, and aluminum‐magnesium isotope systematics of the chondritic components (mainly CAIs in carbonaceous chondrites) and their significance for understanding processes in the protoplanetary disk (PPD) and on chondrite parent asteroids. CAIs are the oldest solids originated in the solar system: their U‐corrected Pb‐Pb absolute age of 4567.3 ± 0.16 Ma is considered to represent time 0 of its evolution. CAIs formed by evaporation, condensation, and aggregation in a gas of approximately solar composition in a hot (ambient temperature >1300 K) disk region exposed to irradiation by solar energetic particles, probably near the protoSun; subsequently, some CAIs were melted in and outside their formation region during transient heating events of still unknown nature. In unmetamorphosed, type 2–3.0 chondrites, CAIs show large variations in the initial 26Al/27Al ratios, from <5 × 10–6 to ~5.25 × 10–5. These variations and the inferred low initial abundance of 60Fe in the PPD suggest late injection of 26Al by a wind from a nearby Wolf–Rayet star into the protosolar molecular cloud core prior to or during its collapse. Although there are multiple generations of CAIs characterized by distinct mineralogies, textures, and isotopic (O, Mg, Ca, Ti, Mo, etc.) compositions, the 26Al heterogeneity in the CAI‐forming region(s) precludes determining the duration of CAIs formation using 26Al‐26Mg systematics. The existence of multiple generations of CAIs and the observed differences in CAI abundances in carbonaceous and noncarbonaceous chondrites may indicate that CAIs were episodically formed and ejected by a disk wind from near the Sun to the outer solar system and then spiraled inward due to gas drag. In type 2–3.0 chondrites, most CAIs surrounded by Wark–Lovering rims have uniform Δ17O (= δ17O−0.52 × δ18O) of ~ −24‰; however, there is a large range of Δ17O (from ~−40 to ~ −5‰) among them, suggesting the coexistence of 16O‐rich (low Δ17O) and 16O‐poor (high Δ17O) gaseous reservoirs at the earliest stages of the PPD evolution. The observed variations in Δ17O of CAIs may be explained if three major O‐bearing species in the solar system (CO, H2O, and silicate dust) had different O‐isotope compositions, with H2O and possibly silicate dust being 16O‐depleted relative to both the Genesis solar wind Δ17O of −28.4 ± 3.6‰ and even more 16O‐enriched CO. Oxygen isotopic compositions of CO and H2O could have resulted from CO self‐shielding in the protosolar molecular cloud (PMC) and the outer PPD. The nature of 16O‐depleted dust at the earliest stages of PPD evolution remains unclear: it could have either been inherited from the PMC or the initially 16O‐rich (solar‐like) MC dust experienced O‐isotope exchange during thermal processing in the PPD. To understand the chemical and isotopic composition of the protosolar MC material and the degree of its thermal processing in PPD, samples of the primordial silicates and ices, which may have survived in the outer solar system, are required. In metamorphosed CO3 and CV3 chondrites, most CAIs exhibit O‐isotope heterogeneity that often appears to be mineralogically controlled: anorthite, melilite, grossite, krotite, perovskite, and Zr‐ and Sc‐rich oxides and silicates are 16O‐depleted relative to corundum, hibonite, spinel, Al,Ti‐diopside, forsterite, and enstatite. In texturally fine‐grained CAIs with grain sizes of ~10–20 μm, this O‐isotope heterogeneity is most likely due to O‐isotope exchange with 16O‐poor (Δ17O ~0‰) aqueous fluids on the CO and CV chondrite parent asteroids. In CO3.1 and CV3.1 chondrites, this process did not affect Al‐Mg isotope systematics of CAIs. In some coarse‐grained igneous CV CAIs, O‐isotope heterogeneity of anorthite, melilite, and igneously zoned Al,Ti‐diopside appears to be consistent with their crystallization from melts of isotopically evolving O‐isotope compositions. These CAIs could have recorded O‐isotope exchange during incomplete melting in nebular gaseous reservoir(s) with different O‐isotope compositions and during aqueous fluid–rock interaction on the CV asteroid.
Collapse
|
4
|
Cooper G, Rios AC, Nuevo M. Monosaccharides and Their Derivatives in Carbonaceous Meteorites: A Scenario for Their Synthesis and Onset of Enantiomeric Excesses. Life (Basel) 2018; 8:life8030036. [PMID: 30150578 PMCID: PMC6161268 DOI: 10.3390/life8030036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Carbonaceous meteorites provide the best glimpse into the solar system’s earliest physical and chemical processes. These ancient objects, ~4.56 billion years old, contain evidence of phenomena ranging from solar system formation to the synthesis of organic compounds by aqueous and (likely) low-temperature photolytic reactions. Collectively, chemical reactions resulted in an insoluble kerogen-like carbon phase and a complex mixture of discrete soluble compounds including amino acids, nucleobases, and monosaccharide (or “sugar”) derivatives. This review presents the documented search for sugars and their derivatives in carbonaceous meteorites. We examine early papers, published in the early 1960s, and note the analytical methods used for meteorite analysis as well as conclusions on the results. We then present the recent finding of sugar derivatives including sugar alcohols and several sugar acids: The latter compounds were found to possess unusual “d” enantiomeric (mirror-image) excesses. After discussions on the possible roles of interstellar grain chemistry and meteorite parent body aqueous activity in the synthesis of sugar derivatives, we present a scenario that suggests that most of Earth’s extraterrestrial sugar alcohols (e.g., glycerol) were synthesized by interstellar irradiation and/or cold grain chemistry and that the early solar disk was the location of the initial enantiomeric excesses in meteoritic sugar derivatives.
Collapse
Affiliation(s)
- George Cooper
- NASA-Ames Research Center, Moffett Field, CA 94035, USA.
| | - Andro C Rios
- NASA-Ames Research Center, Moffett Field, CA 94035, USA.
- Blue Marble Space, 1001 4th Ave, Ste 3201, Seattle, WA 98154, USA.
| | - Michel Nuevo
- NASA-Ames Research Center, Moffett Field, CA 94035, USA.
- Bay Area Environmental Research Institute, NASA Research Park, Moffett Field, CA 94035, USA.
| |
Collapse
|
5
|
TRACKING THE DISTRIBUTION OF26Al AND60Fe DURING THE EARLY PHASES OF STAR AND DISK EVOLUTION. ACTA ACUST UNITED AC 2016. [DOI: 10.3847/0004-637x/826/1/22] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Affiliation(s)
- Smadar Naoz
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095
| |
Collapse
|
7
|
Hao Y, Xie Y, Schaefer III HF. Features of the potential energy surface for the SiO + OH → SiO 2+ H reaction: relationship to oxygen isotopic partitioning during gas phase SiO 2formation. RSC Adv 2014. [DOI: 10.1039/c4ra09829c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Chakraborty S, Yanchulova P, Thiemens MH. Mass-independent oxygen isotopic partitioning during gas-phase SiO2 formation. Science 2013; 342:463-6. [PMID: 24159043 DOI: 10.1126/science.1242237] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Meteorites contain a wide range of oxygen isotopic compositions that are interpreted as heterogeneity in solar nebula. The anomalous oxygen isotopic compositions of refractory mineral phases may reflect a chemical fractionation process in the nebula, but there are no experiments to demonstrate this isotope effect during particle formation through gas-phase reactions. We report experimental results of gas-to-particle conversion during oxidation of silicon monoxide that define a mass-independent line (slope one) in oxygen three-isotope space of (18)O/(16)O versus (17)O/(16)O. This mass-independent chemical reaction is a potentially initiating step in nebular meteorite formation, which would be capable of producing silicate reservoirs with anomalous oxygen isotopic compositions.
Collapse
Affiliation(s)
- Subrata Chakraborty
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356, USA
| | | | | |
Collapse
|
9
|
Cosmochemistry: Understanding the Solar System through analysis of extraterrestrial materials. Proc Natl Acad Sci U S A 2011; 108:19130-4. [PMID: 22128323 DOI: 10.1073/pnas.1111493108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cosmochemistry is the chemical analysis of extraterrestrial materials. This term generally is taken to mean laboratory analysis, which is the cosmochemistry gold standard because of the ability for repeated analysis under highly controlled conditions using the most advanced instrumentation unhindered by limitations in power, space, or environment. Over the past 40 y, advances in technology have enabled telescopic and spacecraft instruments to provide important data that significantly complement the laboratory data. In this special edition, recent advances in the state of the art of cosmochemistry are presented, which range from instrumental analysis of meteorites to theoretical-computational and astronomical observations.
Collapse
|