1
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Paul T, Yang L, Lee CY, Myong S. Simultaneous probing of transcription, G-quadruplex, and R-loop. Methods Enzymol 2024; 705:377-396. [PMID: 39389670 PMCID: PMC11760191 DOI: 10.1016/bs.mie.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
DNA and RNA can form various non-canonical secondary structures, including G-quadruplex (G4) and R-loops. These structures are considered transcriptional regulatory elements due to their enrichment at regulatory regions. During transcription, G-rich sequences in the non-template strand promote R-loop formation in the DNA template strand. These R-loops induce G4 structures in the non-template DNA strand, further stabilizing them. Additionally, the high rG: dC base-pairing within the R-loop contributes to the stability of DNA/RNA hybridization. Our previous study investigated the interplay between G4s and R-loops and its impact on transcription. We employed two techniques to demonstrate transcription-mediated G4 and R-loop formation. The single-molecule method allows us to detect intricate details of transcription initiation, elongation, and co-transcriptional R-loop and G4 formation. It provides a high-resolution view of the dynamic processes involved in transcriptional regulation. As an orthogonal approach, a gel-based assay enables the detection of the transcription-mediated R-loops and the RNA product. We can measure the progressive formation of R-loop and total RNA produced from transcription by analyzing gel electrophoresis patterns. In summary, these techniques provide valuable insights into the non-canonical nucleic acid structures and their impact on gene expression.
Collapse
Affiliation(s)
- Tapas Paul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Leya Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chun-Ying Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sua Myong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Chen W, Chen B, Li X, Xu G, Yang L, Wu J, Yu H. Non-canonical amino acids uncover the significant impact of Tyr671 on Taq DNA polymerase catalytic activity. FEBS J 2024; 291:2876-2896. [PMID: 38362811 DOI: 10.1111/febs.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Responsible for synthesizing the complementary strand of the DNA template, DNA polymerase is a crucial enzyme in DNA replication, recombination and repair. A highly conserved tyrosine (Tyr), located at the C-terminus of the O-helix in family A DNA polymerases, plays a critical role in enzyme activity and fidelity. Here, we combined the technology of genetic code extension to incorporate non-canonical amino acids and molecular dynamics (MD) simulations to uncover the mechanisms by which Tyr671 impacts substrate binding and conformation transitions in a DNA polymerase from Thermus aquaticus. Five non-canonical amino acids, namely l-3,4-dihydroxyphenylalanine (l-DOPA), p-aminophenylalanine (pAF), p-acetylphenylalanine (pAcF), p-cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF), were individually incorporated at position 671. Strikingly, Y671pAF and Y671DOPA were active, but with lower activity compared to Y671F and wild-type. Y671pAF showed a higher fidelity than the Y671F, despite both possessing lower fidelity than the wild-type. Metadynamics and long-timescale MD simulations were carried out to probe the role of mutations in affecting protein structure, including open conformation, open-to-closed conformation transition, closed conformation, and closed-to-open conformation transition. The MD simulations clearly revealed that the size of the 671 amino acid residue and interactions with substrate or nearby residues were critical for Tyr671 to determine enzyme activity and fidelity.
Collapse
Affiliation(s)
- Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| |
Collapse
|
4
|
Dash RC, Hadden K. Protein-Protein Interactions in Translesion Synthesis. Molecules 2021; 26:5544. [PMID: 34577015 PMCID: PMC8468184 DOI: 10.3390/molecules26185544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Translesion synthesis (TLS) is an error-prone DNA damage tolerance mechanism used by actively replicating cells to copy past DNA lesions and extend the primer strand. TLS ensures that cells continue replication in the presence of damaged DNA bases, albeit at the expense of an increased mutation rate. Recent studies have demonstrated a clear role for TLS in rescuing cancer cells treated with first-line genotoxic agents by allowing them to replicate and survive in the presence of chemotherapy-induced DNA lesions. The importance of TLS in both the initial response to chemotherapy and the long-term development of acquired resistance has allowed it to emerge as an interesting target for small molecule drug discovery. Proper TLS function is a complicated process involving a heteroprotein complex that mediates multiple attachment and switching steps through several protein-protein interactions (PPIs). In this review, we briefly describe the importance of TLS in cancer and provide an in-depth analysis of key TLS PPIs, focusing on key structural features at the PPI interface while also exploring the potential druggability of each key PPI.
Collapse
Affiliation(s)
| | - Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Storrs, CT 06029-3092, USA;
| |
Collapse
|
5
|
Novel Antibiotics Targeting Bacterial Replicative DNA Polymerases. Antibiotics (Basel) 2020; 9:antibiotics9110776. [PMID: 33158178 PMCID: PMC7694242 DOI: 10.3390/antibiotics9110776] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is a worldwide problem that is an increasing threat to global health. Therefore, the development of new antibiotics that inhibit novel targets is of great urgency. Some of the most successful antibiotics inhibit RNA transcription, RNA translation, and DNA replication. Transcription and translation are inhibited by directly targeting the RNA polymerase or ribosome, respectively. DNA replication, in contrast, is inhibited indirectly through targeting of DNA gyrases, and there are currently no antibiotics that inhibit DNA replication by directly targeting the replisome. This contrasts with antiviral therapies where the viral replicases are extensively targeted. In the last two decades there has been a steady increase in the number of compounds that target the bacterial replisome. In particular a variety of inhibitors of the bacterial replicative polymerases PolC and DnaE have been described, with one of the DNA polymerase inhibitors entering clinical trials for the first time. In this review we will discuss past and current work on inhibition of DNA replication, and the potential of bacterial DNA polymerase inhibitors in particular as attractive targets for a new generation of antibiotics.
Collapse
|
6
|
The Boggarts of biology: how non-genetic changes influence the genotype. Curr Genet 2020; 67:65-77. [PMID: 33037901 DOI: 10.1007/s00294-020-01108-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023]
Abstract
The notion that there is a one-one mapping from genotype to phenotype was overturned a long time ago. Along with genotype and environment, 'non-genetic changes' orchestrated by altered RNA and protein molecules also guide the development of phenotype. The idea that there is a route through which changes in phenotype can lead to changes in genotype impinges on several phenomena of molecular, developmental, evolutionary and applied interest. Phenotypic changes that do not alter the underlying DNA sequence have been studied across model systems (eg: DNA and histone modifications, RNA editing, prion formation) and are known to play an important role in short-term adaptation. However, because of their transient nature and unstable inheritance, the role of such changes in long-term evolution has remained controversial. I classify and review three ways in which non-genetic changes can influence genotype and impact cellular fitness across generations, with an emphasis on the enticing idea that they may act as stepping stones for genetic adaptation. I focus on work from microbial systems and attempt to highlight recent experiments and models that bear on this idea. Overall, I review evidence which suggests that non-genetic changes can impact phenotype via their influence on the genotype, and thus play a role in evolutionary change.
Collapse
|
7
|
Xue CX, Zhang H, Lin HY, Sun Y, Luo D, Huang Y, Zhang XH, Luo H. Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages. Environ Microbiol 2020; 22:3234-3247. [PMID: 32390223 DOI: 10.1111/1462-2920.15065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Marine flavobacteria are specialists for polysaccharide degradation. They dominate in habitats enriched with polysaccharides, but are also prevalent in pelagic environments where polysaccharides are less available. These niches are likely occupied by distinct lineages, but evolutionary processes underlying their niche differentiation remain elusive. Here, genomic analyses and physiological assays indicate that the sister flavobacteria lineages Leeuwenhoekiella and Nonlabens likely explore polysaccharide-rich macroalgae and polysaccharide-poor pelagic niches respectively. Phylogenomic analyses inferred that the niche separation likely occurred anciently and coincided with increased sequence evolutionary rate in Nonlabens compared with Leeuwenhoekiella. Further analyses ruled out the known mechanisms likely driving evolutionary rate acceleration, including reduced selection efficiency, decreased generation time and increased mutation rate. In particular, the mutation rates were determined using an unbiased experimental method, which measures the present-day populations and may not reflect ancestral populations. These data collectively lead to a new hypothesis that an ancestral and transient mutation rate increase resulted in evolutionary rate increase in Nonlabens. This hypothesis was supported by inferring that gains and losses of genes involved in SOS response, a mechanism known to drive transiently increased mutation rate, coincided with evolutionary rate acceleration. Our analyses highlight the evolutionary mechanisms underlying niche differentiation of flavobacteria lineages.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - He-Yu Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Danli Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
8
|
Krakow EF, Gyurkocza B, Storer BE, Chauncey TR, McCune JS, Radich JP, Bouvier ME, Estey EH, Storb R, Maloney DG, Sandmaier BM. Phase I/II multisite trial of optimally dosed clofarabine and low-dose TBI for hematopoietic cell transplantation in acute myeloid leukemia. Am J Hematol 2020; 95:48-56. [PMID: 31637757 DOI: 10.1002/ajh.25665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/11/2022]
Abstract
Clofarabine is an immunosuppressive purine nucleoside analog that may have better anti-leukemic activity than fludarabine. We performed a prospective phase I/II multisite trial of clofarabine with 2 Gy total body irradiation as non-myeloablative conditioning for allogeneic hematopoietic cell transplantation in adults with acute myeloid leukemia who were unfit for more intense regimens. Our main objective was to improve the 6-month relapse rate following non-myeloablative conditioning, while maintaining historic rates of non-relapse mortality (NRM) and engraftment. Forty-four patients, 53 to 74 (median: 69) years, were treated with clofarabine at 150 to 250 mg/m2 , of whom 36 were treated at the maximum protocol-specified dose. One patient developed multifactorial acute kidney injury and another developed multiorgan failure, but no other grade 3 to 5 non-hematologic toxicities were observed. All patients fully engrafted. The 6-month relapse rate was 16% (95% CI, 5%-27%) among all patients and 14% (95% CI, 3%-26%) among high-risk patients treated at the maximum dose, meeting the pre-specified primary efficacy endpoint. Overall survival was 55% (95% CI, 40%-70%) and leukemia-free survival was 52% (95% CI, 37%-67%) at 2 years. Compared to a historical high-risk cohort treated with the combination of fludarabine at 90 mg/m2 and 2 Gy TBI, protocol patients treated with the clofarabine-TBI regimen had lower rates of overall mortality (HR of 0.50, 95% CI, 0.28-0.91), disease progression or death (HR 0.48, 95% CI, 0.27-0.85), and morphologic relapse (HR 0.30, 95% CI, 0.13-0.69), and comparable NRM (HR 0.85, 95% CI 0.36-2.00). The combination of clofarabine with TBI warrants further investigation in patients with high-risk AML.
Collapse
Affiliation(s)
- Elizabeth F. Krakow
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
- Department of MedicineUniversity of Washington Seattle Washington
| | - Boglarka Gyurkocza
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
| | - Barry E. Storer
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
| | - Thomas R. Chauncey
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
- Department of MedicineUniversity of Washington Seattle Washington
- Bone Marrow Transplant Unit, VA Puget Sound Health Care System Seattle Washington
| | - Jeannine S. McCune
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
- Department of PharmaceuticsUniversity of Washington Seattle Washington
| | - Jerald P. Radich
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
- Department of MedicineUniversity of Washington Seattle Washington
| | - Michelle E. Bouvier
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
| | - Elihu H. Estey
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
- Department of MedicineUniversity of Washington Seattle Washington
| | - Rainer Storb
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
- Department of MedicineUniversity of Washington Seattle Washington
| | - David G Maloney
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
- Department of MedicineUniversity of Washington Seattle Washington
| | - Brenda M. Sandmaier
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle Washington
- Department of MedicineUniversity of Washington Seattle Washington
| |
Collapse
|
9
|
Choi JS, Berdis A. Artificial Nucleosides as Diagnostic Probes to Measure Translesion DNA Synthesis. Methods Mol Biol 2019; 1973:237-249. [PMID: 31016706 DOI: 10.1007/978-1-4939-9216-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The misreplication of damaged DNA, a biological process termed translesion DNA synthesis (TLS), produces a large number of adverse effects on human health. This chapter describes the application of an artificial nucleoside/nucleotide system that functions as a biochemical probe to quantify TLS activity under in vitro and in vivo conditions. For in vitro studies, the artificial nucleotide, 3-ethynyl-5-nitroindolyl-2'-deoxyriboside triphosphate (3-Eth-5-NITP), is used as it is efficiently inserted opposite an abasic site, a highly pro-mutagenic DNA lesion produced by several types of DNA-damaging agents. The placement of the ethynyl moiety allows the incorporated nucleoside triphosphate to be selectively tagged with azide-containing fluorophores via "click" chemistry. This reaction provides a facile way to quantify the extent of nucleotide incorporation opposite this and other noninstructional DNA lesions. The corresponding nucleoside, 3-Eth-5-NIdR, can be used to monitor TLS activity in hematological and adherent cancer cells treated with compounds that produce noninstructional DNA lesions. As described above, visualizing the replication of these lesions is achieved using copper-catalyzed "click" chemistry to tag the ethynyl moiety present on the nucleotide with fluorogenic probes. This technique represents a new diagnostic approach to quantify TLS activity inside cells. In addition, the application of this "clickable" nucleoside provides a chemical probe to identify cells that become drug resistant by the facile replication of noninstructional DNA lesions produced by DNA-damaging agents.
Collapse
Affiliation(s)
- Jung-Suk Choi
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Anthony Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Silva E, Ideker T. Transcriptional responses to DNA damage. DNA Repair (Amst) 2019; 79:40-49. [PMID: 31102970 PMCID: PMC6570417 DOI: 10.1016/j.dnarep.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/20/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
In response to the threat of DNA damage, cells exhibit a dramatic and multi-factorial response spanning from transcriptional changes to protein modifications, collectively known as the DNA damage response (DDR). Here, we review the literature surrounding the transcriptional response to DNA damage. We review differences in observed transcriptional responses as a function of cell cycle stage and emphasize the importance of experimental design in these transcriptional response studies. We additionally consider topics including structural challenges in the transcriptional response to DNA damage as well as the connection between transcription and protein abundance.
Collapse
Affiliation(s)
- Erica Silva
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Biomedical Sciences Program, University of California San Diego, La Jolla, California, USA.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Biomedical Sciences Program, University of California San Diego, La Jolla, California, USA; Program in Bioinformatics, University of California San Diego, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
11
|
Lockwood S, Brayton KA, Daily JA, Broschat SL. Whole Proteome Clustering of 2,307 Proteobacterial Genomes Reveals Conserved Proteins and Significant Annotation Issues. Front Microbiol 2019; 10:383. [PMID: 30873148 PMCID: PMC6403173 DOI: 10.3389/fmicb.2019.00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/13/2019] [Indexed: 11/24/2022] Open
Abstract
We clustered 8.76 M protein sequences deduced from 2,307 completely sequenced Proteobacterial genomes resulting in 707,311 clusters of one or more sequences of which 224,442 ranged in size from 2 to 2,894 sequences. To our knowledge this is the first study of this scale. We were surprised to find that no single cluster contained a representative sequence from all the organisms in the study. Given the minimal genome concept, we expected to find a shared set of proteins. To determine why the clusters did not have universal representation we chose four essential proteins, the chaperonin GroEL, DNA dependent RNA polymerase subunits beta and beta′ (RpoB/RpoB′), and DNA polymerase I (PolA), representing fundamental cellular functions, and examined their cluster distribution. We found these proteins to be remarkably conserved with certain caveats. Although the groEL gene was universally conserved in all the organisms in the study, the protein was not represented in all the deduced proteomes. The genes for RpoB and RpoB′ were missing from two genomes and merged in 88, and the sequences were sufficiently divergent that they formed separate clusters for 18 RpoB proteins (seven clusters) and 14 RpoB′ proteins (three clusters). For PolA, 52 organisms lacked an identifiable sequence, and seven sequences were sufficiently divergent that they formed five separate clusters. Interestingly, organisms lacking an identifiable PolA and those with divergent RpoB/RpoB′ were predominantly endosymbionts. Furthermore, we present a range of examples of annotation issues that caused the deduced proteins to be incorrectly represented in the proteome. These annotation issues made our task of determining protein conservation more difficult than expected and also represent a significant obstacle for high-throughput analyses.
Collapse
Affiliation(s)
- Svetlana Lockwood
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
| | - Kelly A Brayton
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Jeff A Daily
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Shira L Broschat
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| |
Collapse
|
12
|
Multifork chromosome replication in slow-growing bacteria. Sci Rep 2017; 7:43836. [PMID: 28262767 PMCID: PMC5338351 DOI: 10.1038/srep43836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/30/2017] [Indexed: 01/20/2023] Open
Abstract
The growth rates of bacteria must be coordinated with major cell cycle events, including chromosome replication. When the doubling time (Td) is shorter than the duration of chromosome replication (C period), a new round of replication begins before the previous round terminates. Thus, newborn cells inherit partially duplicated chromosomes. This phenomenon, which is termed multifork replication, occurs among fast-growing bacteria such as Escherichia coli and Bacillus subtilis. In contrast, it was historically believed that slow-growing bacteria (including mycobacteria) do not reinitiate chromosome replication until the previous round has been completed. Here, we use single-cell time-lapse analyses to reveal that mycobacterial cell populations exhibit heterogeneity in their DNA replication dynamics. In addition to cells with non-overlapping replication rounds, we observed cells in which the next replication round was initiated before completion of the previous replication round. We speculate that this heterogeneity may reflect a relaxation of cell cycle checkpoints, possibly increasing the ability of slow-growing mycobacteria to adapt to environmental conditions.
Collapse
|
13
|
Sidorenko J, Jatsenko T, Kivisaar M. Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance. Mutat Res 2017; 797-799:26-37. [PMID: 28340408 DOI: 10.1016/j.mrfmmm.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Sublines of the major P. aeruginosa reference strain PAO1 are derivatives of the original PAO1 isolate, which are maintained in laboratories worldwide. These sublines display substantial genomic and phenotypic variation due to ongoing microevolution. Here, we examined four sublines, MPAO1, PAO1-L, PAO1-DSM and PAO1-UT, originated from different laboratories, and six DNA polymerase-deficient mutants from the P. aeruginosa MPAO1 transposon library for their employment in elucidation of DNA damage repair and tolerance mechanisms in P. aeruginosa. We found that PAO1 subline PAO1-UT carries a large deletion encompassing the DNA damage inducible imuA-imuB-imuC cassette (PA0669-PA0671), which is implied in mutagenesis in several species. Furthermore, the genetic changes leading to variation in the functionality of the MexEF-OprN efflux system contributed largely to the phenotypic discordance between P. aeruginosa PAO1 sublines. Specifically, we identified multiple mutations in the mexT gene, which encodes a transcriptional regulator of the mexEF-oprN genes, mutations in the mexF, and complete absence of these genes. Of the four tested sublines, MPAO1 was the only subline with the functional MexEF-OprN multidrug efflux system. Active efflux through MexEF-OprN rendered MPAO1 highly resistant to chloramphenicol and ciprofloxacin. Moreover, the functions of specialized DNA polymerase IV and nucleotide excision repair (NER) in 4-NQO-induced DNA damage tolerance appeared to be masked in MPAO1, while were easily detectable in other sublines. Finally, the frequencies of spontaneous and MMS-induced Rifr mutations were also significantly lower in MPAO1 in comparison to the PAO1 sublines with impaired MexEF-OprN efflux system. The MexEF-OprN-attributed differences were also observed between MPAO1 and MPAO1-derived transposon mutants from the two-allele transposon mutant collection. Thus, the accumulating mutations and discordant phenotypes of the PAO1 derivatives challenge the reproducibility and comparability of the results obtained with different PAO1 sublines and also limit the usage of the MPAO1 transposon library in DNA damage tolerance and mutagenesis studies.
Collapse
Affiliation(s)
- Julia Sidorenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia.
| | - Tatjana Jatsenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia.
| |
Collapse
|
14
|
Vasuvat J, Montree A, Moonsom S, Leartsakulpanich U, Petmitr S, Focher F, Wright GE, Chavalitshewinkoon-Petmitr P. Biochemical and functional characterization of Plasmodium falciparum DNA polymerase δ. Malar J 2016; 15:116. [PMID: 26911594 PMCID: PMC4766629 DOI: 10.1186/s12936-016-1166-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/11/2016] [Indexed: 12/05/2022] Open
Abstract
Background Emergence of drug-resistant Plasmodium falciparum has created an urgent need for new drug targets. DNA polymerase δ is an essential enzyme required for chromosomal DNA replication and repair, and therefore may be a potential target for anti-malarial drug development. However, little is known of the characteristics and function of this P. falciparum enzyme. Methods The coding sequences of DNA polymerase δ catalytic subunit (PfPolδ-cat), DNA polymerase δ small subunit (PfPolδS) and proliferating cell nuclear antigen (PfPCNA) from chloroquine- and pyrimethamine-resistant P. falciparum strain K1 were amplified, cloned into an expression vector and expressed in Escherichia coli. The recombinant proteins were analysed by SDS-PAGE and identified by LC–MS/MS. PfPolδ-cat was biochemically characterized. The roles of PfPolδS and PfPCNA in PfPolδ-cat function were investigated. In addition, inhibitory effects of 11 compounds were tested on PfPolδ-cat activity and on in vitro parasite growth using SYBR Green I assay. Results The purified recombinant protein PfPolδ-cat, PfPolδS and PfPCNA showed on SDS-PAGE the expected size of 143, 57 and 34 kDa, respectively. Predicted amino acid sequence of the PfPolδ-cat and PfPolδS had 59.2 and 24.7 % similarity respectively to that of the human counterpart. The PfPolδ-cat possessed both DNA polymerase and 3′–5′ exonuclease activities. It used both Mg2+ and Mn2+ as cofactors and was inhibited by high KCl salt (>200 mM). PfPolδS stimulated PfPolδ-cat activity threefolds and up to fourfolds when PfPCNA was included in the assay. Only two compounds were potent inhibitors of PfPolδ-cat, namely, butylphenyl-dGTP (BuPdGTP; IC50 of 38 µM) and 7-acetoxypentyl-(3, 4 dichlorobenzyl) guanine (7-acetoxypentyl-DCBG; IC50 of 55 µM). The latter compound showed higher inhibition on parasite growth (IC50 of 4.1 µM). Conclusions Recombinant PfPolδ-cat, PfPolδS and PfPCNA were successfully expressed and purified. PfPolS and PfPCNA increased DNA polymerase activity of PfPolδ-cat. The high sensitivity of PfPolδ to BuPdGTP can be used to differentiate parasite enzyme from mammalian and human counterparts. Interestingly, 7-acetoxypentyl-DCBG showed inhibitory effects on both enzyme activity and parasite growth. Thus, 7-acetoxypentyl-DCBG is a potential candidate for future development of a new class of anti-malarial agents targeting parasite replicative DNA polymerase.
Collapse
Affiliation(s)
- Jitlada Vasuvat
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Atcha Montree
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Sangduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Ubolsree Leartsakulpanich
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pahonyothin Rd, Pathumthani, 12120, Thailand.
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | | | - George E Wright
- GLSynthesis Inc., One Innovation Drive, Worcester, MA, 01605, USA.
| | | |
Collapse
|
15
|
Gu S, Li W, Zhang H, Fleming J, Yang W, Wang S, Wei W, Zhou J, Zhu G, Deng J, Hou J, Zhou Y, Lin S, Zhang XE, Bi L. The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity. Sci Rep 2016; 6:18418. [PMID: 26822057 PMCID: PMC4731781 DOI: 10.1038/srep18418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relationships between its key components. We verify the presence of an αβ2ε polymerase-clamp-exonuclease replicase complex by biochemical methods and protein-protein interaction assays in vitro and in vivo and confirm that, in addition to the polymerase activity of its α subunit, Mtb DNA pol III has two potential proofreading subunits; the α and ε subunits. During DNA replication, the presence of the β2 clamp strongly promotes the polymerization of the αβ2ε replicase and reduces its exonuclease activity. Our work provides a foundation for further research on the mechanism by which the replication machinery switches between replication and proofreading and provides an experimental platform for the selection of antimicrobials targeting DNA replication in Mtb.
Collapse
Affiliation(s)
- Shoujin Gu
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Li
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Joy Fleming
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqiang Yang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Wei
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhou
- The Fourth People's Hospital, Foshan 528000, China
| | - Guofeng Zhu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian Hou
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zhou
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiqiang Lin
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-En Zhang
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Bi
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Kumar A, Beloglazova N, Bundalovic-Torma C, Phanse S, Deineko V, Gagarinova A, Musso G, Vlasblom J, Lemak S, Hooshyar M, Minic Z, Wagih O, Mosca R, Aloy P, Golshani A, Parkinson J, Emili A, Yakunin AF, Babu M. Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome Integrity Pathways in Escherichia coli. Cell Rep 2016; 14:648-661. [PMID: 26774489 DOI: 10.1016/j.celrep.2015.12.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/08/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022] Open
Abstract
As antibiotic resistance is increasingly becoming a public health concern, an improved understanding of the bacterial DNA damage response (DDR), which is commonly targeted by antibiotics, could be of tremendous therapeutic value. Although the genetic components of the bacterial DDR have been studied extensively in isolation, how the underlying biological pathways interact functionally remains unclear. Here, we address this by performing systematic, unbiased, quantitative synthetic genetic interaction (GI) screens and uncover widespread changes in the GI network of the entire genomic integrity apparatus of Escherichia coli under standard and DNA-damaging growth conditions. The GI patterns of untreated cultures implicated two previously uncharacterized proteins (YhbQ and YqgF) as nucleases, whereas reorganization of the GI network after DNA damage revealed DDR roles for both annotated and uncharacterized genes. Analyses of pan-bacterial conservation patterns suggest that DDR mechanisms and functional relationships are near universal, highlighting a modular and highly adaptive genomic stress response.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Computer Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Natalia Beloglazova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Cedoljub Bundalovic-Torma
- Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G OX4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sadhna Phanse
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Viktor Deineko
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Alla Gagarinova
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Gabriel Musso
- Department of Medicine, Harvard Medical School and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - James Vlasblom
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zoran Minic
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar Wagih
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Roberto Mosca
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, Barcelona, 08028, Catalonia, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, Barcelona, 08028, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - John Parkinson
- Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G OX4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew Emili
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
17
|
Montaldi AP, Godoy PRDV, Sakamoto-Hojo ET. APE1/REF-1 down-regulation enhances the cytotoxic effects of temozolomide in a resistant glioblastoma cell line. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:19-29. [PMID: 26520369 DOI: 10.1016/j.mrgentox.2015.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/25/2023]
Abstract
Temozolomide (TMZ) is widely used for patients with glioblastoma (GBM); however, tumor cells frequently exhibit drug-resistance. Base excision repair (BER) has been identified as a possible mediator of TMZ resistance, and an attractive approach to sensitizing cells to chemotherapy. Human apurinic/apyrimidinic endonuclease/redox factor-1 (APE1) is an essential enzyme with a role in the BER pathway by repairing abasic sites, and it also acts as a reduction factor, maintaining transcription factors in an active reduced state. Thus, we aimed to investigate whether the down-regulation of APE1 expression by siRNA can interfere with the resistance of GBM to TMZ, being evaluated by several cellular and molecular parameters. We demonstrated that APE1 knockdown associated with TMZ treatment efficiently reduced cell proliferation and clonogenic survival of resistant cells (T98G), which appears to be a consequence of increased DNA damage, S-phase arrest, and H2AX phosphorylation, resulting in apoptosis induction. On the contrary, for those assays, the sensitization effects of APE1 silencing plus TMZ treatment did not occur in the TMZ-sensitive cell line (U87MG). Interestingly, TMZ-treatment and APE1 knockdown significantly reduced cell invasion in both cell lines, but TMZ alone did not reduce the invasion capacity of U87MG cells, as observed for T98G. We also found that VEGF expression was down-regulated by TMZ treatment in T98G cells, regardless of APE1 knockdown, but U87MG showed a different response, since APE1 silencing counteracted VEGF induction promoted by TMZ, suggesting that the APE1-redox function may play an indirect role, depending on the cell line. The present results support the contribution of BER in the GBM resistance to TMZ, with a greater effect in TMZ-resistant, compared with TMZ-sensitive cells, emphasizing that APE1 can be a promising target for modifying TMZ tolerance. Furthermore, genetic characteristics of tumor cells should be considered as critical information to select an appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Ana P Montaldi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil
| | - Paulo R D V Godoy
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil.
| |
Collapse
|
18
|
Choi JS, Berdis AJ. Visualizing nucleic acid metabolism using non-natural nucleosides and nucleotide analogs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:165-76. [PMID: 26004088 DOI: 10.1016/j.bbapap.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Nucleosides and their corresponding mono-, di-, and triphosphates play important roles in maintaining cellular homeostasis. In addition, perturbations in this homeostasis can result in dysfunctional cellular processes that cause pathological conditions such as cancer and autoimmune diseases. This review article discusses contemporary research areas applying nucleoside analogs to probe the mechanistic details underlying the complexities of nucleoside metabolism at the molecular and cellular levels. The first area describes classic and contemporary approaches used to quantify the activity of nucleoside transporters, an important class of membrane proteins that mediate the influx and efflux of nucleosides and nucleobases. A focal point of this section is describing how biophotonic nucleosides are replacing conventional assays employing radiolabeled substrates to study the mechanism of these proteins. The second section describes approaches to understand the utilization of nucleoside triphosphates by cellular DNA polymerases during DNA synthesis. Emphasis here is placed on describing how novel nucleoside analogs such as 5-ethynyl-2'-deoxyuridine are being used to quantify DNA synthesis during normal replication as well as during the replication of damaged DNA. In both sections, seminal research articles relevant to these areas are described to highlight how these novel probes are improving our understanding of these biological processes. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Jung-Suk Choi
- Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; The Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA
| | - Anthony J Berdis
- Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; The Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, 11000 Euclid Avenue, Cleveland, OH 44106, USA; Red5 Pharmaceuticals, LLC, 10000 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
19
|
Chen H, Li X, Li W, Zheng H. miR-130a can predict response to temozolomide in patients with glioblastoma multiforme, independently of O6-methylguanine-DNA methyltransferase. J Transl Med 2015; 13:69. [PMID: 25890369 PMCID: PMC4345002 DOI: 10.1186/s12967-015-0435-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/11/2015] [Indexed: 11/18/2022] Open
Abstract
Background Currently, O6-methylguanine-DNA methyltransferase(MGMT) promoter methylation is the most convincing predictive biomarker for temozolomide (TMZ) response in patients with glioblastoma multiforme (GBM). However, technical obstacles prevent this biomarker from being applied widely. On the other hand, microRNAs (miRNAs) are easily investigated in the clinical setting using quantitative real-time polymerase chain reactions. This study aimed to identify miRNAs that could serve as predictive biomarkers for TMZ response. Methods The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were used to investigate the significance of associations between miRNA expression and overall survival (OS) in TMZ-treated patients with GBM. Cytotoxicity assays were used to validate the miRNAs’ roles in the response of glioma cells to TMZ. Biological insights concerning the miRNAs were explored using gene set enrichment analysis (GSEA) and gene ontology (GO) analysis. Results miR-130a was found to be significantly associated with OS in TMZ-treated patients from TCGA and the CGGA. In contrast, miR-130a appeared to be unassociated with OS in patients who only received radiotherapy. The TMZ cytotoxicity assay showed that miR-130a over-expression could sensitize response to TMZ in glioma cells. GSEA and GO analysis indicated that lower miR-130a could generate a more extensive response to oxidative stress, which in turn could elevate Ape1 and mediate resistance to TMZ. In vitro experiment verified that cells with lower miR-130a express higher Ape1 under oxidative stress. Conclusions Our data suggested that miR-130a could be a predictive marker for TMZ response in patients with GBM, independently of the mechanism by which MGMT acts as a biomarker. miR-130a could serve as a guide for treatment strategy selection in cases of GBM.
Collapse
Affiliation(s)
- Huiyuan Chen
- Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Xinyi Li
- University of South Florida, Tampa, FL, 33612, USA.
| | - Wenbin Li
- Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Huyong Zheng
- Hematology Oncology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
20
|
Identification of novel DNA-damage tolerance genes reveals regulation of translesion DNA synthesis by nucleophosmin. Nat Commun 2014; 5:5437. [PMID: 25421715 PMCID: PMC4263322 DOI: 10.1038/ncomms6437] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/01/2014] [Indexed: 01/13/2023] Open
Abstract
Cells cope with replication-blocking lesions via translesion DNA synthesis (TLS). TLS is carried out by low-fidelity DNA polymerases that replicate across lesions, thereby preventing genome instability at the cost of increased point mutations. Here we perform a two-stage siRNA-based functional screen for mammalian TLS genes and identify 17 validated TLS genes. One of the genes, NPM1, is frequently mutated in acute myeloid leukaemia (AML). We show that NPM1 (nucleophosmin) regulates TLS via interaction with the catalytic core of DNA polymerase-η (polη), and that NPM1 deficiency causes a TLS defect due to proteasomal degradation of polη. Moreover, the prevalent NPM1c+ mutation that causes NPM1 mislocalization in ~30% of AML patients results in excessive degradation of polη. These results establish the role of NPM1 as a key TLS regulator, and suggest a mechanism for the better prognosis of AML patients carrying mutations in NPM1. Cells cope with replication-blocking DNA lesions by translesion DNA synthesis (TLS) polymerases, including polη. Here, the authors show that NPM1, a gene frequently mutated in acute myeloid leukaemia, protects polη from proteasomal degradation, and that NPM1 deficiency causes a TLS defect.
Collapse
|
21
|
Chaib-Mezrag H, Lemaçon D, Fontaine H, Bellon M, Bai XT, Drac M, Coquelle A, Nicot C. Tax impairs DNA replication forks and increases DNA breaks in specific oncogenic genome regions. Mol Cancer 2014; 13:205. [PMID: 25185513 PMCID: PMC4168069 DOI: 10.1186/1476-4598-13-205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/26/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus associated with adult T-cell leukemia (ATL), an aggressive CD4 T-cell proliferative disease with dismal prognosis. The long latency preceding the development of the disease and the low incidence suggests that the virus itself is not sufficient for transformation and that genetic defects are required to create a permissive environment for leukemia. In fact, ATL cells are characterized by profound genetic modifications including structural and numerical chromosome alterations. RESULTS In this study we used molecular combing techniques to study the effect of the oncoprotein Tax on DNA replication. We found that replication forks have difficulties replicating complex DNA, fork progression is slower, and they pause or stall more frequently in the presence of Tax expression. Our results also show that Tax-associated replication defects are partially compensated by an increase in the firing of back-up origins. Consistent with these effects of Tax on DNA replication, an increase in double strand DNA breaks (DDSB) was seen in Tax expressing cells. Tax-mediated increases in DDSBs were associated with the ability of Tax to activate NF-kB and to stimulate intracellular nitric oxide production. We also demonstrated a reduced expression of human translesion synthesis (TLS) DNA polymerases Pol-H and Pol-K in HTLV-I-transformed T cells and ATL cells. This was associated with an increase in DNA breaks induced by Tax at specific genome regions, such as the c-Myc and the Bcl-2 major breakpoints. Consistent with the notion that the non-homologous end joining (NHEJ) pathway is hyperactive in HTLV-I-transformed cells, we found that inhibition of the NHEJ pathway induces significant killing of HTLV-I transformed cells and patient-derived leukemic ATL cells. CONCLUSION Our results suggest that, replication problems increase genetic instability in HTLV-I-transformed cells. As a result, abuse of NHEJ and a defective homologous repair (HR) DNA repair pathway can be targeted as a new therapeutic approach for the treatment of adult T-cell leukemia.
Collapse
Affiliation(s)
- Hassiba Chaib-Mezrag
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Delphine Lemaçon
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Hélène Fontaine
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Marcia Bellon
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Xue Tao Bai
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Marjorie Drac
- />DNA Combing Facility, Institut de Génétique Moléculaire, CNRS UMR5535 & BioCampus Montpellier (UMS3426), 1919 route de Mende, Montpellier cedex 5, 34293 France
| | - Arnaud Coquelle
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Christophe Nicot
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| |
Collapse
|
22
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
23
|
Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair. EMBO J 2013; 32:1334-43. [PMID: 23549287 PMCID: PMC3642679 DOI: 10.1038/emboj.2013.68] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/27/2013] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ε that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III-clamp-exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis.
Collapse
|
24
|
RecA acts as a switch to regulate polymerase occupancy in a moving replication fork. Proc Natl Acad Sci U S A 2013; 110:5410-5. [PMID: 23509251 DOI: 10.1073/pnas.1303301110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report discovers a role of Escherichia coli RecA, the cellular recombinase, in directing the action of several DNA polymerases at the replication fork. Bulk chromosome replication is performed by DNA polymerase (Pol) III. However, E. coli contains translesion synthesis (TLS) Pols II, IV, and V that also function with the helicase, primase, and sliding clamp in the replisome. Surprisingly, we find that RecA specifically activates replisomes that contain TLS Pols. In sharp contrast, RecA severely inhibits the Pol III replisome. Given the opposite effects of RecA on Pol III and TLS replisomes, we propose that RecA acts as a switch to regulate the occupancy of polymerases within a moving replisome.
Collapse
|
25
|
Magdanova LA, Golyasnaya NV. Heterogeneity as an adaptive trait of microbial populations. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713010074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
26
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
27
|
Zheng Y, Sheng S, Wang H, Jia X, Hu Y, Qian Y, Zhu Y, Wang J. Identification of Pold2 as a novel interaction partner of protein inhibitor of activated STAT2. Int J Mol Med 2012; 30:884-8. [PMID: 22824807 DOI: 10.3892/ijmm.2012.1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022] Open
Abstract
Pold2 is a subunit of the DNA polymerase δ complex, encoding a protein involved in DNA replication and repair. In this study, using a yeast two-hybrid screening technique and the common cDNA fragment of the mouse PIAS2 as a bait, Pold2 was found to interact with PIAS2. A direct interaction between Pold2 and PIAS2 was confirmed by direct yeast two-hybrid. In vivo evidence of Pold2 association with PIAS2 was obtained by co-immunoprecipitation using HEK-293 cells. Subcellular localization studies demonstrated that Pold2 and PIAS2 were partially co-localized in mammalian cells. Collectively, our results suggest that Pold2 interacts under physiological conditions with PIAS2.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Silva MC, Nevin P, Ronayne EA, Beuning PJ. Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res 2012; 40:5511-22. [PMID: 22406830 PMCID: PMC3384344 DOI: 10.1093/nar/gks229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA polymerase III (DNA pol III) efficiently replicates the Escherichia coli genome, but it cannot bypass DNA damage. Instead, translesion synthesis (TLS) DNA polymerases are employed to replicate past damaged DNA; however, the exchange of replicative for TLS polymerases is not understood. The umuD gene products, which are up-regulated during the SOS response, were previously shown to bind to the α, β and ε subunits of DNA pol III. Full-length UmuD inhibits DNA replication and prevents mutagenic TLS, while the cleaved form UmuD' facilitates mutagenesis. We show that α possesses two UmuD binding sites: at the N-terminus (residues 1-280) and the C-terminus (residues 956-975). The C-terminal site favors UmuD over UmuD'. We also find that UmuD, but not UmuD', disrupts the α-β complex. We propose that the interaction between α and UmuD contributes to the transition between replicative and TLS polymerases by removing α from the β clamp.
Collapse
Affiliation(s)
- Michelle C Silva
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
29
|
Cheng DW, Calderón-Urrea A. Nontemplate polymerization of free nucleotides into genetic elements by thermophilic DNA polymerase in vitro. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:979-90. [PMID: 22060559 DOI: 10.1080/15257770.2011.628637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
DNA synthesis is the cornerstone of all life forms and is required to replicate and restore the genetic information. Usually, DNA synthesis is carried out only by DNA polymerases semiconservatively to copy preexisting DNA templates. We report here that DNA strands were synthesized ab initio in the absence of any DNA or RNA template by thermophilic DNA polymerases at (a) a constant high temperature (74°C), (b) alternating temperatures (94°C/60°C/74°C), or (c) physiological temperatures (37°C). The majority of the ab initio synthesized DNA represented short sequence blocks, repeated sequences, intergenic spacers, and other unknown genetic elements. These results suggest that novel DNA elements could be synthesized in the absence of a nucleic acid template by thermophilic DNA polymerases in vitro. Biogenesis of genetic information by thermophilic DNA polymerase-mediated nontemplate DNA synthesis may explain the origin of genetic information and could serve as a new way of biosynthesis of genetic information that may have facilitated the evolution of life.
Collapse
Affiliation(s)
- Davis W Cheng
- Department of Biology, Research Infrastructure for Minority Institutions, California State University, Fresno, California 93740, USA.
| | | |
Collapse
|
30
|
Sidorenko J, Jatsenko T, Saumaa S, Teras R, Tark-Dame M, Hõrak R, Kivisaar M. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida. Mutat Res 2011; 714:63-77. [PMID: 21763330 DOI: 10.1016/j.mrfmmm.2011.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/15/2011] [Accepted: 06/28/2011] [Indexed: 05/31/2023]
Abstract
The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif(r) mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.
Collapse
Affiliation(s)
- Julia Sidorenko
- Department of Genetics, Tartu University and Estonian Biocentre, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
31
|
de Groote FH, Jansen JG, Masuda Y, Shah DM, Kamiya K, de Wind N, Siegal G. The Rev1 translesion synthesis polymerase has multiple distinct DNA binding modes. DNA Repair (Amst) 2011; 10:915-25. [PMID: 21752727 DOI: 10.1016/j.dnarep.2011.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/25/2011] [Accepted: 04/27/2011] [Indexed: 11/17/2022]
Abstract
Rev1 is a eukaryotic DNA polymerase of the Y family involved in translesion synthesis (TLS), a major damage tolerance pathway that allows DNA replication at damaged templates. Uniquely amongst the Y family polymerases, the N-terminal part of Rev1, dubbed the BRCA1 C-terminal homology (BRCT) region, includes a BRCT domain. While most BRCT domains mediate protein-protein interactions, Rev1 contains a predicted α-helix N-terminal to the BRCT domain and in human Replication Factor C (RFC) such a BRCT region endows the protein with DNA binding capacity. Here, we studied the DNA binding properties of yeast and mouse Rev1. Our results show that the BRCT region of Rev1 specifically binds to a 5' phosphorylated, recessed, primer-template junction. This DNA binding depends on the extra α-helix, N-terminal to the BRCT domain. Surprisingly, a stretch of 20 amino acids N-terminal to the predicted α-helix is also critical for high-affinity DNA binding. In addition to 5' primer-template junction binding, Rev1 efficiently binds to a recessed 3' primer-template junction. These dual DNA binding characteristics are discussed in view of the proposed recruitment of Rev1 by 5' primer-template junctions, downstream of stalled replication forks.
Collapse
Affiliation(s)
- Frederik H de Groote
- Department of Protein Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratory, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Discrimination against the Cytosine Analog tC by Escherichia coli DNA Polymerase IV DinB. J Mol Biol 2011; 409:89-100. [DOI: 10.1016/j.jmb.2011.03.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/27/2011] [Accepted: 03/30/2011] [Indexed: 01/30/2023]
|
33
|
Yuan B, Wang J, Cao H, Sun R, Wang Y. High-throughput analysis of the mutagenic and cytotoxic properties of DNA lesions by next-generation sequencing. Nucleic Acids Res 2011; 39:5945-54. [PMID: 21470959 PMCID: PMC3152323 DOI: 10.1093/nar/gkr159] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human cells are constantly exposed to environmental and endogenous agents which can induce damage to DNA. Understanding the implications of these DNA modifications in the etiology of human diseases requires the examination about how these DNA lesions block DNA replication and induce mutations in cells. All previously reported shuttle vector-based methods for investigating the cytotoxic and mutagenic properties of DNA lesions in cells have low-throughput, where plasmids containing individual lesions are transfected into cells one lesion at a time and the products from the replication of individual lesions are analyzed separately. The advent of next-generation sequencing (NGS) technology has facilitated investigators to design scientific approaches that were previously not technically feasible or affordable. In this study, we developed a new method employing NGS, together with shuttle vector technology, to have a multiplexed and quantitative assessment of how DNA lesions perturb the efficiency and accuracy of DNA replication in cells. By using this method, we examined the replication of four carboxymethylated DNA lesions and two oxidatively induced bulky DNA lesions including (5′S) diastereomers of 8,5′-cyclo-2′-deoxyguanosine (cyclo-dG) and 8,5′-cyclo-2′-deoxyadenosine (cyclo-dA) in five different strains of Escherichia coli cells. We further validated the results obtained from NGS using previously established methods. Taken together, the newly developed method provided a high-throughput and readily affordable method for assessing quantitatively how DNA lesions compromise the efficiency and fidelity of DNA replication in cells.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | | | | | | | |
Collapse
|
34
|
Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010; 2010:179594. [PMID: 20981145 PMCID: PMC2957137 DOI: 10.4061/2010/179594] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Foti JJ, Delucia AM, Joyce CM, Walker GC. UmuD(2) inhibits a non-covalent step during DinB-mediated template slippage on homopolymeric nucleotide runs. J Biol Chem 2010; 285:23086-95. [PMID: 20467052 DOI: 10.1074/jbc.m110.115774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli DinB (DNA polymerase IV) possesses an enzyme architecture resulting in specialized lesion bypass function and the potential for creating -1 frameshifts in homopolymeric nucleotide runs. We have previously shown that the mutagenic potential of DinB is regulated by the DNA damage response protein UmuD(2). In the current study, we employ a pre-steady-state fluorescence approach to gain a mechanistic understanding of DinB regulation by UmuD(2). Our results suggest that DinB, like its mammalian and archaeal orthologs, uses a template slippage mechanism to create single base deletions on homopolymeric runs. With 2-aminopurine as a fluorescent reporter in the DNA substrate, the template slippage reaction results in a prechemistry fluorescence change that is inhibited by UmuD(2). We propose a model in which DNA templates containing homopolymeric nucleotide runs, when bound to DinB, are in an equilibrium between non-slipped and slipped conformations. UmuD(2), when bound to DinB, displaces the equilibrium in favor of the non-slipped conformation, thereby preventing frameshifting and potentially enhancing DinB activity on non-slipped substrates.
Collapse
Affiliation(s)
- James J Foti
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
36
|
Yuan B, Jiang Y, Wang Y, Wang Y. Efficient formation of the tandem thymine glycol/8-oxo-7,8-dihydroguanine lesion in isolated DNA and the mutagenic and cytotoxic properties of the tandem lesions in Escherichia coli cells. Chem Res Toxicol 2010; 23:11-9. [PMID: 20014805 DOI: 10.1021/tx9004264] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species can induce the formation of not only single-nucleobase lesions, which have been extensively studied, but also tandem lesions. Herein, we report a high frequency of formation of a type of tandem lesion, where two commonly observed oxidatively induced single-nucleobase lesions, that is, thymidine glycol (Tg) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), are vicinal to each other in calf thymus DNA upon exposure to Cu(II)/ascorbate along with H(2)O(2) or gamma-rays. We further explored how the tandem lesions perturb the efficiency and fidelity of DNA replication by assessing the replication products formed from the propagation, in Escherichia coli cells, of the single-stranded pYMV1 shuttle vectors containing two tandem lesions [5'-(8-oxodG)-Tg-3' and 5'-Tg-(8-oxodG)-3'] or an isolated Tg or 8-oxodG. The bypass efficiencies for the two tandem lesions were approximately one-half of those for the two isolated single-nucleobase lesions. The presence of an adjacent Tg could lead to significant increases in G-->T transversion at the 8-oxodG site as compared to that of a single 8-oxodG lesion; the frequencies of G-->T mutation were approximately 18, 32, and 28% for 8-oxodG that is isolated, in 5'-(8-oxodG)-Tg-3' and in 5'-Tg-(8-oxodG)-3', respectively. Moreover, both pol IV and pol V are involved, in part, in bypassing the Tg, either present alone or as part of the tandem lesions, in E. coli cells. Together, our results support that complex lesions could exert greater cytotoxic and mutagenic effects than when the composing individual lesions are present alone.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry and, Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
37
|
Fang J, Rand KD, Silva MC, Wales TE, Engen JR, Beuning PJ. Conformational dynamics of the Escherichia coli DNA polymerase manager proteins UmuD and UmuD'. J Mol Biol 2010; 398:40-53. [PMID: 20206636 DOI: 10.1016/j.jmb.2010.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/24/2023]
Abstract
The expression of Escherichia coli umuD gene products is upregulated as part of the SOS response to DNA damage. UmuD is initially produced as a 139-amino-acid protein, which subsequently cleaves off its N-terminal 24 amino acids in a reaction dependent on RecA/single-stranded DNA, giving UmuD'. The two forms of the umuD gene products play different roles in the cell. UmuD is implicated in a primitive DNA damage checkpoint and prevents DNA polymerase IV-dependent -1 frameshift mutagenesis, while the cleaved form facilitates UmuC-dependent mutagenesis via formation of DNA polymerase V (UmuD'(2)C). Thus, the cleavage of UmuD is a crucial switch that regulates replication and mutagenesis via numerous protein-protein interactions. A UmuD variant, UmuD3A, which is noncleavable but is a partial biological mimic of the cleaved form UmuD', has been identified. We used hydrogen-deuterium exchange mass spectrometry (HXMS) to probe the conformations of UmuD, UmuD', and UmuD3A. In HXMS experiments, backbone amide hydrogens that are solvent accessible or not involved in hydrogen bonding become labeled with deuterium over time. Our HXMS results reveal that the N-terminal arm of UmuD, which is truncated in the cleaved form UmuD', is dynamic. Residues that are likely to contact the N-terminal arm show more deuterium exchange in UmuD' and UmuD3A than in UmuD. These observations suggest that noncleavable UmuD3A mimics the cleaved form UmuD' because, in both cases, the arms are relatively unbound from the globular domain. Gas-phase hydrogen exchange experiments, which specifically probe the exchange of side-chain hydrogens and are carried out on shorter timescales than solution experiments, show that UmuD' incorporates more deuterium than either UmuD or UmuD3A. This work indicates that these three forms of the UmuD gene products are highly flexible, which is of critical importance for their many protein interactions.
Collapse
Affiliation(s)
- Jing Fang
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase. Proc Natl Acad Sci U S A 2009; 106:21137-42. [PMID: 19948952 DOI: 10.1073/pnas.0907257106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The only Y-family DNA polymerase conserved among all domains of life, DinB and its mammalian ortholog pol kappa, catalyzes proficient bypass of damaged DNA in translesion synthesis (TLS). Y-family DNA polymerases, including DinB, have been implicated in diverse biological phenomena ranging from adaptive mutagenesis in bacteria to several human cancers. Complete TLS requires dNTP insertion opposite a replication blocking lesion and subsequent extension with several dNTP additions. Here we report remarkably proficient TLS extension by DinB from Escherichia coli. We also describe a TLS DNA polymerase variant generated by mutation of an evolutionarily conserved tyrosine (Y79). This mutant DinB protein is capable of catalyzing dNTP insertion opposite a replication-blocking lesion, but cannot complete TLS, stalling three nucleotides after an N(2)-dG adduct. Strikingly, expression of this variant transforms a bacteriostatic DNA damaging agent into a bactericidal drug, resulting in profound toxicity even in a dinB(+) background. We find that this phenomenon is not exclusively due to a futile cycle of abortive TLS followed by exonucleolytic reversal. Rather, gene products with roles in cell death and metal homeostasis modulate the toxicity of DinB(Y79L) expression. Together, these results indicate that DinB is specialized to perform remarkably proficient insertion and extension on damaged DNA, and also expose unexpected connections between TLS and cell fate.
Collapse
|
40
|
Petrov VM, Ratnayaka S, Karam JD. Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages. J Mol Biol 2009; 395:457-74. [PMID: 19896487 DOI: 10.1016/j.jmb.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/21/2009] [Accepted: 10/27/2009] [Indexed: 11/24/2022]
Abstract
In Escherichia coli phage T4 and many of its phylogenetic relatives, gene 43 consists of a single cistron that encodes a PolB family (PolB-type) DNA polymerase. We describe the divergence of this phage gene and its protein product (gp43) (gene product 43) among 26 phylogenetic relatives of T4 and discuss our observations in the context of diversity among the widely distributed PolB enzymes in nature. In two T4 relatives that grow in Aeromonas salmonicida phages 44RR and 25, gene 43 is fragmented by different combinations of three distinct types of DNA insertion elements: (a) a short intercistronic untranslated sequence (IC-UTS) that splits the polymerase gene into two cistrons, 43A and 43B, corresponding to N-terminal (gp43A) and C-terminal (gp43B) protein products; (b) a freestanding homing endonuclease gene (HEG) inserted between the IC-UTS and the 43B cistron; and (c) a group I intron in the 43B cistron. Phage 25 has all three elements, whereas phage 44RR has only the IC-UTS. We present evidence that (a) the split gene of phage 44RR encodes a split DNA polymerase consisting of a complex between gp43A and gp43B subunits; (b) the putative HEG encodes a double-stranded DNA endonuclease that specifically cleaves intron-free homologues of the intron-bearing 43B site; and (c) the group I intron is a self-splicing RNA. Our results suggest that some freestanding HEGs can mediate the homing of introns that do not encode their own homing enzymes. The results also suggest that different insertion elements can converge on a polB gene and evolve into a single integrated system for lateral transfer of polB genetic material. We discuss the possible pathways for the importation of such insertion elements into the genomes of T4-related phages.
Collapse
Affiliation(s)
- Vasiliy M Petrov
- Department of Biochemistry SL43, School of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
41
|
Kivisaar M. Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Mol Microbiol 2009; 74:777-81. [PMID: 19818019 DOI: 10.1111/j.1365-2958.2009.06905.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although many nitroaromatic compounds have been in nature for only a few decades, bacteria have already evolved the ability to metabolize them. Both horizontal transfer of genes and mutagenesis induced under stressful conditions might facilitate evolution of new catabolic pathways. Nitrotoluene degradation pathways are supposedly derived from an ancestral naphthalene degradation pathway. The 2-nitrotoluene degradation genes in Acidovorax sp. strain JS42 are controlled by the transcriptional activator NtdR, which differs from NagR, the activator of the naphthalene degradation operon in Ralstonia sp. strain U2, by only five amino acids. Both regulators respond to salicylate, an intermediate of naphthalene degradation, but NtdR also recognizes a wide range of nitroaromatic compounds. In this issue of Molecular Microbiology, Ju et al. present results of site-directed mutagenesis of NtdR and NagR and show how the nitrotoluene-responsive regulator NtdR can be generated from a NagR-like ancestor by only a few mutations. The reconstructed hypothetical pathway for the evolution of NtdR from NagR demonstrates stepwise broadening of the effector range of the evolving protein without loss of the original activity. These results provide strong evidence for the idea that promiscuity of proteins is an important step in the evolution of new functions.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia.
| |
Collapse
|
42
|
Heltzel J, Scouten Ponticelli SK, Sanders LH, Duzen JM, Cody V, Pace J, Snell E, Sutton MD. Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli. J Mol Biol 2009; 387:74-91. [PMID: 19361435 PMCID: PMC2670953 DOI: 10.1016/j.jmb.2009.01.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 01/20/2009] [Indexed: 11/29/2022]
Abstract
Sliding clamp proteins topologically encircle DNA and play vital roles in coordinating the actions of various DNA replication, repair, and damage tolerance proteins. At least three distinct surfaces of the Escherichia coli beta clamp interact physically with the DNA that it topologically encircles. We utilized mutant beta clamp proteins bearing G66E and G174A substitutions (beta159), affecting the single-stranded DNA-binding region, or poly-Ala substitutions in place of residues 148-HQDVR-152 (beta(148-152)), affecting the double-stranded DNA binding region, to determine the biological relevance of clamp-DNA interactions. As part of this work, we solved the X-ray crystal structure of beta(148-152), which verified that the poly-Ala substitutions failed to significantly alter the tertiary structure of the clamp. Based on functional assays, both beta159 and beta(148-152) were impaired for loading and retention on a linear primed DNA in vitro. In the case of beta(148-152), this defect was not due to altered interactions with the DnaX clamp loader, but rather was the result of impaired beta(148-152)-DNA interactions. Once loaded, beta(148-152) was proficient for DNA polymerase III (Pol III) replication in vitro. In contrast, beta(148-152) was severely impaired for Pol II and Pol IV replication and was similarly impaired for direct physical interactions with these Pols. Despite its ability to support Pol III replication in vitro, beta(148-152) was unable to support viability of E. coli. Nevertheless, physiological levels of beta(148-152) expressed from a plasmid efficiently complemented the temperature-sensitive growth phenotype of a strain expressing beta159 (dnaN159), provided that Pol II and Pol IV were inactivated. Although this strain was impaired for Pol V-dependent mutagenesis, inactivation of Pol II and Pol IV restored the Pol V mutator phenotype. Taken together, these results support a model in which a sophisticated combination of competitive clamp-DNA, clamp-partner, and partner-DNA interactions serve to manage the actions of the different E. coli Pols in vivo.
Collapse
Affiliation(s)
- Justin Heltzel
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| | | | - Laurie H. Sanders
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Jill M. Duzen
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Vivian Cody
- Department of Structural Biology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203
| | - James Pace
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203
| | - Edward Snell
- Department of Structural Biology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203
| | - Mark D. Sutton
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| |
Collapse
|
43
|
Scouten Ponticelli SK, Duzen JM, Sutton MD. Contributions of the individual hydrophobic clefts of the Escherichia coli beta sliding clamp to clamp loading, DNA replication and clamp recycling. Nucleic Acids Res 2009; 37:2796-809. [PMID: 19279187 PMCID: PMC2685083 DOI: 10.1093/nar/gkp128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The homodimeric Escherichia coli β sliding clamp contains two hydrophobic clefts with which proteins involved in DNA replication, repair and damage tolerance interact. Deletion of the C-terminal five residues of β (βC) disrupted both clefts, severely impairing interactions of the clamp with the DnaX clamp loader, as well as the replicative DNA polymerase, Pol III. In order to determine whether both clefts were required for loading clamp onto DNA, stimulation of Pol III replication and removal of clamp from DNA after replication was complete, we developed a method for purification of heterodimeric clamp proteins comprised of one wild-type subunit (β+), and one βC subunit (β+/βC). The β+/βC heterodimer interacted normally with the DnaX clamp loader, and was loaded onto DNA slightly more efficiently than was β+. Moreover, β+/βC interacted normally with Pol III, and stimulated replication to the same extent as did β+. Finally, β+/βC was severely impaired for unloading from DNA using either DnaX or the δ subunit of DnaX. Taken together, these findings indicate that a single cleft in the β clamp is sufficient for both loading and stimulation of Pol III replication, but both clefts are required for unloading clamp from DNA after replication is completed.
Collapse
Affiliation(s)
- Sarah K Scouten Ponticelli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
44
|
Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol 2009; 17:130-8. [DOI: 10.1016/j.tim.2008.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/30/2008] [Accepted: 12/15/2008] [Indexed: 11/23/2022]
|
45
|
Budzowska M, Kanaar R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 2008; 53:17-31. [PMID: 19034694 DOI: 10.1007/s12013-008-9039-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2008] [Indexed: 12/31/2022]
Abstract
During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.
Collapse
Affiliation(s)
- Magda Budzowska
- Department of Cell Biology & Genetics, Cancer Genomics Center, Rotterdam, The Netherlands
| | | |
Collapse
|
46
|
González-Soltero R, Jiménez-Sánchez A, Botello E. Functional requirements for heat induced genome amplification in Escherichia coli. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Chen H, Xu L, Qi Q, Yao Y, Zhu M, Wang Y. A haplotype variation affecting the mitochondrial transportation of hMYH protein could be a risk factor for colorectal cancer in Chinese. BMC Cancer 2008; 8:269. [PMID: 18811933 PMCID: PMC2565682 DOI: 10.1186/1471-2407-8-269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/23/2008] [Indexed: 02/07/2023] Open
Abstract
Background The human MutY homolog (hMYH), a DNA glycolsylase involved in the excision repair of oxidative DNA damage, is currently studied in colorectal cancer (CRC). We previously demonstrated a haplotype variant c.53C>T/c.74G>A of hMYH (T/A) increasing the risk for gastric cancer in Chinese. However, most investigations on correlation between hMYH and CRC are conducted in Western countries and the underlying mechanism has been poorly understood. Methods To determine whether the haplotype T/A variant of hMYH was related to colorectal carcinogenesis, we performed a case-control study in 138 colorectal cancer (CRC) patients and 343 healthy controls in a Chinese population. Furthermore, the C/G for wild-type, C/A or T/G for single base variant and T/A for haplotype variant hMYH cDNAs with a flag epitope tag were cloned into pcDNA3.1+ vector and transfected into cos-7 cell line. Their subcellular localizations were determined by immunofluorescence assay. Results It was found that the frequency of haplotype variant allele was statistically higher in CRC patients than that in controls (P = 0.02, odds ratio = 5.06, 95% confidence interval = 1.26 – 20.4). Similarly, significant difference of heterozygote frequency was indicated between the two groups (P = 0.019), while no homozygote was found. In addition, immunofluorescence analysis showed that hMYH protein with haplotype T/A variation presented in both nucleus and mitochondria, in contrast to the wild-type protein only converging in mitochondria. However, neither of the single missense mutations alone changed the protein subcelluar localization. Conclusion Although preliminarily, these results suggest that: the haplotype variant allele of hMYH leads to a missense protein, which partly affects the protein mitochondrial transportation and results as nuclear localization. This observation might be responsible for the increased susceptibility to cancers, including CRC, in Chinese.
Collapse
Affiliation(s)
- Huimei Chen
- Department of Medical Genetics, Medical School, Nanjing University, Nanjing, PR China.
| | | | | | | | | | | |
Collapse
|
48
|
Yao NY, O'Donnell M. Replisome dynamics and use of DNA trombone loops to bypass replication blocks. MOLECULAR BIOSYSTEMS 2008; 4:1075-84. [PMID: 18931783 DOI: 10.1039/b811097b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replisomes are dynamic multiprotein machines capable of simultaneously replicating both strands of the DNA duplex. This review focuses on the structure and function of the E. coli replisome, many features of which generalize to other bacteria and eukaryotic cells. For example, the bacterial replisome utilizes clamps and clamp loaders to coordinate the actions required of the trombone model of lagging strand synthesis made famous by Bruce Alberts. All cells contain clamps and clamp loaders and this review summarizes their structure and function. Clamp loaders are pentameric spirals that bind DNA in a structure specific fashion and thread it through the ring shaped clamp. The recent structure of the E. coli beta clamp in complex with primed DNA has implications for how multiple polymerases function on sliding clamps and how the primed DNA template is exchanged between them. Recent studies reveal a remarkable fluidity in replisome function that enables it to bypass template lesions on either DNA strand. During these processes the polymerases within the replisome functionally uncouple from one another. Mechanistic processes that underlie these actions may involve DNA looping, similar to the trombone loops that mediate the lagging strand Okazaki fragment synthesis cycle.
Collapse
Affiliation(s)
- Nina Y Yao
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065-6399, USA
| | | |
Collapse
|
49
|
Yuan B, Wang Y. Mutagenic and cytotoxic properties of 6-thioguanine, S6-methylthioguanine, and guanine-S6-sulfonic acid. J Biol Chem 2008; 283:23665-70. [PMID: 18591241 DOI: 10.1074/jbc.m804047200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thiopurine drugs, including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of (S)G nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. (S)G in DNA can be methylated by S-adenosyl-l-methionine to give S(6)-methylthioguanine (S(6)mG) and oxidized by UVA light to render guanine-S(6)-sulfonic acid ((SO3H)G). Here, we constructed single-stranded M13 shuttle vectors carrying a (S)G, S(6)mG, or (SO3H)G at a unique site and allowed the vectors to propagate in wild-type and bypass polymerase-deficient Escherichia coli cells. Analysis of the replication products by using the competitive replication and adduct bypass and a slightly modified restriction enzyme digestion and post-labeling assays revealed that, although none of the three thionucleosides considerably blocked DNA replication in all transfected E. coli cells, both S(6)mG and (SO3H)G were highly mutagenic, which resulted in G-->A mutation at frequencies of 94 and 77%, respectively, in wild-type E. coli cells. Deficiency in bypass polymerases does not result in alteration of mutation frequencies of these two lesions. In contrast to what was found from previous steady-state kinetic analysis, our data demonstrated that 6-thioguanine is mutagenic, with G-->A transition occurring at a frequency of approximately 10%. The mutagenic properties of 6-thioguanine and its derivatives revealed in the present study offered important knowledge about the biological implications of these thionucleosides.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | |
Collapse
|
50
|
Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O'Donnell M. Structure of a sliding clamp on DNA. Cell 2008; 132:43-54. [PMID: 18191219 DOI: 10.1016/j.cell.2007.11.045] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 10/03/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The structure of the E. coli beta clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp. We demonstrate that these clamp-DNA interactions function in clamp loading, perhaps by inducing the ring to close around DNA. Clamp binding to template ssDNA may also serve to hold the clamp at a primed site after loading or during switching of multiple factors on the clamp. Remarkably, the DNA is highly tilted as it passes through the beta ring. The pronounced 22 degrees angle of DNA through beta may enable DNA to switch between multiple factors bound to a single clamp simply by alternating from one protomer of the ring to the other.
Collapse
Affiliation(s)
- Roxana E Georgescu
- Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, Box 228, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|