1
|
Lin TC, Lacorcia M, Mannering SI. Current and Emerging Assays for Measuring Human T-Cell Responses Against Beta-Cell Antigens in Type 1 Diabetes. Biomolecules 2025; 15:384. [PMID: 40149920 PMCID: PMC11939970 DOI: 10.3390/biom15030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by T-cell mediated destruction of the pancreatic insulin-producing beta cells. Currently, the development of autoantibodies is the only measure of beta-cell autoimmunity used in the clinic. Despite T-cells' well-accepted role in the autoimmune pathogenesis of human T1D, autoimmune T-cell responses against beta cells remain very difficult to measure. An assay capable of measuring beta-cell antigen-specific T-cell responses has been a long-sought goal. Such an assay would facilitate the direct monitoring of T1D-associated T-cell responses facilitating, earlier diagnosis and rapid evaluation of candidate immune therapies in clinical trials. In addition, a simple and robust assay for beta-cell antigen-specific T-cell responses would be a powerful tool for dissecting the autoimmune pathogenesis of human T1D. Here, we review the challenges associated with measuring beta-cell antigen-specific T-cell responses, the current assays which are used to achieve this and, finally, we discuss BASTA, a promising emerging assay for measuring human beta-cell antigen-specific CD4+ T-cell responses.
Collapse
Affiliation(s)
| | | | - Stuart I. Mannering
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia; (T.-C.L.); (M.L.)
| |
Collapse
|
2
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Mahata D, Mukherjee D, Biswas D, Basak S, Basak AJ, Jamir I, Pandey N, Khatoon H, Samanta D, Basak A, Mukherjee G. Activation and differentiation of cognate T cells by a dextran-based antigen-presenting system for cancer immunotherapy. Eur J Immunol 2023; 53:e2350528. [PMID: 37698527 DOI: 10.1002/eji.202350528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Immunotherapeutic modulation of antigen-specific T-cell responses instead of the whole repertoire helps avoid immune-related adverse events. We have developed an artificial antigen-presenting system (aAPS) where multiple copies of a multimeric peptide-MHC class I complex presenting a murine class I MHC restricted ovalbumin-derived peptide (signal 1), along with a costimulatory ligand (signal 2) are chemically conjugated to a dextran backbone. Cognate naive CD8+ T cells, when treated with this aAPS underwent significant expansion and showed an activated phenotype. Furthermore, elevated expression of effector cytokines led to the differentiation of these cells to cytotoxic T lymphocytes which resulted in target cell lysis, indicative of the functional efficacy of the aAPS. CD8+ T cells with decreased proliferative potential due to repeated antigenic stimulation could also be re-expanded by the developed aAPS. Thus, the developed aAPS warrants further engineering for future application as a rapidly customizable personalized immunotherapeutic agent, incorporating patient-specific MHC-restricted tumor antigens and different costimulatory signals to modulate both naive and antigen-experienced but exhausted tumor-specific T cells in cancer.
Collapse
Affiliation(s)
- Dhrubajyoti Mahata
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debangshu Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debarati Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Shyam Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Aditya Jyoti Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Imlilong Jamir
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Nidhi Pandey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Huma Khatoon
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Amit Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
4
|
Li H, Hou Z, Wang Y, Zhou Z, Cai J, Xin Q, Yin F, Li Z, Xu N. Methodology of stable peptide based on propargylated sulfonium. Biochem Biophys Rep 2023; 35:101508. [PMID: 37448811 PMCID: PMC10336417 DOI: 10.1016/j.bbrep.2023.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Peptides can be used as effective molecular tool for covalent modification of proteins and play important roles in ligand directed covalent modification. Tyr-selective protein modifications exert a profound impact on protein functionality. Here, we developed a general strategy that involves nucleophilic addition of alkyne for tyrosine modification. The terminal alkyne of propargyl sulfonium is motivated by the sulfonium center to react with phenolic hydroxyl. This approach provides a straightforward method for tyrosine modification due to its high yield in aqueous solution at physiological temperature. In addition, cyclic peptides could be obtained via adjusting pH to 8.0 from peptides consisting of tyrosine and methionine modified by propargyl bromide, and the resulting cyclic peptides are proved to have better stability, excellent 2-mercaptopyridine resistance and improved cellular uptakes. Furthermore, molecules made from the propargylated sulfonium have the potential to be used as warheads against tyrosine containing biomolecules. Collectively, we develop a direct and uncomplicated technique for modifying tyrosine residues, the strategy concerned can be widely utilized to construct stable peptides and biomolecules imaging.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ziyuan Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jin Cai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qilei Xin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
5
|
High-resolution crystal structure of LpqH, an immunomodulatory surface lipoprotein of Mycobacterium tuberculosis reveals a distinct fold and a conserved cleft on its surface. Int J Biol Macromol 2022; 210:494-503. [PMID: 35504420 DOI: 10.1016/j.ijbiomac.2022.04.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is predominantly a disease of the lungs acquired by inhaling mycobacteria from infected individuals via airborne droplets. In order to facilitate their entry into the alveolar macrophages, mycobacteria have a collection of pathogen-associated molecular patterns (PAMPs) on their surface that are known to detect certain pattern recognition receptors present on the surface of host cells. A major group of these PAMPs includes mycobacterial lipoproteins, of which, the 19 kDa surface antigen LpqH, has been reported to play a critical role in both host-pathogen interactions as well as pleiotropic immune regulation. Despite its crucial involvement in tuberculosis, the detailed structure-function relationship of this protein remains to be explored. Here, we report the high-resolution crystal structure of the non-acylated LpqH (LpqH48-159) at a resolution of 1.26 Å, which adopts a unique fold. Flow cytometry-based experiments show that the protein can bind and induce apoptosis in PMA-activated human monocytic cell line THP-1, indicative of the preservation of functionality of the protein. Furthermore, analysis of conservation of LpqH sequences from Mycobacterium species reveals a patch of conserved residues on the surface which may play a role in its binding partner recognition and hence in host-pathogen interaction.
Collapse
|
6
|
Sahoo A, Mukherjee D, Mahata D, Mukherjee G. Peptide–MHC complexes: dressing up to manipulate T cells against autoimmunity and cancer. Immunotherapy 2022; 14:337-350. [PMID: 35152723 DOI: 10.2217/imt-2021-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antigen-specificity of T cells provides important clues to the pathogenesis of T cell-mediated autoimmune diseases and immune-evasion strategies of tumors. Identification of T cell clones involved in autoimmunity or cancer is achieved with soluble peptide–MHC (pMHC) complex multimers. Importantly, these complexes can also be used to manipulate disease-relevant T cells to restore homeostasis of T cell-mediated immune response. While auto-antigen-specific T cells can be deleted or anergized by T cell receptor engagement with cognate pMHC complexes in the absence of costimulation, integration of these complexes in artificial antigen-presenting systems can activate tumor antigen-specific T cells. Here the authors discuss the advancements in pMHC-complex-mediated immunotherapeutic strategies in autoimmunity and cancer and identify the lacunae in these strategies that need to be addressed to facilitate clinical implementation.
Collapse
Affiliation(s)
- Arpita Sahoo
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Debangshu Mukherjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dhrubajyoti Mahata
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Gayatri Mukherjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
7
|
Wang B, Su Z, Wu Y. Characterizing the function of domain linkers in regulating the dynamics of multi-domain fusion proteins by microsecond molecular dynamics simulations and artificial intelligence. Proteins 2021; 89:884-895. [PMID: 33620752 DOI: 10.1002/prot.26066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/20/2021] [Accepted: 02/20/2021] [Indexed: 11/12/2022]
Abstract
Multi-domain proteins are not only formed through natural evolution but can also be generated by recombinant DNA technology. Because many fusion proteins can enhance the selectivity of cell targeting, these artificially produced molecules, called multi-specific biologics, are promising drug candidates, especially for immunotherapy. Moreover, the rational design of domain linkers in fusion proteins is becoming an essential step toward a quantitative understanding of the dynamics in these biopharmaceutics. We developed a computational framework to characterize the impacts of peptide linkers on the dynamics of multi-specific biologics. Specifically, we first constructed a benchmark containing six types of linkers that represent various lengths and degrees of flexibility and used them to connect two natural proteins as a test system. We then projected the microsecond dynamics of these proteins generated from Anton onto a coarse-grained conformational space. We further analyzed the similarity of dynamics among different proteins in this low-dimensional space by a neural-network-based classification model. Finally, we applied hierarchical clustering to place linkers into different subgroups based on the classification results. The clustering results suggest that the length of linkers, which is used to spatially separate different functional modules, plays the most important role in regulating the dynamics of this fusion protein. Given the same number of amino acids, linker flexibility functions as a regulator of protein dynamics. In summary, we illustrated that a new computational strategy can be used to study the dynamics of multi-domain fusion proteins by a combination of long timescale molecular dynamics simulation, coarse-grained feature extraction, and artificial intelligence.
Collapse
Affiliation(s)
- Bo Wang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
8
|
Su Z, Wang B, Almo SC, Wu Y. Understanding the Targeting Mechanisms of Multi-Specific Biologics in Immunotherapy with Multiscale Modeling. iScience 2020; 23:101835. [PMID: 33305190 PMCID: PMC7710644 DOI: 10.1016/j.isci.2020.101835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Immunotherapeutics are frequently associated with adverse side effects due to the elicitation of global immune modulation. To lower the risk of these side effects, recombinant DNA technology is employed to enhance the selectivity of cell targeting by genetically fusing different biomolecules, yielding new species referred to as multi-specific biologics. The design of new multi-specific biologics is a central challenge for the realization of new immunotherapies. To understand the molecular determinants responsible for regulating the binding between multi-specific biologics and surface-bound membrane receptors, we developed a multiscale computational framework that integrates various simulation approaches covering different timescales and spatial resolutions. Our model system of multi-specific biologics contains two natural ligands of immune receptors, which are covalently tethered by a peptide linker. Using this method, a number of interesting features of multi-specific biologics were identified. Our study therefore provides an important strategy to design the next-generation biologics for immunotherapy. Two proteins are connected by different linkers as a model of bispecific biologics Conformational dynamics of biologics are captured by microsecond MD simulations Coarse-grained simulations are used to test binding between biologics and receptors Biologics with long and flexible linkers are more efficient in targeting receptors
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Bo Wang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Basak AJ, Maiti S, Hansda A, Mahata D, Duraivelan K, Kundapura SV, Lee W, Mukherjee G, De S, Samanta D. Structural Insights into N-terminal IgV Domain of BTNL2, a T Cell Inhibitory Molecule, Suggests a Non-canonical Binding Interface for Its Putative Receptors. J Mol Biol 2020; 432:5938-5950. [PMID: 32976909 DOI: 10.1016/j.jmb.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/30/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
T cell costimulation is mediated by the interaction of a number of receptors and ligands present on the surface of the T cell and antigen-presenting cell, respectively. Stimulatory or inhibitory signals from these receptor-ligand interactions work in tandem to preserve immune homeostasis. BTNL2 is a type-1 membrane protein that provides inhibitory signal to T cells and plays an important role in several inflammatory and autoimmune diseases. Therefore, manipulation of the molecular interaction of BTNL2 with its putative receptor could provide strategies to restore immune homeostasis in these diseases. Hence, it is imperative to study the structural characteristics of this molecule, which will provide important insights into its function as well. In this study, the membrane-distal ectodomain of murine BTNL2 was expressed in bacteria as inclusion bodies, refolded in vitro and purified for functional and structural characterization. The domain is monomeric in solution as demonstrated by size-exclusion chromatography and analytical ultracentrifugation, and also binds to its putative receptor on naïve B cells and activated T cell subsets. Importantly, for the first time, we report the structure of BTNL2 as determined by solution NMR spectroscopy and also the picosecond-nanosecond timescale backbone dynamics of this domain. The N-terminal ectodomain of BTNL2, which was able to inhibit T cell function as well, exhibits distinctive structural features. The N-terminal ectodomain of BTNL2 has a significantly reduced surface area in the front sheet due to the non-canonical conformation of the CC' loop, which provides important insights into the recognition of its presently unknown binding partner.
Collapse
Affiliation(s)
- Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Snigdha Maiti
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Anita Hansda
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Dhrubajyoti Mahata
- School of Bioscience, Indian Institute of Technology Kharagpur, India; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | | | - Shankar V Kundapura
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Bangalore, India
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, India.
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
10
|
Komine-Aizawa S, Jiang J, Mizuno S, Hayakawa S, Matsuo K, Boyd LF, Margulies DH, Honda M. MHC-restricted Ag85B-specific CD8 + T cells are enhanced by recombinant BCG prime and DNA boost immunization in mice. Eur J Immunol 2019; 49:1399-1414. [PMID: 31135967 PMCID: PMC6722017 DOI: 10.1002/eji.201847988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Despite efforts to develop effective treatments and vaccines, Mycobacterium tuberculosis (Mtb), particularly pulmonary Mtb, continues to provide major health challenges worldwide. To improve immunization against the persistent health challenge of Mtb infection, we have studied the CD8+ T cell response to Bacillus Calmette-Guérin (BCG) and recombinant BCG (rBCG) in mice. Here, we generated CD8+ T cells with an rBCG-based vaccine encoding the Ag85B protein of M. kansasii, termed rBCG-Mkan85B, followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). We identified two MHC-I (H2-Kd )-restricted epitopes that induce cross-reactive responses to Mtb and other related mycobacteria in both BALB/c (H2d ) and CB6F1 (H2b/d ) mice. The H2-Kd -restricted peptide epitopes elicited polyfunctional CD8+ T cell responses that were also highly cross-reactive with those of other proteins of the Ag85 complex. Tetramer staining indicated that the two H2-Kd -restricted epitopes elicit distinct CD8+ T cell populations, a result explained by the X-ray structure of the two peptide/H2-Kd complexes. These results suggest that rBCG-Mkan85B vector-based immunization and DNA-Mkan85B boost may enhance CD8+ T cell response to Mtb, and might help to overcome the limited effectiveness of the current BCG in eliciting tuberculosis immunity.
Collapse
Affiliation(s)
- Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - Satoru Mizuno
- Japan BCG Laboratory
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Kazuhiro Matsuo
- Japan BCG Laboratory
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - Mitsuo Honda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| |
Collapse
|
11
|
Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics. Bioorg Med Chem 2018; 26:2759-2765. [PMID: 29395804 DOI: 10.1016/j.bmc.2018.01.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 01/27/2023]
Abstract
The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market.
Collapse
Affiliation(s)
- Miloš Erak
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany.
| |
Collapse
|
12
|
Chen J, Almo SC, Wu Y. General principles of binding between cell surface receptors and multi-specific ligands: A computational study. PLoS Comput Biol 2017; 13:e1005805. [PMID: 29016600 PMCID: PMC5654264 DOI: 10.1371/journal.pcbi.1005805] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/20/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022] Open
Abstract
The interactions between membrane receptors and extracellular ligands control cell-cell and cell-substrate adhesion, and environmental responsiveness by representing the initial steps of cell signaling pathways. These interactions can be spatial-temporally regulated when different extracellular ligands are tethered. The detailed mechanisms of this spatial-temporal regulation, including the competition between distinct ligands with overlapping binding sites and the conformational flexibility in multi-specific ligand assemblies have not been quantitatively evaluated. We present a new coarse-grained model to realistically simulate the binding process between multi-specific ligands and membrane receptors on cell surfaces. The model simplifies each receptor and each binding site in a multi-specific ligand as a rigid body. Different numbers or types of ligands are spatially organized together in the simulation. These designs were used to test the relation between the overall binding of a multi-specific ligand and the affinity of its cognate binding site. When a variety of ligands are exposed to cells expressing different densities of surface receptors, we demonstrated that ligands with reduced affinities have higher specificity to distinguish cells based on the relative concentrations of their receptors. Finally, modification of intramolecular flexibility was shown to play a role in optimizing the binding between receptors and ligands. In summary, our studies bring new insights to the general principles of ligand-receptor interactions. Future applications of our method will pave the way for new strategies to generate next-generation biologics. In order to adapt to surrounding environments, multiple signaling pathways have been evolved in cells. The first step of these pathways is to detect external stimuli, which is conducted by the dynamic interactions between cell surface receptors and extracellular ligands. As a result, recognition of extracellular ligands by cell surface receptors is an indispensable component of many physiological or pathological activities. In both natural selection and drug design, the presence of multiple binding sites in extracellular ligand complexes (so-called multi-specific ligands) is a common strategy to target different receptors on surface of the same cell. Such spatial organization of ligand binding sites can elaborately modulate the downstream signaling pathways. However, our understanding to the interactions between multi-specific ligands and membrane receptors is largely limited by the fact that these interactions are difficult to quantify and they have only been successfully measured in a very small number of cases in vivo. Using a simple computational model, we can realistically simulate the binding process between specially designed multi-specific ligands and membrane receptors on cell surfaces. This study therefore provides a useful pathway to unravel basic mechanisms of ligand-receptor interactions and design principles for new drug candidates.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Liu WJ, Lan J, Liu K, Deng Y, Yao Y, Wu S, Chen H, Bao L, Zhang H, Zhao M, Wang Q, Han L, Chai Y, Qi J, Zhao J, Meng S, Qin C, Gao GF, Tan W. Protective T Cell Responses Featured by Concordant Recognition of Middle East Respiratory Syndrome Coronavirus-Derived CD8+ T Cell Epitopes and Host MHC. THE JOURNAL OF IMMUNOLOGY 2016; 198:873-882. [PMID: 27903740 DOI: 10.4049/jimmunol.1601542] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
The coordinated recognition of virus-derived T cell epitopes and MHC molecules by T cells plays a pivotal role in cellular immunity-mediated virus clearance. It has been demonstrated that the conformation of MHC class I (MHC I) molecules can be adjusted by the presented peptide, which impacts T cell activation. However, it is still largely unknown whether the conformational shift of MHC I influences the protective effect of virus-specific T cells. In this study, utilizing the Middle East respiratory syndrome coronavirus-infected mouse model, we observed that through the unusual secondary anchor Ile5, a CD8+ T cell epitope drove the conformational fit of Trp73 on the α1 helix of murine MHC I H-2Kd In vitro renaturation and circular dichroism assays indicated that this shift of the structure did not influence the peptide/MHC I binding affinity. Nevertheless, the T cell recognition and the protective effect of the peptide diminished when we made an Ile to Ala mutation at position 5 of the original peptide. The molecular bases of the concordant recognition of T cell epitopes and host MHC-dependent protection were demonstrated through both crystal structure determination and tetramer staining using the peptide-MHC complex. Our results indicate a coordinated MHC I/peptide interaction mechanism and provide a beneficial reference for T cell-oriented vaccine development against emerging viruses such as Middle East respiratory syndrome coronavirus.
Collapse
Affiliation(s)
- William J Liu
- College of Laboratory Medicine and Life Sciences, Institute of Medical Virology, Wenzhou Medical University, Wenzhou 325035, China.,Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jiaming Lan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.,Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Kefang Liu
- College of Laboratory Medicine and Life Sciences, Institute of Medical Virology, Wenzhou Medical University, Wenzhou 325035, China.,Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yao Deng
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanfeng Yao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China
| | - Shaolian Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hong Chen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lingling Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China
| | - Haifeng Zhang
- College of Laboratory Medicine and Life Sciences, Institute of Medical Virology, Wenzhou Medical University, Wenzhou 325035, China
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingxia Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; and
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China
| | - George F Gao
- College of Laboratory Medicine and Life Sciences, Institute of Medical Virology, Wenzhou Medical University, Wenzhou 325035, China; .,Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjie Tan
- College of Laboratory Medicine and Life Sciences, Institute of Medical Virology, Wenzhou Medical University, Wenzhou 325035, China; .,Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
14
|
Mauvais FX, Diana J, van Endert P. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000Res 2016; 5. [PMID: 27158463 PMCID: PMC4847563 DOI: 10.12688/f1000research.7411.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 01/12/2023] Open
Abstract
Research focusing on type 1 diabetes (T1D) autoantigens aims to explore our understanding of these beta cell proteins in order to design assays for monitoring the pathogenic autoimmune response, as well as safe and efficient therapies preventing or stopping it. In this review, we will discuss progress made in the last 5 years with respect to mechanistic understanding, diagnostic monitoring, and therapeutic modulation of the autoantigen-specific cellular immune response in T1D. Some technical progress in monitoring tools has been made; however, the potential of recent technologies for highly multiplexed exploration of human cellular immune responses remains to be exploited in T1D research, as it may be the key to the identification of surrogate markers of disease progression that are still wanting. Detailed analysis of autoantigen recognition by T cells suggests an important role of non-conventional antigen presentation and processing in beta cell-directed autoimmunity, but the impact of this in human T1D has been little explored. Finally, therapeutic administration of autoantigens to T1D patients has produced disappointing results. The application of novel modes of autoantigen administration, careful translation of mechanistic understanding obtained in preclinical studies and
in vitro with human cells, and combination therapies including CD3 antibodies may help to make autoantigen-based immunotherapy for T1D a success story in the future.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| |
Collapse
|
15
|
Garyu JW, Uduman M, Stewart A, Rui J, Deng S, Shenson J, Staron MM, Kaech SM, Kleinstein SH, Herold KC. Characterization of Diabetogenic CD8+ T Cells: IMMUNE THERAPY WITH METABOLIC BLOCKADE. J Biol Chem 2016; 291:11230-40. [PMID: 26994137 DOI: 10.1074/jbc.m115.713362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus is caused by the killing of insulin-producing β cells by CD8+T cells. The disease progression, which is chronic, does not follow a course like responses to conventional antigens such as viruses, but accelerates as glucose tolerance deteriorates. To identify the unique features of the autoimmune effectors that may explain this behavior, we analyzed diabetogenic CD8+ T cells that recognize a peptide from the diabetes antigen IGRP (NRP-V7-reactive) in prediabetic NOD mice and compared them to others that shared their phenotype (CD44(+)CD62L(lo)PD-1(+)CXCR3(+)) but negative for diabetes antigen tetramers and to LCMV (lymphocytic choriomeningitis)-reactive CD8+ T cells. There was an increase in the frequency of the NRP-V7-reactive cells coinciding with the time of glucose intolerance. The T cells persisted in hyperglycemic NOD mice maintained with an insulin pellet despite destruction of β cells. We compared gene expression in the three groups of cells compared with the other two subsets of cells, and the NRP-V7-reactive cells exhibited gene expression of memory precursor effector cells. They had reduced cellular proliferation and were less dependent on oxidative phosphorylation. When prediabetic NOD mice were treated with 2-deoxyglucose to block aerobic glycolysis, there was a reduction in the diabetes antigen versus other cells of similar phenotype and loss of lymphoid cells infiltrating the islets. In addition, treatment of NOD mice with 2-deoxyglucose resulted in improved β cell granularity. These findings identify a link between metabolic disturbances and autoreactive T cells that promotes development of autoimmune diabetes.
Collapse
Affiliation(s)
| | - Mohamed Uduman
- the Interdepartmental Program in Computational Biology and Department of Pathology, Yale University, New Haven, Connecticut 06520 and
| | | | | | | | | | | | - Susan M Kaech
- From the Department of Immunobiology, the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Steven H Kleinstein
- From the Department of Immunobiology, the Interdepartmental Program in Computational Biology and Department of Pathology, Yale University, New Haven, Connecticut 06520 and
| | - Kevan C Herold
- From the Department of Immunobiology, Internal Medicine, and
| |
Collapse
|
16
|
Lymphocyte repertoire selection and intracellular self/non-self-discrimination: historical overview. Immunol Cell Biol 2014; 93:297-304. [PMID: 25385066 DOI: 10.1038/icb.2014.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Immunological self/non-self-discrimination is conventionally seen as an extracellular event, involving interactions been receptors on T cells pre-educated to discriminate and peptides bound to major histocompatibility complex proteins (pMHCs). Mechanisms by which non-self peptides might first be sorted intracellularly to distinguish them from the vast excess of self-peptides have long been called for. Recent demonstrations of endogenous peptide-specific clustering of pMHCs on membrane rafts are indicative of intracellular enrichment before surface display. The clustering could follow the specific aggregation of a foreign protein that exceeded its solubility limit in the crowded intracellular environment. Predominantly entropy-driven, this homoaggregation would colocalize identical peptides, thus facilitating their collective presentation. Concentrations of self-proteins are fine-tuned over evolutionary time to avoid this. Disparate observations, such as pyrexia and female susceptibility to autoimmune disease, can be explained in terms of the need to cosegregate cognate pMHC complexes internally before extracellular display.
Collapse
|
17
|
Mukherjee G, Geliebter A, Babad J, Santamaria P, Serreze DV, Freeman GJ, Tarbell KV, Sharpe A, DiLorenzo TP. DEC-205-mediated antigen targeting to steady-state dendritic cells induces deletion of diabetogenic CD8⁺ T cells independently of PD-1 and PD-L1. Int Immunol 2013; 25:651-60. [PMID: 24021877 DOI: 10.1093/intimm/dxt031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CD8⁺ T cells specific for islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) have been implicated in type 1 diabetes in both humans and non-obese diabetic (NOD) mice, in which T cells specific for IGRP₂₀₆₋₂₁₄ are highly prevalent. We sought to manipulate these pathogenic T cells by exploiting the ability of steady-state dendritic cells (DCs) to present antigens in a tolerogenic manner. The endocytic receptor DEC-205 was utilized to deliver an IGRP₂₀₆₋₂₁₄ mimotope to DCs in NOD mice, and the impact of this delivery on a polyclonal population of endogenous islet-reactive cognate T cells was determined. Assessment of islet-infiltrating CD8⁺ T cells showed a decrease in the percentage, and the absolute number, of endogenous IGRP₂₀₆₋₂₁₄-specific T cells when the mimotope was delivered to DCs, compared with delivery of a specificity control. Employing an adoptive transfer system, deletion of CD8⁺ T cells as a result of DEC-205-mediated antigen targeting was found to occur independently of programmed death-1 (PD-1) and its ligand (PD-L1), both often implicated in the regulation of peripheral T-cell tolerance. Given its promise for the manipulation of self-reactive polyclonal T cells demonstrated here, the distinctive characteristics of this antigen delivery system will be important to appreciate as its potential as an intervention for autoimmune diseases continues to be investigated.
Collapse
Affiliation(s)
- Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Making the most of major histocompatibility complex molecule multimers: applications in type 1 diabetes. Clin Dev Immunol 2012; 2012:380289. [PMID: 22693523 PMCID: PMC3368179 DOI: 10.1155/2012/380289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 03/22/2012] [Indexed: 01/11/2023]
Abstract
Classical major histocompatibility complex (MHC) class I and II molecules present peptides to cognate T-cell receptors on the surface of T lymphocytes. The specificity with which T cells recognize peptide-MHC (pMHC) complexes has allowed for the utilization of recombinant, multimeric pMHC ligands for the study of minute antigen-specific T-cell populations. In type 1 diabetes (T1D), CD8+ cytotoxic T lymphocytes, in conjunction with CD4+ T helper cells, destroy the insulin-producing β cells within the pancreatic islets of Langerhans. Due to the importance of T cells in the progression of T1D, the ability to monitor and therapeutically target diabetogenic clonotypes of T cells provides a critical tool that could result in the amelioration of the disease. By administering pMHC multimers coupled to fluorophores, nanoparticles, or toxic moieties, researchers have demonstrated the ability to enumerate, track, and delete diabetogenic T-cell clonotypes that are, at least in part, responsible for insulitis; some studies even delay or prevent diabetes onset in the murine model of T1D. This paper will provide a brief overview of pMHC multimer usage in defining the role T-cell subsets play in T1D etiology and the therapeutic potential of pMHC for antigen-specific identification and modulation of diabetogenic T cells.
Collapse
|
19
|
Carreno BM, Becker-Hapak M, Chan M, Lie WR, Wang X, Hansen TH, Linette GP. Amino-terminal extended peptide single-chain trimers are potent synthetic agonists for memory human CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5839-49. [PMID: 22573808 DOI: 10.4049/jimmunol.1103647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Upon Ag exposure, most memory T cells undergo restimulation-induced cell death. In this article, we describe a novel synthetic agonist, an N-terminal extended decamer peptide expressed as a single-chain trimer, the amino-terminal extended peptide MHC class I single-chain trimer (AT-SCT), which preferentially promotes the growth of memory human CD8(+) T cells with minimal restimulation-induced cell death. Using CMV pp65 and melanoma gp100 Ags, we observe the in vitro numerical expansion of a clonally diverse polyfunctional population of Ag-specific CD8(+) T cells from healthy individuals and vaccinated melanoma patients, respectively. Memory CD8(+) T cells stimulated with AT-SCT presented on MHC class I/II-null cells show reduced cytokine production, slower kinetics of TCR downregulation, and decreased cell death compared with native nonamer MHC class I single-chain trimer (SCT)-activated T cells. However, both ERK phosphorylation and cell cycle kinetics are identical in AT-SCT- and SCT-activated T cells. Probing of SCT and AT-SCT peptide-MHC complexes using fluorochrome-conjugated TCR multimers suggests that nonamer- and decamer-linked peptides may be anchored differently to the HLA-A2 peptide-binding groove. Our findings demonstrate that modified peptide-MHC structures, such as AT-SCT, can be engineered as T cell agonists to promote the growth and expansion of memory human CD8(+) T cells.
Collapse
Affiliation(s)
- Beatriz M Carreno
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gojanovich GS, Murray SL, Buntzman AS, Young EF, Vincent BG, Hess PR. The use of peptide-major-histocompatibility-complex multimers in type 1 diabetes mellitus. J Diabetes Sci Technol 2012; 6:515-24. [PMID: 22768881 DOI: 10.1177/193229681200600305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Major histocompatibility complex (MHC) class I and MHC class II molecules present short peptides that are derived from endogenous and exogenous proteins, respectively, to cognate T-cell receptors (TCRs) on the surface of T cells. The exquisite specificity with which T cells recognize particular peptide-major-histocompatibility-complex (pMHC) combinations has permitted development of soluble pMHC multimers that bind exclusively to selected T-cell populations. Because the pathogenesis of type 1 diabetes mellitus (T1DM) is driven largely by islet-reactive T-cell activity that causes β-cell death, these reagents are useful tools for studying and, potentially, for treating this disease. When coupled to fluorophores or paramagnetic nanoparticles, pMHC multimers have been used to visualize the expansion and islet invasion of T-cell effectors during diabetogenesis. Administration of pMHC multimers to mice has been shown to modulate T-cell responses by signaling through the TCR or by delivering a toxic moiety that deletes the targeted T cell. In the nonobese diabetic mouse model of T1DM, a pMHC-I tetramer coupled to a potent ribosome-inactivating toxin caused long-term elimination of a specific diabetogenic cluster of differentiation 8+ T-cell population from the pancreatic islets and delayed the onset of diabetes. This review will provide an overview of the development and use of pMHC multimers, particularly in T1DM, and describe the therapeutic promise these reagents have as an antigen-specific means of ameliorating deleterious T-cell responses in this autoimmune disease.
Collapse
Affiliation(s)
- Greg S Gojanovich
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA
| | | | | | | | | | | |
Collapse
|