1
|
Paudel R, Jafri MS, Ullah A. Gain-of-Function and Loss-of-Function Mutations in the RyR2-Expressing Gene Are Responsible for the CPVT1-Related Arrhythmogenic Activities in the Heart. Curr Issues Mol Biol 2024; 46:12886-12910. [PMID: 39590361 PMCID: PMC11592891 DOI: 10.3390/cimb46110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca2+ release (SOICR), and (d) loss of function. The goal of this study was to use computational models to understand these four mechanisms and how they might contribute to arrhythmia. To this end, we have developed a local control stochastic model of a ventricular cardiac myocyte and used it to investigate how the Ca2+ dynamics in the mutant RyR2 are responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic (β-AR) stimulation or pauses afterward. Into the model, we have incorporated 20,000 distinct cardiac dyads consisting of stochastically gated L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) and the intervening dyadic cleft to analyze the alterations in Ca2+ dynamics. Recent experimental findings were incorporated into the model parameters to test these proposed mechanisms and their role in triggering arrhythmias. The model could not find any connection between SOICR and the destabilization of binding proteins as the arrhythmic mechanisms in the mutant myocyte. On the other hand, the model was able to observe loss-of-function and gain-of-function mutations resulting in EADs (Early Afterdepolarizations) and variations in action potential amplitudes and durations as the precursors to generate arrhythmia, respectively. These computational studies demonstrate how GOF and LOF mutations can lead to arrhythmia and cast doubt on the feasibility of SOICR as a mechanism of arrhythmia.
Collapse
Affiliation(s)
- Roshan Paudel
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
2
|
Thekkedam CG, Dutka TL, Van der Poel C, Burgio G, Dulhunty AF. The RyR1 P3528S Substitution Alters Mouse Skeletal Muscle Contractile Properties and RyR1 Ion Channel Gating. Int J Mol Sci 2023; 25:434. [PMID: 38203604 PMCID: PMC10778724 DOI: 10.3390/ijms25010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The recessive Ryanodine Receptor Type 1 (RyR1) P3527S mutation causes mild muscle weakness in patients and increased resting cytoplasmic [Ca2+] in transformed lymphoblastoid cells. In the present study, we explored the cellular/molecular effects of this mutation in a mouse model of the mutation (RyR1 P3528S). The results were obtained from 73 wild type (WT/WT), 82 heterozygous (WT/MUT) and 66 homozygous (MUT/MUT) mice with different numbers of observations in individual data sets depending on the experimental protocol. The results showed that WT/MUT and MUT/MUT mouse strength was less than that of WT/WT mice, but there was no difference between genotypes in appearance, weight, mobility or longevity. The force frequency response of extensor digitorum longus (EDL) and soleus (SOL) muscles from WT/MUT and MUT/MUT mice was shifter to higher frequencies. The specific force of EDL muscles was reduced and Ca2+ activation of skinned fibres shifted to a lower [Ca2+], with an increase in type I fibres in EDL muscles and in mixed type I/II fibres in SOL muscles. The relative activity of RyR1 channels exposed to 1 µM cytoplasmic Ca2+ was greater in WT/MUT and MUT/MUT mice than in WT/WT mice. We suggest the altered RyR1 activity due to the P2328S substitution could increase resting [Ca2+] in muscle fibres, leading to changes in fibre type and contractile properties.
Collapse
Affiliation(s)
- Chris G. Thekkedam
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Travis L. Dutka
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, VIC 3086, Australia;
| | - Chris Van der Poel
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Gaetan Burgio
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| |
Collapse
|
3
|
Torres R, Hidalgo C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 2023; 116:102821. [PMID: 37949035 DOI: 10.1016/j.ceca.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.
Collapse
Affiliation(s)
- Rodrigo Torres
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842, Puerto Montt, Chile.
| | - Cecilia Hidalgo
- Department of Neurosciences. Biomedical Neuroscience Institute, Physiology and Biophysics Program, Institute of Biomedical Sciences, Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
4
|
Rare CACNA1H and RELN variants interact through mTORC1 pathway in oligogenic autism spectrum disorder. Transl Psychiatry 2022; 12:234. [PMID: 35668055 PMCID: PMC9170683 DOI: 10.1038/s41398-022-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Oligogenic inheritance of autism spectrum disorder (ASD) has been supported by several studies. However, little is known about how the risk variants interact and converge on causative neurobiological pathways. We identified in an ASD proband deleterious compound heterozygous missense variants in the Reelin (RELN) gene, and a de novo splicing variant in the Cav3.2 calcium channel (CACNA1H) gene. Here, by using iPSC-derived neural progenitor cells (NPCs) and a heterologous expression system, we show that the variant in Cav3.2 leads to increased calcium influx into cells, which overactivates mTORC1 pathway and, consequently, further exacerbates the impairment of Reelin signaling. Also, we show that Cav3.2/mTORC1 overactivation induces proliferation of NPCs and that both mutant Cav3.2 and Reelin cause abnormal migration of these cells. Finally, analysis of the sequencing data from two ASD cohorts-a Brazilian cohort of 861 samples, 291 with ASD; the MSSNG cohort of 11,181 samples, 5,102 with ASD-revealed that the co-occurrence of risk variants in both alleles of Reelin pathway genes and in one allele of calcium channel genes confer significant liability for ASD. Our results support the notion that genes with co-occurring deleterious variants tend to have interconnected pathways underlying oligogenic forms of ASD.
Collapse
|
5
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
6
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Rutkowsky JM, Knotts TA, Allen PD, Pessah IN, Ramsey JJ. Sex-specific alterations in whole body energetics and voluntary activity in heterozygous R163C malignant hyperthermia-susceptible mice. FASEB J 2020; 34:8721-8733. [PMID: 32367593 PMCID: PMC7383697 DOI: 10.1096/fj.202000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
Malignant hyperthermia (MH) is characterized by induction of skeletal muscle hyperthermia in response to a dysregulated increase in myoplasmic calcium. Although altered energetics play a central role in MH, MH‐susceptible humans and mouse models are often described as having no phenotype until exposure to a triggering agent. The purpose of this study was to determine the influence of the R163C ryanodine receptor 1 mutation, a common MH mutation in humans, on energy expenditure, and voluntary wheel running in mice. Energy expenditure was measured by indirect respiration calorimetry in wild‐type (WT) and heterozygous R163C (HET) mice over a range of ambient temperatures. Energy expenditure adjusted for body weight or lean mass was increased (P < .05) in male, but not female, HET mice housed at 22°C or when housed at 28°C with a running wheel. In female mice, voluntary wheel running was decreased (P < .05) in the HET vs WT animals when analyzed across ambient temperatures. The thermoneutral zone was also widened in both male and female HET mice. The results of the study show that the R163C mutations alters energetics even at temperatures that do not typically induce MH.
Collapse
Affiliation(s)
- Jennifer M Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Trina A Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Paul D Allen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Velázquez-Marrero C, Custer EE, Marrero H, Ortiz-Miranda S, Lemos JR. Voltage-induced Ca 2+ release by ryanodine receptors causes neuropeptide secretion from nerve terminals. J Neuroendocrinol 2020; 32:e12840. [PMID: 32227430 DOI: 10.1111/jne.12840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
Depolarisation-secretion coupling is assumed to be dependent only on extracellular calcium ([Ca2+ ]o ). Ryanodine receptor (RyR)-sensitive stores in hypothalamic neurohypophysial system (HNS) terminals produce sparks of intracellular calcium ([Ca2+ ]i ) that are voltage-dependent. We hypothesised that voltage-elicited increases in intraterminal calcium are crucial for neuropeptide secretion from presynaptic terminals, whether from influx through voltage-gated calcium channels and/or from such voltage-sensitive ryanodine-mediated calcium stores. Increases in [Ca2+ ]i upon depolarisation in the presence of voltage-gated calcium channel blockers, or in the absence of [Ca2+ ]o , still give rise to neuropeptide secretion from HNS terminals. Even in 0 [Ca2+ ]o , there was nonetheless an increase in capacitance suggesting exocytosis upon depolarisation. This was blocked by antagonist concentrations of ryanodine, as was peptide secretion elicited by high K+ in 0 [Ca2+ ]o . Furthermore, such depolarisations lead to increases in [Ca2+ ]i . Pre-incubation with BAPTA-AM resulted in > 50% inhibition of peptide secretion elicited by high K+ in 0 [Ca2+ ]o . Nifedipine but not nicardipine inhibited both the high K+ response for neuropeptide secretion and intraterminal calcium, suggesting the involvement of CaV1.1 type channels as sensors in voltage-induced calcium release. Importantly, RyR antagonists also modulate neuropeptide release under normal physiological conditions. In conclusion, our results indicate that depolarisation-induced neuropeptide secretion is present in the absence of external calcium, and calcium release from ryanodine-sensitive internal stores is a significant physiological contributor to neuropeptide secretion from HNS terminals.
Collapse
Affiliation(s)
| | - Edward E Custer
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - Héctor Marrero
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Sonia Ortiz-Miranda
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - José R Lemos
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Vastagh C, Solymosi N, Farkas I, Liposits Z. Proestrus Differentially Regulates Expression of Ion Channel and Calcium Homeostasis Genes in GnRH Neurons of Mice. Front Mol Neurosci 2019; 12:137. [PMID: 31213979 PMCID: PMC6554425 DOI: 10.3389/fnmol.2019.00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
In proestrus, the changing gonadal hormone milieu alters the physiological properties of GnRH neurons and contributes to the development of the GnRH surge. We hypothesized that proestrus also influences the expression of different ion channel genes in mouse GnRH neurons. Therefore, we performed gene expression profiling of GnRH neurons collected from intact, proestrous and metestrous GnRH-GFP transgenic mice, respectively. Proestrus changed the expression of 37 ion channel and 8 calcium homeostasis-regulating genes. Voltage-gated sodium channels responded with upregulation of three alpha subunits (Scn2a1, Scn3a, and Scn9a). Within the voltage-gated potassium channel class, Kcna1, Kcnd3, Kcnh3, and Kcnq2 were upregulated, while others (Kcna4, Kcnc3, Kcnd2, and Kcng1) underwent downregulation. Proestrus also had impact on inwardly rectifying potassium channel subunits manifested in enhanced expression of Kcnj9 and Kcnj10 genes, whereas Kcnj1, Kcnj11, and Kcnj12 subunit genes were downregulated. The two-pore domain potassium channels also showed differential expression with upregulation of Kcnk1 and reduced expression of three subunit genes (Kcnk7, Kcnk12, and Kcnk16). Changes in expression of chloride channels involved both the voltage-gated (Clcn3 and Clcn6) and the intracellular (Clic1) subtypes. Regarding the pore-forming alpha-1 subunits of voltage-gated calcium channels, two (Cacna1b and Cacna1h) were upregulated, while Cacna1g showed downregulation. The ancillary subunits were also differentially regulated (Cacna2d1, Cacna2d2, Cacnb1, Cacnb3, Cacnb4, Cacng5, Cacng6, and Cacng8). In addition, ryanodine receptor 1 (Ryr1) gene was downregulated, while a transient receptor potential cation channel (Trpm3) gene showed enhanced expression. Genes encoding proteins regulating the intracellular calcium homeostasis were also influenced (Calb1, Hpca, Hpcal1, Hpcal4, Cabp7, Cab 39l, and Cib2). The differential expression of genes coding for ion channel proteins in GnRH neurons at late proestrus indicates that the altering hormone milieu contributes to remodeling of different kinds of ion channels of GnRH neurons, which might be a prerequisite of enhanced cellular activity of GnRH neurons and the subsequent surge release of the neurohormone.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
10
|
Jiang J, Tang M, Huang Z, Chen L. Junctophilins emerge as novel therapeutic targets. J Cell Physiol 2019; 234:16933-16943. [DOI: 10.1002/jcp.28405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| |
Collapse
|
11
|
van Ruitenbeek E, Custers JAE, Verhaak C, Snoeck M, Erasmus CE, Kamsteeg EJ, Schouten MI, Coleman C, Treves S, Van Engelen BG, Jungbluth H, Voermans NC. Functional impairments, fatigue and quality of life in RYR1-related myopathies: A questionnaire study. Neuromuscul Disord 2018; 29:30-38. [PMID: 30578099 DOI: 10.1016/j.nmd.2018.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
Abstract
Mutations in RYR1 are a common genetic cause of non-dystrophic neuromuscular disorders. To obtain baseline data concerning the prevalence of fatigue, the psychological disease burden and quality of life associated with these common conditions, we performed a questionnaire study. Seventy-two patients were included in this study, 33 with a congenital myopathy and 39 with malignant hyperthermia or exertional rhabdomyolysis. Our results showed that patients with RYR1-related myopathies have more functional impairments and significant chronic fatigue compared to healthy controls, with almost half of patients being severely fatigued. Whilst fatigue, pain and associated physical and social difficulties were more pronounced in those with permanent phenotypes, individuals with intermittent phenotypes also scored higher in all relevant categories compared to healthy controls. These findings indicate that RYR1-related myopathies, despite being often considered relatively mild conditions, are nevertheless associated with severe fatigue and functional limitations, resulting in substantial loss of quality of life. Moreover, milder but in essence similar findings in patients with RYR1-related malignant hyperthermia and rhabdomyolysis suggest that those phenotypes are not truly episodic but in fact associated with a substantial permanent disease burden. These preliminary data should help to design more comprehensive quality of life studies to inform standards of care.
Collapse
Affiliation(s)
- E van Ruitenbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J A E Custers
- Department of Medical Psychology, Radboudumc, Nijmegen, The Netherlands
| | - C Verhaak
- Department of Medical Psychology, Radboudumc, Nijmegen, The Netherlands
| | - M Snoeck
- Department of Anesthesiology, Canisius Wilhelmina Hospital Nijmegen, The Netherlands
| | - C E Erasmus
- Department of Pediatric Neurology, Radboudumc, Nijmegen, The Netherlands
| | - E J Kamsteeg
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - M I Schouten
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - C Coleman
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - S Treves
- Basel University, Basel, Switzerland
| | - B G Van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Division for Cell and Molecular Biophysics, Muscle Signaling Section, King's College, London, UK; Department of Basic and Clinical Neuroscience, IoPPN, King's College London, London, UK
| | - N C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Santulli G, Lewis D, des Georges A, Marks AR, Frank J. Ryanodine Receptor Structure and Function in Health and Disease. Subcell Biochem 2018; 87:329-352. [PMID: 29464565 PMCID: PMC5936639 DOI: 10.1007/978-981-10-7757-9_11] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ryanodine receptors (RyRs) are ubiquitous intracellular calcium (Ca2+) release channels required for the function of many organs including heart and skeletal muscle, synaptic transmission in the brain, pancreatic beta cell function, and vascular tone. In disease, defective function of RyRs due either to stress (hyperadrenergic and/or oxidative overload) or genetic mutations can render the channels leaky to Ca2+ and promote defective disease-causing signals as observed in heat failure, muscular dystrophy, diabetes mellitus, and neurodegerative disease. RyRs are massive structures comprising the largest known ion channel-bearing macromolecular complex and exceeding 3 million Daltons in molecular weight. RyRs mediate the rapid release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) to stimulate cellular functions through Ca2+-dependent processes. Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the determination of atomic-level structures for RyR for the first time. These structures have illuminated the mechanisms by which these critical ion channels function and interact with regulatory ligands. In the present chapter we discuss the structure, functional elements, gating and activation mechanisms of RyRs in normal and disease states.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
- The Wilf Family Cardiovascular Research Institute and the Einstein-Mount Sinai Diabetes Research Center, Department of Medicine, Albert Einstein College of Medicine - Montefiore University Hospital, New York, NY, USA
| | - Daniel Lewis
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Amedee des Georges
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, USA
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Pelisch N, Gomes C, Nally JM, Petruska JC, Stirling DP. Differential expression of ryanodine receptor isoforms after spinal cord injury. Neurosci Lett 2017; 660:51-56. [PMID: 28899787 DOI: 10.1016/j.neulet.2017.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/24/2022]
Abstract
Ryanodine receptors (RyRs) are highly conductive intracellular Ca2+ release channels and are widely expressed in many tissues, including the central nervous system. RyRs have been implicated in intracellular Ca2+ overload which can drive secondary damage following traumatic injury to the spinal cord (SCI), but the spatiotemporal expression of the three isoforms of RyRs (RyR1-3) after SCI remains unknown. Here, we analyzed the gene and protein expression of RyR isoforms in the murine lumbar dorsal root ganglion (DRG) and the spinal cord lesion site at 1, 2 and 7 d after a mild contusion SCI. Quantitative RT PCR analysis revealed that RyR3 was significantly increased in lumbar DRGs and at the lesion site at 1 and 2 d post contusion compared to sham (laminectomy only) controls. Additionally, RyR2 expression was increased at 1 d post injury within the lesion site. RyR2 and -3 protein expression was localized to lumbar DRG neurons and their spinal projections within the lesion site acutely after SCI. In contrast, RyR1 expression within the DRG and lesion site remained unaltered following trauma. Our study shows that SCI initiates acute differential expression of RyR isoforms in DRG and spinal cord.
Collapse
Affiliation(s)
- Nicolas Pelisch
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Jacqueline M Nally
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Jeffrey C Petruska
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
14
|
Nicoll BK, Ferreira C, Hopkins PM, Shaw MA, Hope IA. Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations. G3 (BETHESDA, MD.) 2017; 7:1451-1461. [PMID: 28325813 PMCID: PMC5427508 DOI: 10.1534/g3.117.040535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022]
Abstract
Delaying the decline in skeletal muscle function will be critical to better maintenance of an active lifestyle in old age. The skeletal muscle ryanodine receptor, the major intracellular membrane channel through which calcium ions pass to elicit muscle contraction, is central to calcium ion balance and is hypothesized to be a significant factor for age-related decline in muscle function. The nematode Caenorhabditis elegans is a key model system for the study of human aging, and strains were generated with modified C. elegans ryanodine receptors corresponding to human myopathic variants linked with malignant hyperthermia and related conditions. The altered response of these strains to pharmacological agents reflected results of human diagnostic tests for individuals with these pathogenic variants. Involvement of nerve cells in the C. elegans responses may relate to rare medical symptoms concerning the central nervous system that have been associated with ryanodine receptor variants. These single amino acid modifications in C. elegans also conferred a reduction in lifespan and an accelerated decline in muscle integrity with age, supporting the significance of ryanodine receptor function for human aging.
Collapse
Affiliation(s)
- Baines K Nicoll
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Célia Ferreira
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Philip M Hopkins
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
| | - Marie-Anne Shaw
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
| | - Ian A Hope
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
15
|
Cordner RD, Friend LN, Mayo JL, Badgley C, Wallmann A, Stallings CN, Young PL, Miles DR, Edwards JG, Bridgewater LC. The BMP2 nuclear variant, nBMP2, is expressed in mouse hippocampus and impacts memory. Sci Rep 2017; 7:46464. [PMID: 28418030 PMCID: PMC5394474 DOI: 10.1038/srep46464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
The novel nuclear protein nBMP2 is synthesized from the BMP2 gene by translational initiation at an alternative start codon. We generated a targeted mutant mouse, nBmp2NLStm, in which the nuclear localization signal (NLS) was inactivated to prevent nuclear translocation of nBMP2 while still allowing the normal synthesis and secretion of the BMP2 growth factor. These mice exhibit abnormal muscle function due to defective Ca2+ transport in skeletal muscle. We hypothesized that neurological function, which also depends on intracellular Ca2+ transport, could be affected by the loss of nBMP2. Age-matched nBmp2NLStm and wild type mice were analyzed by immunohistochemistry, behavioral tests, and electrophysiology to assess nBMP2 expression and neurological function. Immunohistochemical staining of the hippocampus detected nBMP2 in the nuclei of CA1 neurons in wild type but not mutant mice, consistent with nBMP2 playing a role in the hippocampus. Mutant mice showed deficits in the novel object recognition task, suggesting hippocampal dysfunction. Electrophysiology experiments showed that long-term potentiation (LTP) in the hippocampus, which is dependent on intracellular Ca2+ transport and is thought to be the cellular equivalent of learning and memory, was impaired. Together, these results suggest that nBMP2 in the hippocampus impacts memory formation.
Collapse
Affiliation(s)
- Ryan D. Cordner
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Lindsey N. Friend
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Jaime L. Mayo
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Corinne Badgley
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Andrew Wallmann
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Conrad N. Stallings
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Peter L. Young
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Darla R. Miles
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Jeffrey G. Edwards
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Laura C. Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
16
|
Bannister RA, Sheridan DC, Beam KG. Distinct Components of Retrograde Ca(V)1.1-RyR1 Coupling Revealed by a Lethal Mutation in RyR1. Biophys J 2016; 110:912-21. [PMID: 26910427 DOI: 10.1016/j.bpj.2015.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/24/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
The molecular basis for excitation-contraction coupling in skeletal muscle is generally thought to involve conformational coupling between the L-type voltage-gated Ca(2+) channel (CaV1.1) and the type 1 ryanodine receptor (RyR1). This coupling is bidirectional; in addition to the orthograde signal from CaV1.1 to RyR1 that triggers Ca(2+) release from the sarcoplasmic reticulum, retrograde signaling from RyR1 to CaV1.1 results in increased amplitude and slowed activation kinetics of macroscopic L-type Ca(2+) current. Orthograde coupling was previously shown to be ablated by a glycine for glutamate substitution at RyR1 position 4242. In this study, we investigated whether the RyR1-E4242G mutation affects retrograde coupling. L-type current in myotubes homozygous for RyR1-E4242G was substantially reduced in amplitude (∼80%) relative to that observed in myotubes from normal control (wild-type and/or heterozygous) myotubes. Analysis of intramembrane gating charge movements and ionic tail current amplitudes indicated that the reduction in current amplitude during step depolarizations was a consequence of both decreased CaV1.1 membrane expression (∼50%) and reduced channel Po (∼55%). In contrast, activation kinetics of the L-type current in RyR1-E4242G myotubes resembled those of normal myotubes, unlike dyspedic (RyR1 null) myotubes in which the L-type currents have markedly accelerated activation kinetics. Exogenous expression of wild-type RyR1 partially restored L-type current density. From these observations, we conclude that mutating residue E4242 affects RyR1 structures critical for retrograde communication with CaV1.1. Moreover, we propose that retrograde coupling has two distinct and separable components that are dependent on different structural elements of RyR1.
Collapse
Affiliation(s)
- Roger A Bannister
- Cardiology Division, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - David C Sheridan
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio
| | - Kurt G Beam
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
17
|
Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis 2015; 10:93. [PMID: 26238698 PMCID: PMC4524368 DOI: 10.1186/s13023-015-0310-1] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023] Open
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane, isoflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stressors such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:10,000 to 1: 250,000 anesthetics. However, the prevalence of the genetic abnormalities may be as great as one in 400 individuals. MH affects humans, certain pig breeds, dogs and horses. The classic signs of MH include hyperthermia, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, hyperkalaemia, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. An increase in end-tidal carbon dioxide despite increased minute ventilation provides an early diagnostic clue. In humans the syndrome is inherited in an autosomal dominant pattern, while in pigs it is autosomal recessive. Uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation leads to the pathophysiologic changes. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 400 variants have been identified in the RYR1 gene located on chromosome 19q13.1, and at least 34 are causal for MH. Less than 1 % of variants have been found in CACNA1S but not all of these are causal. Diagnostic testing involves the in vitro contracture response of biopsied muscle to halothane, caffeine, and in some centres ryanodine and 4-chloro-m-cresol. Elucidation of the genetic changes has led to the introduction of DNA testing for susceptibility to MH. Dantrolene sodium is a specific antagonist and should be available wherever general anesthesia is administered. Increased understanding of the clinical manifestation and pathophysiology of the syndrome, has lead to the mortality decreasing from 80 % thirty years ago to <5 % in 2006.
Collapse
Affiliation(s)
- Henry Rosenberg
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ, 07039, USA.
| | - Neil Pollock
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Anja Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Terasa Bulger
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Kathryn Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
18
|
Lefkowitz JJ, DeCrescenzo V, Duan K, Bellve KD, Fogarty KE, Walsh JV, ZhuGe R. Catecholamine exocytosis during low frequency stimulation in mouse adrenal chromaffin cells is primarily asynchronous and controlled by the novel mechanism of Ca2+ syntilla suppression. J Physiol 2014; 592:4639-55. [PMID: 25128575 DOI: 10.1113/jphysiol.2014.278127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adrenal chromaffin cells (ACCs), stimulated by the splanchnic nerve, generate action potentials (APs) at a frequency near 0.5 Hz in the resting physiological state, at times described as 'rest and digest'. How such low frequency stimulation in turn elicits sufficient catecholamine exocytosis to set basal sympathetic tone is not readily explained by the classical mechanism of stimulus-secretion coupling, where exocytosis is synchronized to AP-induced Ca(2+) influx. By using simulated action potentials (sAPs) at 0.5 Hz in isolated patch-clamped mouse ACCs, we show here that less than 10% of all catecholaminergic exocytosis, measured by carbon fibre amperometry, is synchronized to an AP. The asynchronous phase, the dominant phase, of exocytosis does not require Ca(2+) influx. Furthermore, increased asynchronous exocytosis is accompanied by an AP-dependent decrease in frequency of Ca(2+) syntillas (i.e. transient, focal Ca(2+) release from internal stores) and is ryanodine sensitive. We propose a mechanism of disinhibition, wherein APs suppress Ca(2+) syntillas, which themselves inhibit exocytosis as they do in the case of spontaneous catecholaminergic exocytosis.
Collapse
Affiliation(s)
- Jason J Lefkowitz
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Valerie DeCrescenzo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kailai Duan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Karl D Bellve
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA, 01655, USA Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kevin E Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA, 01655, USA Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - John V Walsh
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
19
|
Landstrom AP, Beavers DL, Wehrens XHT. The junctophilin family of proteins: from bench to bedside. Trends Mol Med 2014; 20:353-62. [PMID: 24636942 PMCID: PMC4041816 DOI: 10.1016/j.molmed.2014.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/25/2022]
Abstract
Excitable tissues rely on junctional membrane complexes to couple cell surface signals to intracellular channels. The junctophilins have emerged as a family of proteins critical in coordinating the maturation and maintenance of this cellular ultrastructure. Within skeletal and cardiac muscle, junctophilin 1 and junctophilin 2, respectively, couple sarcolemmal and intracellular calcium channels. In neuronal tissue, junctophilin 3 and junctophilin 4 may have an emerging role in coupling membrane neurotransmitter receptors and intracellular calcium channels. These important physiological roles are highlighted by the pathophysiology which results when these proteins are perturbed, and a growing body of literature has associated junctophilins with the pathogenesis of human disease.
Collapse
Affiliation(s)
- Andrew P Landstrom
- Department of Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - David L Beavers
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
μ-Opioid inhibition of Ca2+ currents and secretion in isolated terminals of the neurohypophysis occurs via ryanodine-sensitive Ca2+ stores. J Neurosci 2014; 34:3733-42. [PMID: 24599471 DOI: 10.1523/jneurosci.2505-13.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
μ-Opioid agonists have no effect on calcium currents (I(Ca)) in neurohypophysial terminals when recorded using the classic whole-cell patch-clamp configuration. However, μ-opioid receptor (MOR)-mediated inhibition of I(Ca) is reliably demonstrated using the perforated-patch configuration. This suggests that the MOR-signaling pathway is sensitive to intraterminal dialysis and is therefore mediated by a readily diffusible second messenger. Using the perforated patch-clamp technique and ratio-calcium-imaging methods, we describe a diffusible second messenger pathway stimulated by the MOR that inhibits voltage-gated calcium channels in isolated terminals from the rat neurohypophysis (NH). Our results show a rise in basal intracellular calcium ([Ca(2+)]i) in response to application of [D-Ala(2)-N-Me-Phe(4),Gly5-ol]-Enkephalin (DAMGO), a MOR agonist, that is blocked by D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a MOR antagonist. Buffering DAMGO-induced changes in [Ca(2+)]i with BAPTA-AM completely blocked the inhibition of both I(Ca) and high-K(+)-induced rises in [Ca(2+)]i due to MOR activation, but had no effect on κ-opioid receptor (KOR)-mediated inhibition. Given the presence of ryanodine-sensitive stores in isolated terminals, we tested 8-bromo-cyclic adenosine diphosphate ribose (8Br-cADPr), a competitive inhibitor of cyclic ADP-ribose (cADPr) signaling that partially relieves DAMGO inhibition of I(Ca) and completely relieves MOR-mediated inhibition of high-K(+)-induced and DAMGO-induced rises in [Ca(2+)]i. Furthermore, antagonist concentrations of ryanodine completely blocked MOR-induced increases in [Ca(2+)]i and inhibition of I(Ca) and high-K(+)-induced rises in [Ca(2+)]i while not affecting KOR-mediated inhibition. Antagonist concentrations of ryanodine also blocked MOR-mediated inhibition of electrically-evoked increases in capacitance. These results strongly suggest that a key diffusible second messenger mediating the MOR-signaling pathway in NH terminals is [Ca(2+)]i released by cADPr from ryanodine-sensitive stores.
Collapse
|
21
|
Abstract
The advent of the polymerase chain reaction and the availability of data from various global human genome projects should make it possible, using a DNA sample isolated from white blood cells, to diagnose rapidly and accurately almost any monogenic condition resulting from single nucleotide changes. DNA-based diagnosis for malignant hyperthermia (MH) is an attractive proposition, because it could replace the invasive and morbid caffeine-halothane/in vitro contracture tests of skeletal muscle biopsy tissue. Moreover, MH is preventable if an accurate diagnosis of susceptibility can be made before general anesthesia, the most common trigger of an MH episode. Diagnosis of MH using DNA was suggested as early as 1990 when the skeletal muscle ryanodine receptor gene (RYR1), and a single point mutation therein, was linked to MH susceptibility. In 1994, a single point mutation in the α 1 subunit of the dihydropyridine receptor gene (CACNA1S) was identified and also subsequently shown to be causative of MH. In the succeeding years, the number of identified mutations in RYR1 has grown, as has the number of potential susceptibility loci, although no other gene has yet been definitively associated with MH. In addition, it has become clear that MH is associated with either of these 2 genes (RYR1 and CACNA1S) in only 50% to 70% of affected families. While DNA testing for MH susceptibility has now become widespread, it still does not replace the in vitro contracture tests. Whole exome sequence analysis makes it potentially possible to identify all variants within human coding regions, but the complexity of the genome, the heterogeneity of MH, the limitations of bioinformatic tools, and the lack of precise genotype/phenotype correlations are all confounding factors. In addition, the requirement for demonstration of causality, by in vitro functional analysis, of any familial mutation currently precludes DNA-based diagnosis as the sole test for MH susceptibility. Nevertheless, familial DNA testing for MH susceptibility is now widespread although limited to a positive diagnosis and to those few mutations that have been functionally characterized. Identification of new susceptibility genes remains elusive. When new genes are identified, it will be the role of the biochemists, physiologists, and biophysicists to devise functional assays in appropriate systems. This will remain the bottleneck unless high throughput platforms can be designed for functional work. Analysis of entire genomes from several individuals simultaneously is a reality. DNA testing for MH, based on current criteria, remains the dream.
Collapse
Affiliation(s)
- Kathryn M Stowell
- From the Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
Rebello MR, Maliphol AB, Medler KF. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells. PLoS One 2013; 8:e68174. [PMID: 23826376 PMCID: PMC3694925 DOI: 10.1371/journal.pone.0068174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/27/2013] [Indexed: 12/04/2022] Open
Abstract
Introduction We reported that ryanodine receptors are expressed in two different types of mammalian peripheral taste receptor cells: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs) and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx. Methodology/Principal Findings The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage. Conclusions/Significance Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.
Collapse
Affiliation(s)
- Michelle R. Rebello
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Amanda B. Maliphol
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Vukcevic M, Zorzato F, Keck S, Tsakiris DA, Keiser J, Maizels RM, Treves S. Gain of function in the immune system caused by a ryanodine receptor 1 mutation. J Cell Sci 2013; 126:3485-92. [PMID: 23704352 DOI: 10.1242/jcs.130310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in RYR1, the gene encoding ryanodine receptor 1, are linked to a variety of neuromuscular disorders including malignant hyperthermia (MH), a pharmacogenetic hypermetabolic disease caused by dysregulation of Ca(2+) in skeletal muscle. RYR1 encodes a Ca(2+) channel that is predominantly expressed in skeletal muscle sarcoplasmic reticulum, where it is involved in releasing the Ca(2+) necessary for muscle contraction. Other tissues, however, including cells of the immune system, have been shown to express ryanodine receptor 1; in dendritic cells its activation leads to increased surface expression of major histocompatibility complex II molecules and provides synergistic signals leading to cell maturation. In the present study, we investigated the impact of an MH mutation on the immune system by studying the RYR1Y522S knock-in mouse. Our results show that there are subtle but significant differences both in resting 'non-challenged' mice as well as in mice treated with antigenic stimuli, in particular the knock-in mice: (i) have dendritic cells that are more efficient at stimulating T cell proliferation, (ii) have higher levels of natural IgG1 and IgE antibodies, and (iii) are faster and more efficient at mounting a specific immune response in the early phases of immunization. We suggest that some gain-of-function MH-linked RYR1 mutations might offer selective immune advantages to their carriers. Furthermore, our results raise the intriguing possibility that pharmacological activation of RyR1 might be exploited for the development of new classes of vaccines and adjuvants.
Collapse
Affiliation(s)
- Mirko Vukcevic
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Bannister RA, Beam KG. Ca(V)1.1: The atypical prototypical voltage-gated Ca²⁺ channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1587-97. [PMID: 22982493 DOI: 10.1016/j.bbamem.2012.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022]
Abstract
Ca(V)1.1 is the prototype for the other nine known Ca(V) channel isoforms, yet it has functional properties that make it truly atypical of this group. Specifically, Ca(V)1.1 is expressed solely in skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-contraction coupling and it is an L-type Ca²⁺ channel which contributes to a form of activity-dependent Ca²⁺ entry that has been termed Excitation-coupled Ca²⁺ entry. The ability of Ca(V)1.1 to serve as voltage-sensor for excitation-contraction coupling appears to be unique among Ca(V) channels, whereas the physiological role of its more conventional function as a Ca²⁺ channel has been a matter of uncertainty for nearly 50 years. In this chapter, we discuss how Ca(V)1.1 supports excitation-contraction coupling, the possible relevance of Ca²⁺ entry through Ca(V)1.1 and how alterations of Ca(V)1.1 function can have pathophysiological consequences. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Medicine, Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
25
|
Eif4a3 is required for accurate splicing of the Xenopus laevis ryanodine receptor pre-mRNA. Dev Biol 2012; 372:103-10. [PMID: 22944195 DOI: 10.1016/j.ydbio.2012.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/17/2012] [Accepted: 08/19/2012] [Indexed: 11/22/2022]
Abstract
The Exon Junction Complex (EJC) plays a critical role in multiple posttranscriptional events, including RNA subcellular localization, nonsense-mediated decay (NMD), and translation. We previously reported that knockdown of the EJC core component Eukaryotic initiation factor 4a3 (Eif4a3) results in full-body paralysis of embryos of the frog, Xenopus laevis. Here, we explore the cellular and molecular mechanisms underlying this phenotype. We find that cultured muscle cells derived from Eif4a3 morphants do not contract, and fail to undergo calcium-dependent calcium release in response to electrical stimulation or treatment with caffeine. We show that ryr (ryanodine receptor) transcripts are incorrectly spliced in Eif4a3 morphants, and demonstrate that inhibition of Xenopus Ryr function similarly results in embryonic paralysis. These results suggest that the EJC mediates muscle cell function via regulation of pre-mRNA splicing during early vertebrate embryogenesis.
Collapse
|
26
|
Abstract
Ryanodine receptors (RyRs) are huge ion channels that are responsible for the release of Ca(2+) from the sarco/endoplasmic reticulum. RyRs form homotetramers with a mushroom-like shape, consisting of a large cytoplasmic head and transmembrane stalk. Ca(2+) is a major physiological ligand that triggers opening of RyRs, but a plethora of modulatory proteins and small molecules in the cytoplasm and sarco/endoplasmic reticulum lumen have been recognized. Over 300 mutations in RyRs are associated with severe skeletal muscle disorders or triggered cardiac arrhythmias. With the advent of high-resolution structures of individual domains, many of these can be mapped onto the three-dimensional structure.
Collapse
Affiliation(s)
- Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|