1
|
Wertz AE, Shafaat HS. Developing photoactivated artificial enzymes for sustainable fuel production. Curr Opin Chem Biol 2025; 84:102553. [PMID: 39736197 DOI: 10.1016/j.cbpa.2024.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/01/2025]
Abstract
Enzymes catalyze molecular reactions with remarkable efficiency and selectivity under mild conditions. Photoactivated enzymes make use of a light-absorbing chromophore to drive chemical transformations, ideally using sunlight as an energy source. The direct attachment of a chromophore to native enzymes is advantageous, as information on the underlying catalytic mechanisms can be obtained. Artificial enzyme development seeks to mimic natural enzymes to generate valuable products with high efficiency in a simplified, robust framework. Light-initiated artificial enzymatic catalysis combines these strategies and represents a promising avenue for sustainable generation of value-added products. Furthermore, while early systems often combined three components for catalysis-- the enzyme, a photosensitizer, and a sacrificial electron donor-- we describe an adaptation of this approach in which the chromophore is immobilized on the enzyme, removing the need for diffusional collision. The latter is advantageous as it provides deeper insight into the catalytic mechanism and facilitates further optimization of the designed construct. In this opinion, we highlight several examples of light-driven, artificial metalloenzymes, and suggest that ongoing and future efforts should leverage prior mechanistic studies on native enzymes as a foundation for strategic design of next-generation photoactivated protein-based catalysts.
Collapse
Affiliation(s)
- Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Rick JA, Junker J, Lewanski AL, Swope B, McGlue MM, Sweke EA, Kimirei IA, Seehausen O, Wagner CE. Admixture and environmental fluctuations shape the evolutionary history of a predator radiation in East Africa's Lake Tanganyika. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633002. [PMID: 39868196 PMCID: PMC11761459 DOI: 10.1101/2025.01.14.633002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Top predators have oversized impacts on food webs and ecosystem dynamics, and introducing a novel predator to a naive environment can have dramatic consequences for endemic biodiversity. Lake Tanganyika is unique among African lakes in the diversity of the pelagic top predators in the genus Lates, where four species are endemic to the lake. Using a combination of reduced-representation and whole genome resequencing data, and pairing these with phylogenetic and demographic modeling approaches, we find that Lates colonization of Lake Tanganyika was much more recent (~1-2 Mya) than other major and diverse clades within the lake. Demographic modeling suggests that diversification among Lates species within the lake occurred during a time period of dramatic changes in lake levels driven by glacial-interglacial cycles, supporting a role of these fluctuations as a "species pump" for lacustrine taxa. We further find that these lake level fluctuations likely contributed to multiple bouts of admixture among Lates species during the mid- to late-Pleistocene (~90-500 Kya). Together, our findings suggest a dynamic and environmentally linked evolutionary history of the Lates radiation with the potential for dramatic ecosystem consequences for the taxa already present in Lake Tanganyika prior to Lates colonization and diversification. Significance Statement When introduced to novel ecosystems, top predators can cause major alterations to biodiversity and food webs. Species introductions to novel habitats can also provide invading taxa with ecological opportunities that facilitate evolutionary diversification. Here, we find evidence that the radiation of endemic top predators in East Africa's Lake Tanganyika originated surprisingly recently, and that these species have experienced periods of hybridization with a widespread riverine relative throughout their history. These findings have major implications for the history of the lake and suggest that the introduction of Nile perch into Lake Victoria, which caused dramatic ecosystem and food web changes, may be a contemporary analog to the historical events in Lake Tanganyika.
Collapse
Affiliation(s)
- Jessica A. Rick
- School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA
| | - Julian Junker
- Center for Ecology, Evolution, and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Evolution, Institute of Ecology & Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Alexander L. Lewanski
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Brittany Swope
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| | - Michael M. McGlue
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
| | | | - Ismael A. Kimirei
- Tanzanian Fisheries Research Institute, Kunduchi, 14122 Dar es Salaam, Tanzania
| | - Ole Seehausen
- Division of Aquatic Ecology & Evolution, Institute of Ecology & Evolution, University of Bern, CH-3012 Bern, Switzerland
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Catherine E. Wagner
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
- Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
3
|
Wertz AE, Marguet SC, Turro C, Shafaat HS. Targeted Modulation of Photocatalytic Hydrogen Evolution Activity by Nickel-Substituted Rubredoxin through Functionalized Ruthenium Phototriggers. Inorg Chem 2024; 63:20438-20447. [PMID: 39423027 DOI: 10.1021/acs.inorgchem.4c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Light-driven hydrogen evolution is a promising means of sustainable energy production to meet global energy demand. This study investigates the photocatalytic hydrogen evolution activity of nickel-substituted rubredoxin (NiRd), an artificial hydrogenase mimic, covalently attached to a ruthenium phototrigger (RuNiRd). By systematically modifying the para-substituents on Ru(II) polypyridyl complexes, we sought to optimize the intramolecular electron transfer processes within the RuNiRd system. A series of electron-donating and electron-withdrawing groups were introduced to tune the photophysical, photochemical, and electrochemical properties of the ruthenium complexes. Our findings reveal that electron-donating substituents can increase the hydrogen evolution capabilities of the artificial enzyme to a point; however, the complexes with the most electron-donating substituents suffer from short lifetimes and inefficient reductive quenching, rendering them inactive. The present work highlights the intricate balance required between driving force, lifetime, and quenching efficiency for effective light-driven catalysis, providing valuable insights into the design of artificial enzyme-photosensitizer constructs.
Collapse
Affiliation(s)
- Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C Marguet
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Song DY, Stubbe J, Nocera DG. Protein engineering a PhotoRNR chimera based on a unifying evolutionary apparatus among the natural classes of ribonucleotide reductases. Proc Natl Acad Sci U S A 2024; 121:e2317291121. [PMID: 38648489 PMCID: PMC11067019 DOI: 10.1073/pnas.2317291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Ribonucleotide reductases (RNRs) are essential enzymes that catalyze the de novo transformation of nucleoside 5'-di(tri)phosphates [ND(T)Ps, where N is A, U, C, or G] to their corresponding deoxynucleotides. Despite the diversity of factors required for function and the low sequence conservation across RNRs, a unifying apparatus consolidating RNR activity is explored. We combine aspects of the protein subunit simplicity of class II RNR with a modified version of Escherichia coli class la photoRNRs that initiate radical chemistry with light to engineer a mimic of a class II enzyme. The design of this RNR involves fusing a truncated form of the active site containing α subunit with the functionally important C-terminal tail of the radical-generating β subunit to render a chimeric RNR. Inspired by a recent cryo-EM structure, a [Re] photooxidant is located adjacent to Y356[β], which is an essential component of the radical transport pathway in class I RNRs. Combination of this RNR photochimera with cytidine diphosphate (CDP), adenosine triphosphate (ATP), and light resulted in the generation of Y356• along with production of deoxycytidine diphosphate (dCDP) and cytosine. The photoproducts reflect an active site chemistry consistent with both the consensus mechanism of RNR and chemistry observed when RNR is inactivated by mechanism-based inhibitors in the active site. The enzymatic activity of the RNR photochimera in the absence of any β metallocofactor highlights the adaptability of the 10-stranded αβ barrel finger loop to support deoxynucleotide formation and accommodate the design of engineered RNRs.
Collapse
Affiliation(s)
- David Y. Song
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - JoAnne Stubbe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
6
|
Yuan F, Su B, Yu Y, Wang J. Study and design of amino acid-based radical enzymes using unnatural amino acids. RSC Chem Biol 2023; 4:431-446. [PMID: 37292061 PMCID: PMC10246556 DOI: 10.1039/d2cb00250g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Radical enzymes harness the power of reactive radical species by placing them in a protein scaffold, and they are capable of catalysing many important reactions. New native radical enzymes, especially those with amino acid-based radicals, in the category of non-heme iron enzymes (including ribonucleotide reductases), heme enzymes, copper enzymes, and FAD-radical enzymes have been discovered and characterized. We discussed recent research efforts to discover new native amino acid-based radical enzymes, and to study the roles of radicals in processes such as enzyme catalysis and electron transfer. Furthermore, design of radical enzymes in a small and simple scaffold not only allows us to study the radical in a well-controlled system and test our understanding of the native enzymes, but also allows us to create powerful enzymes. In the study and design of amino acid-based radical enzymes, the use of unnatural amino acids allows precise control of pKa values and reduction potentials of the residue, as well as probing the location of the radical through spectroscopic methods, making it a powerful research tool. Our understanding of amino acid-based radical enzymes will allow us to tailor them to create powerful catalysts and better therapeutics.
Collapse
Affiliation(s)
- Feiyan Yuan
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Binbin Su
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Yang Yu
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
7
|
Cui C, Song DY, Drennan CL, Stubbe J, Nocera DG. Radical Transport Facilitated by a Proton Transfer Network at the Subunit Interface of Ribonucleotide Reductase. J Am Chem Soc 2023; 145:5145-5154. [PMID: 36812162 PMCID: PMC10561588 DOI: 10.1021/jacs.2c11483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ribonucleotide reductases (RNRs) play an essential role in the conversion of nucleotides to deoxynucleotides in all organisms. The Escherichia coli class Ia RNR requires two homodimeric subunits, α and β. The active form is an asymmetric αα'ββ' complex. The α subunit houses the site for nucleotide reduction initiated by a thiyl radical (C439•), and the β subunit houses the diferric-tyrosyl radical (Y122•) that is essential for C439• formation. The reactions require a highly regulated and reversible long-range proton-coupled electron transfer pathway involving Y122•[β] ↔ W48?[β] ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]. In a recent cryo-EM structure, Y356[β] was revealed for the first time and it, along with Y731[α], spans the asymmetric α/β interface. An E52[β] residue, which is essential for Y356 oxidation, allows access to the interface and resides at the head of a polar region comprising R331[α], E326[α], and E326[α'] residues. Mutagenesis studies with canonical and unnatural amino acid substitutions now suggest that these ionizable residues are important in enzyme activity. To gain further insights into the roles of these residues, Y356• was photochemically generated using a photosensitizer covalently attached adjacent to Y356[β]. Mutagenesis studies, transient absorption spectroscopy, and photochemical assays monitoring deoxynucleotide formation collectively indicate that the E52[β], R331[α], E326[α], and E326[α'] network plays the essential role of shuttling protons associated with Y356 oxidation from the interface to bulk solvent.
Collapse
Affiliation(s)
- Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - David Y. Song
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Catherine L. Drennan
- Department of Chemistr, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - JoAnne Stubbe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Chemistr, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
8
|
Kinetic model for reversible radical transfer in ribonucleotide reductase. Proc Natl Acad Sci U S A 2022; 119:e2202022119. [PMID: 35714287 DOI: 10.1073/pnas.2202022119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme ribonucleotide reductase (RNR), which catalyzes the reduction of ribonucleotides to deoxynucleotides, is vital for DNA synthesis, replication, and repair in all living organisms. Its mechanism requires long-range radical translocation over ∼32 Å through two protein subunits and the intervening aqueous interface. Herein, a kinetic model is designed to describe reversible radical transfer in Escherichia coli RNR. This model is based on experimentally studied photoRNR systems that allow the photochemical injection of a radical at a specific tyrosine residue, Y356, using a photosensitizer. The radical then transfers across the interface to another tyrosine residue, Y731, and continues until it reaches a cysteine residue, C439, which is primed for catalysis. This kinetic model includes radical injection, an off-pathway sink, radical transfer between pairs of residues along the pathway, and the conformational flipping motion of Y731 at the interface. Most of the input rate constants for this kinetic model are obtained from previous experimental measurements and quantum mechanical/molecular mechanical free-energy simulations. Ranges for the rate constants corresponding to radical transfer across the interface are determined by fitting to the experimentally measured Y356 radical decay times in photoRNR systems. This kinetic model illuminates the time evolution of radical transport along the tyrosine and cysteine residues following radical injection. Further analysis identifies the individual rate constants that may be tuned to alter the timescale and probability of the injected radical reaching C439. The insights gained from this kinetic model are relevant to biochemical understanding and protein-engineering efforts with potential pharmacological implications.
Collapse
|
9
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Bin Mohd Yusof MS, Debnath T, Loh ZH. Observation of intra- and intermolecular vibrational coherences of the aqueous tryptophan radical induced by photodetachment. J Chem Phys 2021; 155:134306. [PMID: 34624987 DOI: 10.1063/5.0067335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The study of the photodetachment of amino acids in aqueous solution is pertinent to the understanding of elementary processes that follow the interaction of ionizing radiation with biological matter. In the case of tryptophan, the tryptophan radical that is produced by electron ejection also plays an important role in numerous redox reactions in biology, although studies of its ultrafast molecular dynamics are limited. Here, we employ femtosecond optical pump-probe spectroscopy to elucidate the ultrafast structural rearrangement dynamics that accompany the photodetachment of the aqueous tryptophan anion by intense, ∼5-fs laser pulses. The observed vibrational wave packet dynamics, in conjunction with density functional theory calculations, identify the vibrational modes of the tryptophan radical, which participate in structural rearrangement upon photodetachment. Aside from intramolecular vibrational modes, our results also point to the involvement of intermolecular modes that drive solvent reorganization about the N-H moiety of the indole sidechain. Our study offers new insight into the ultrafast molecular dynamics of ionized biomolecules and suggests that the present experimental approach can be extended to investigate the photoionization- or photodetachment-induced structural dynamics of larger biomolecules.
Collapse
Affiliation(s)
- Muhammad Shafiq Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tushar Debnath
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
11
|
Abstract
Radicals in biology, once thought to all be bad actors, are now known to play a central role in many enzymatic reactions. Of the known radical-based enzymes, ribonucleotide reductases (RNRs) are pre-eminent as they are essential in the biology of all organisms by providing the building blocks and controlling the fidelity of DNA replication and repair. Intense examination of RNRs has led to the development of new tools and a guiding framework for the study of radicals in biology, pointing the way to future frontiers in radical enzymology.
Collapse
Affiliation(s)
- JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 20139 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 20139 USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA
| |
Collapse
|
12
|
Ye RR, Chen BC, Lu JJ, Ma XR, Li RT. Phosphorescent rhenium(I) complexes conjugated with artesunate: Mitochondrial targeting and apoptosis-ferroptosis dual induction. J Inorg Biochem 2021; 223:111537. [PMID: 34273716 DOI: 10.1016/j.jinorgbio.2021.111537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
Cell death is essential for cancer, which can be induced through multiple mechanisms. Ferroptosis, a newly emerging form of non-apoptotic cell death, involves the generation of iron-dependent reactive oxygen species (ROS). In this study, we designed and synthesized two artesunate (ART) conjugated phosphorescent rhenium(I) complexes (Re(I)-ART conjugates), [Re(N^N)(CO)3(PyCH2OART)](PF6) (Re-ART-1 and Re-ART-2) (Py = pyridine, N^N = 1,10-phenanthroline (phen, in Re-ART-1) and 4,7-diphenyl-1,10-phenanthroline (DIP, in Re-ART-2)) that can specifically locate in the mitochondria of human cervical carcinoma (HeLa). Mechanism studies show that Re-ART-1 and Re-ART-2 exhibit high cytotoxicity against cancer cells lines and can induce both apoptosis and ferroptosis in HeLa cells through mitochondrial damage, caspase cascade, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) inactivation and lipid peroxidation accumulation. As a result, this work presents the rational design of Re(I)-ART conjugates as a promising strategy to induce both apoptosis and ferroptosis and improve therapeutic efficiency of cancer treatment.
Collapse
Affiliation(s)
- Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Bi-Chun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
13
|
Cui C, Greene BL, Kang G, Drennan CL, Stubbe J, Nocera DG. Gated Proton Release during Radical Transfer at the Subunit Interface of Ribonucleotide Reductase. J Am Chem Soc 2020; 143:176-183. [PMID: 33353307 DOI: 10.1021/jacs.0c07879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The class Ia ribonucleotide reductase of Escherichia coli requires strict regulation of long-range radical transfer between two subunits, α and β, through a series of redox-active amino acids (Y122•[β] ↔ W48?[β] ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]). Nowhere is this more precarious than at the subunit interface. Here, we show that the oxidation of Y356 is regulated by proton release involving a specific residue, E52[β], which is part of a water channel at the subunit interface for rapid proton transfer to the bulk solvent. An E52Q variant is incapable of Y356 oxidation via the native radical transfer pathway or non-native photochemical oxidation, following photosensitization by covalent attachment of a photo-oxidant at position 355[β]. Substitution of Y356 for various FnY analogues in an E52Q-photoβ2, where the side chain remains deprotonated, recovered photochemical enzymatic turnover. Transient absorption and emission data support the conclusion that Y356 oxidation requires E52 for proton management, suggesting its essential role in gating radical transport across the protein-protein interface.
Collapse
Affiliation(s)
- Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Brandon L Greene
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
A photochemical study of the triplet excited state of pyrene-4,5-dione and pyrene-4,5,9,10-tetrone derivatives. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Greene BL, Kang G, Cui C, Bennati M, Nocera DG, Drennan CL, Stubbe J. Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets. Annu Rev Biochem 2020; 89:45-75. [PMID: 32569524 PMCID: PMC7316142 DOI: 10.1146/annurev-biochem-013118-111843] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs' central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and Escherichia coli class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Chang Cui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department of Chemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
16
|
Pinter TBJ, Koebke KJ, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds. Angew Chem Int Ed Engl 2020; 59:7678-7699. [PMID: 31441170 PMCID: PMC7035182 DOI: 10.1002/anie.201907502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 12/31/2022]
Abstract
The relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha-helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron-transfer sites in cupredoxins (CuHis2 Cys) or rubredoxins (FeCys4 ). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000-fold.
Collapse
Affiliation(s)
- Tyler B. J. Pinter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| | - Karl J. Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| |
Collapse
|
17
|
Pinter TBJ, Koebke KJ, Pecoraro VL. Katalyse und Elektronentransfer in helikalen De‐novo‐Gerüststrukturen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tyler B. J. Pinter
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Karl J. Koebke
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Vincent L. Pecoraro
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| |
Collapse
|
18
|
Greene BL, Stubbe J, Nocera DG. Selenocysteine Substitution in a Class I Ribonucleotide Reductase. Biochemistry 2019; 58:5074-5084. [PMID: 31774661 DOI: 10.1021/acs.biochem.9b00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ribonucleotide reductases (RNRs) employ a complex radical-based mechanism during nucleotide reduction involving multiple active site cysteines that both activate the substrate and reduce it. Using an engineered allo-tRNA, we substituted two active site cysteines with distinct function in the class Ia RNR of Escherichia coli for selenocysteine (U) via amber codon suppression, with efficiency and selectivity enabling biochemical and biophysical studies. Examination of the interactions of the C439U α2 mutant protein with nucleotide substrates and the cognate β2 subunit demonstrates that the endogenous Y122• of β2 is reduced under turnover conditions, presumably through radical transfer to form a transient U439• species. This putative U439• species is formed in a kinetically competent fashion but is incapable of initiating nucleotide reduction via 3'-H abstraction. An analogous C225U α2 protein is also capable of radical transfer from Y122•, but the radical-based substrate chemistry partitions between turnover and stalled reduction akin to the reactivity of mechanism-based inhibitors of RNR. The results collectively demonstrate the essential role of cysteine redox chemistry in the class I RNRs and establish a new tool for investigating thiyl radical reactivity in biology.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
19
|
Teixeira RI, Goulart JS, Corrêa RJ, Garden SJ, Ferreira SB, Netto-Ferreira JC, Ferreira VF, Miro P, Marin ML, Miranda MA, de Lucas NC. A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Adv 2019; 9:13386-13397. [PMID: 35519567 PMCID: PMC9063979 DOI: 10.1039/c9ra01939a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
Abstract
The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (k q ∼109 L mol-1 s-1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.
Collapse
Affiliation(s)
- Rodolfo I Teixeira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Juliana S Goulart
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Rodrigo J Corrêa
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Simon J Garden
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Sabrina B Ferreira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | | | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmaceûtica Niterói Santa Rosa Brazil
| | - Paula Miro
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - M Luisa Marin
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Nanci C de Lucas
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| |
Collapse
|
20
|
Greene BL, Stubbe J, Nocera DG. Photochemical Rescue of a Conformationally Inactivated Ribonucleotide Reductase. J Am Chem Soc 2018; 140:15744-15752. [PMID: 30347141 DOI: 10.1021/jacs.8b07902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class Ia ribonucleotide reductase (RNR) of Escherichia coli contains an unusually stable tyrosyl radical cofactor in the β2 subunit (Y122•) necessary for nucleotide reductase activity. Upon binding the cognate α2 subunit, loaded with nucleoside diphosphate substrate and an allosteric/activity effector, a rate determining conformational change(s) enables rapid radical transfer (RT) within the active α2β2 complex from the Y122• site in β2 to the substrate activating cysteine residue (C439) in α2 via a pathway of redox active amino acids (Y122[β] ↔ W48[β]? ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]) spanning >35 Å. Ionizable residues at the α2β2 interface are essential in mediating RT, and therefore control activity. One of these mutations, E350X (where X = A, D, Q) in β2, obviates all RT, though the mechanism of control by which E350 mediates RT remains unclear. Herein, we utilize an E350Q-photoβ2 construct to photochemically rescue RNR activity from an otherwise inactive construct, wherein the initial RT event (Y122• → Y356) is replaced by direct photochemical radical generation of Y356•. These data present compelling evidence that E350 conveys allosteric information between the α2 and β2 subunits facilitating conformational gating of RT that specifically targets Y122• reduction, while the fidelity of the remainder of the RT pathway is retained.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
21
|
Preissner M, Murrie RP, Pinar I, Werdiger F, Carnibella RP, Zosky GR, Fouras A, Dubsky S. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals. ACTA ACUST UNITED AC 2018; 63:08NT03. [DOI: 10.1088/1361-6560/aab8d2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Lemon CM, Hwang SJ, Maher AG, Powers DC, Nocera DG. Halogen Photoelimination from SbV Dihalide Corroles. Inorg Chem 2018; 57:5333-5342. [DOI: 10.1021/acs.inorgchem.8b00314] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Christopher M. Lemon
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Seung Jun Hwang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Andrew G. Maher
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - David C. Powers
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
23
|
Kurtz DA, Brereton KR, Ruoff KP, Tang HM, Felton GAN, Miller AJM, Dempsey JL. Bathochromic Shifts in Rhenium Carbonyl Dyes Induced through Destabilization of Occupied Orbitals. Inorg Chem 2018; 57:5389-5399. [DOI: 10.1021/acs.inorgchem.8b00360] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel A. Kurtz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kelsey R. Brereton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin P. Ruoff
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Hui Min Tang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Greg A. N. Felton
- Department of Chemistry, Eckerd College, St. Petersburg, Florida 33711, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L. Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
24
|
Davis I, Koto T, Terrell JR, Kozhanov A, Krzystek J, Liu A. High-Frequency/High-Field Electron Paramagnetic Resonance and Theoretical Studies of Tryptophan-Based Radicals. J Phys Chem A 2018; 122:3170-3176. [PMID: 29488750 DOI: 10.1021/acs.jpca.7b12434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tryptophan-based free radicals have been implicated in a myriad of catalytic and electron transfer reactions in biology. However, very few of them have been trapped so that biophysical characterizations can be performed in a high-precision context. In this work, tryptophan derivative-based radicals were studied by high-frequency/high-field electron paramagnetic resonance (HFEPR) and quantum chemical calculations. Radicals were generated at liquid nitrogen temperature with a photocatalyst, sacrificial oxidant, and violet laser. The precise g-anisotropies of l- and d-tryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 5-fluorotryptophan, and 7-hydroxytryptophan were measured directly by HFEPR. Quantum chemical calculations were conducted to predict both neutral and cationic radical spectra for comparison with the experimental data. The results indicate that under the experimental conditions, all radicals formed were cationic. Spin densities of the radicals were also calculated. The various line patterns and g-anisotropies observed by HFEPR can be understood in terms of spin-density populations and the positioning of oxygen atom substitution on the tryptophan ring. The results are considered in the light of the tryptophan and 7-hydroxytryptophan diradical found in the biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
Collapse
Affiliation(s)
- Ian Davis
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States.,Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Teruaki Koto
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States
| | - James R Terrell
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Alexander Kozhanov
- Department of Physics and Astronomy , Georgia State University , Atlanta , Georgia 30303 , United States
| | - J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Aimin Liu
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States
| |
Collapse
|
25
|
Greene BL, Taguchi AT, Stubbe J, Nocera DG. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. J Am Chem Soc 2017; 139:16657-16665. [PMID: 29037038 DOI: 10.1021/jacs.7b08192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNR) catalyze the reduction of nucleotides to deoxynucleotides through a mechanism involving an essential cysteine based thiyl radical. In the E. coli class 1a RNR the thiyl radical (C439•) is a transient species generated by radical transfer (RT) from a stable diferric-tyrosyl radical cofactor located >35 Å away across the α2:β2 subunit interface. RT is facilitated by sequential proton-coupled electron transfer (PCET) steps along a pathway of redox active amino acids (Y122β ↔ [W48β?] ↔ Y356β ↔ Y731α ↔ Y730α ↔ C439α). The mutant R411A(α) disrupts the H-bonding environment and conformation of Y731, ostensibly breaking the RT pathway in α2. However, the R411A protein retains significant enzymatic activity, suggesting Y731 is conformationally dynamic on the time scale of turnover. Installation of the radical trap 3-amino tyrosine (NH2Y) by amber codon suppression at positions Y731 or Y730 and investigation of the NH2Y• trapped state in the active α2:β2 complex by HYSCORE spectroscopy validate that the perturbed conformation of Y731 in R411A-α2 is dynamic, reforming the H-bond between Y731 and Y730 to allow RT to propagate to Y730. Kinetic studies facilitated by photochemical radical generation reveal that Y731 changes conformation on the ns-μs time scale, significantly faster than the enzymatic kcat. Furthermore, the kinetics of RT across the subunit interface were directly assessed for the first time, demonstrating conformationally dependent RT rates that increase from 0.6 to 1.6 × 104 s-1 when comparing wild type to R411A-α2, respectively. These results illustrate the role of conformational flexibility in modulating RT kinetics by targeting the PCET pathway of radical transport.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Alexander T Taguchi
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
26
|
Long-range proton-coupled electron transfer in the Escherichia coli class Ia ribonucleotide reductase. Essays Biochem 2017; 61:281-292. [PMID: 28487404 DOI: 10.1042/ebc20160072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Escherichia coli class Ia ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to 2'-deoxynucleotides using a radical mechanism. Each turnover requires radical transfer from an assembled diferric tyrosyl radical (Y•) cofactor to the enzyme active site over 35 Å away. This unprecedented reaction occurs via an amino acid radical hopping pathway spanning two protein subunits. To study the mechanism of radical transport in RNR, a suite of biochemical approaches have been developed, such as site-directed incorporation of unnatural amino acids with altered electronic properties and photochemical generation of radical intermediates. The resulting variant RNRs have been investigated using a variety of time-resolved physical techniques, including transient absorption and stopped-flow UV-Vis spectroscopy, as well as rapid freeze-quench EPR, ENDOR, and PELDOR spectroscopic methods. The data suggest that radical transport occurs via proton-coupled electron transfer (PCET) and that the protein structure has evolved to manage the proton and electron transfer co-ordinates in order to prevent 'off-pathway' reactivity and build-up of oxidised intermediates. Thus, precise design and control over the factors that govern PCET is key to enabling reversible and long-range charge transport by amino acid radicals in RNR.
Collapse
|
27
|
Tebo AG, Quaranta A, Herrero C, Pecoraro VL, Aukauloo A. Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein. CHEMPHOTOCHEM 2017; 1:89-92. [PMID: 29046892 DOI: 10.1002/cptc.201600044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Long-distance biological electron transfer occurs through a hopping mechanism and often involves tyrosine as a high potential intermediate, for example in the early charge separation steps during photosynthesis. Protein design allows for the development of minimal systems to study the underlying principles of complex systems. Herein, we report the development of the first ruthenium-linked designed protein for the photogeneration of a tyrosine radical by intramolecular electron transfer.
Collapse
Affiliation(s)
- Alison G Tebo
- Dr. A. G. Tebo, Prof. V. L. Pecoraro, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Annamaria Quaranta
- Dr. A. Quaranta, Prof. A. Aukauloo, CEA Saclay, iBiTecS, Service de Bioénergétique Biologie Structurale et Mécanismes (SB2SM), Gif-sur-Yvette, 91191 (France)
| | - Christian Herrero
- Dr. C. Herrero, Prof. A. Aukauloo, Institut de Chimie Moléculaire et des Matériaux D'Orsay, Université Paris Sud, Université Paris Saclay, CNRS UMR 8182, 91405 Orsay Cedex (France)
| | - Vincent L Pecoraro
- Dr. A. G. Tebo, Prof. V. L. Pecoraro, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - Ally Aukauloo
- Dr. C. Herrero, Prof. A. Aukauloo, Institut de Chimie Moléculaire et des Matériaux D'Orsay, Université Paris Sud, Université Paris Saclay, CNRS UMR 8182, 91405 Orsay Cedex (France).,Dr. A. Quaranta, Prof. A. Aukauloo, CEA Saclay, iBiTecS, Service de Bioénergétique Biologie Structurale et Mécanismes (SB2SM), Gif-sur-Yvette, 91191 (France)
| |
Collapse
|
28
|
Zhang Q, Ye Y. Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements. BMC Bioinformatics 2017; 18:92. [PMID: 28166719 PMCID: PMC5294841 DOI: 10.1186/s12859-017-1512-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Background The CRISPR–Cas systems in prokaryotes are RNA-guided immune systems that target and deactivate foreign nucleic acids. A typical CRISPR–Cas system consists of a CRISPR array of repeat and spacer units, and a locus of cas genes. The CRISPR and the cas locus are often located next to each other in the genomes. However, there is no quantitative estimate of the co-location. In addition, ad-hoc studies have shown that some non-CRISPR genomic elements contain repeat-spacer-like structures and are mistaken as CRISPRs. Results Using available genome sequences, we observed that a significant number of genomes have isolated cas loci and/or CRISPRs. We found that 11%, 22% and 28% of the type I, II and III cas loci are isolated (without CRISPRs in the same genomes at all or with CRISPRs distant in the genomes), respectively. We identified a large number of genomic elements that superficially reassemble CRISPRs but don’t contain diverse spacers and have no companion cas genes. We called these elements false-CRISPRs and further classified them into groups, including tandem repeats and Staphylococcus aureus repeat (STAR)-like elements. Conclusion This is the first systematic study to collect and characterize false-CRISPR elements. We demonstrated that false-CRISPRs could be used to reduce the false annotation of CRISPRs, therefore showing them to be useful for improving the annotation of CRISPR–Cas systems. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1512-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Zhang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Ave, Bloomington, IN, 47405, USA
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Ave, Bloomington, IN, 47405, USA.
| |
Collapse
|
29
|
Ravichandran K, Minnihan EC, Lin Q, Yokoyama K, Taguchi AT, Shao J, Nocera DG, Stubbe J. Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in Escherichia coli Class Ia Ribonucleotide Reductase. Biochemistry 2017; 56:856-868. [PMID: 28103007 DOI: 10.1021/acs.biochem.6b01145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli class Ia ribonucleotide reductase (RNR) is composed of two subunits that form an active α2β2 complex. The nucleoside diphosphate substrates (NDP) are reduced in α2, 35 Å from the essential diferric-tyrosyl radical (Y122•) cofactor in β2. The Y122•-mediated oxidation of C439 in α2 occurs by a pathway (Y122 ⇆ [W48] ⇆ Y356 in β2 to Y731 ⇆ Y730 ⇆ C439 in α2) across the α/β interface. The absence of an α2β2 structure precludes insight into the location of Y356 and Y731 at the subunit interface. The proximity in the primary sequence of the conserved E350 to Y356 in β2 suggested its importance in catalysis and/or conformational gating. To study its function, pH-rate profiles of wild-type β2/α2 and mutants in which 3,5-difluorotyrosine (F2Y) replaces residue 356, 731, or both are reported in the presence of E350 or E350X (X = A, D, or Q) mutants. With E350, activity is maintained at the pH extremes, suggesting that protonated and deprotonated states of F2Y356 and F2Y731 are active and that radical transport (RT) can occur across the interface by proton-coupled electron transfer at low pH or electron transfer at high pH. With E350X mutants, all RNRs were inactive, suggesting that E350 could be a proton acceptor during oxidation of the interface Ys. To determine if E350 plays a role in conformational gating, the strong oxidants, NO2Y122•-β2 and 2,3,5-F3Y122•-β2, were reacted with α2, CDP, and ATP in E350 and E350X backgrounds and the reactions were monitored for pathway radicals by rapid freeze-quench electron paramagnetic resonance spectroscopy. Pathway radicals are generated only when E350 is present, supporting its essential role in gating the conformational change(s) that initiates RT and masking its role as a proton acceptor.
Collapse
Affiliation(s)
| | | | - Qinghui Lin
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine , Hangzhou 310058, China
| | | | | | - Jimin Shao
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
30
|
Olshansky L, Greene BL, Finkbeiner C, Stubbe J, Nocera DG. Photochemical Generation of a Tryptophan Radical within the Subunit Interface of Ribonucleotide Reductase. Biochemistry 2016; 55:3234-40. [PMID: 27159163 PMCID: PMC4929995 DOI: 10.1021/acs.biochem.6b00292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli class Ia ribonucleotide reductase (RNR) achieves forward and reverse proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 ⇌ β-Y356 ⇌ α-Y731 ⇌ α-Y730 ⇌ α-C439) spanning ∼35 Å and two subunits every time it turns over. We have developed photoRNRs that allow radical transport to be phototriggered at tyrosine (Y) or fluorotyrosine (FnY) residues along the PCET pathway. We now report a new photoRNR in which photooxidation of a tryptophan (W) residue replacing Y356 within the α/β subunit interface proceeds by a stepwise ET/PT (electron transfer then proton transfer) mechanism and provides an orthogonal spectroscopic handle with respect to radical pathway residues Y731 and Y730 in α. This construct displays an ∼3-fold enhancement in photochemical yield of W(•) relative to F3Y(•) and a ∼7-fold enhancement relative to Y(•). Photogeneration of the W(•) radical occurs with a rate constant of (4.4 ± 0.2) × 10(5) s(-1), which obeys a Marcus correlation for radical generation at the RNR subunit interface. Despite the fact that the Y → W variant displays no enzymatic activity in the absence of light, photogeneration of W(•) within the subunit interface results in 20% activity for turnover relative to wild-type RNR under the same conditions.
Collapse
Affiliation(s)
- Lisa Olshansky
- Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138–2902;
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; .
| | - Brandon L. Greene
- Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138–2902;
| | - Chelsea Finkbeiner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; .
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; .
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138–2902;
| |
Collapse
|
31
|
Olshansky L, Stubbe J, Nocera DG. Charge-Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductase. J Am Chem Soc 2016; 138:1196-205. [PMID: 26710997 PMCID: PMC4924928 DOI: 10.1021/jacs.5b09259] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides to provide the monomeric building blocks for DNA replication and repair. Nucleotide reduction occurs by way of multistep proton-coupled electron transfer (PCET) over a pathway of redox active amino acids spanning ∼35 Å and two subunits (α2 and β2). Despite the fact that PCET in RNR is rapid, slow conformational changes mask examination of the kinetics of these steps. As such, we have pioneered methodology in which site-specific incorporation of a [Re(I)] photooxidant on the surface of the β2 subunit (photoβ2) allows photochemical oxidation of the adjacent PCET pathway residue β-Y356 and time-resolved spectroscopic observation of the ensuing reactivity. A series of photoβ2s capable of performing photoinitiated substrate turnover have been prepared in which four different fluorotyrosines (FnYs) are incorporated in place of β-Y356. The FnYs are deprotonated under biological conditions, undergo oxidation by electron transfer (ET), and provide a means by which to vary the ET driving force (ΔG°) with minimal additional perturbations across the series. We have used these features to map the correlation between ΔG° and kET both with and without the fully assembled photoRNR complex. The photooxidation of FnY356 within the α/β subunit interface occurs within the Marcus inverted region with a reorganization energy of λ ≈ 1 eV. We also observe enhanced electronic coupling between donor and acceptor (HDA) in the presence of an intact PCET pathway. Additionally, we have investigated the dynamics of proton transfer (PT) by a variety of methods including dependencies on solvent isotopic composition, buffer concentration, and pH. We present evidence for the role of α2 in facilitating PT during β-Y356 photooxidation; PT occurs by way of readily exchangeable positions and within a relatively "tight" subunit interface. These findings show that RNR controls ET by lowering λ, raising HDA, and directing PT both within and between individual polypeptide subunits.
Collapse
Affiliation(s)
- Lisa Olshansky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and Chemical Biology, 12 Oxford St., Harvard University, Cambridge, Massachusetts 02138, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, 12 Oxford St., Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
32
|
Song DY, Pizano AA, Holder PG, Stubbe J, Nocera DG. Direct Interfacial Y 731 Oxidation in α 2 by a Photoβ 2 Subunit of E. coli Class Ia Ribonucleotide Reductase. Chem Sci 2015; 6:4519-4524. [PMID: 26504513 PMCID: PMC4618407 DOI: 10.1039/c5sc01125f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/06/2015] [Indexed: 11/21/2022] Open
Abstract
Proton-coupled electron transfer (PCET) is a fundamental mechanism important in a wide range of biological processes including the universal reaction catalysed by ribonucleotide reductases (RNRs) in making de novo, the building blocks required for DNA replication and repair. These enzymes catalyse the conversion of nucleoside diphosphates (NDPs) to deoxynucleoside diphosphates (dNDPs). In the class Ia RNRs, NDP reduction involves a tyrosyl radical mediated oxidation occurring over 35 Å across the interface of the two required subunits (β2 and α2) involving multiple PCET steps and the conserved tyrosine triad [Y356(β2)-Y731(α2)-Y730(α2)]. We report the synthesis of an active photochemical RNR (photoRNR) complex in which a Re(I)-tricarbonyl phenanthroline ([Re]) photooxidant is attached site-specifically to the Cys in the Y356C-(β2) subunit and an ionizable, 2,3,5-trifluorotyrosine (2,3,5-F3Y) is incorporated in place of Y731 in α2. This intersubunit PCET pathway is investigated by ns laser spectroscopy on [Re356]-β2:2,3,5-F3Y731-α2 in the presence of substrate, CDP, and effector, ATP. This experiment has allowed analysis of the photoinjection of a radical into α2 from β2 in the absence of the interfacial Y356 residue. The system is competent for light-dependent substrate turnover. Time-resolved emission experiments reveal an intimate dependence of the rate of radical injection on the protonation state at position Y731(α2), which in turn highlights the importance of a well-coordinated proton exit channel involving the key residues, Y356 and Y731, at the subunit interface.
Collapse
Affiliation(s)
- David Y. Song
- Department of Chemistry and Chemical Biology , 12 Oxford Street , Cambridge , MA 02138-2902 , USA .
| | - Arturo A. Pizano
- Department of Chemistry and Chemical Biology , 12 Oxford Street , Cambridge , MA 02138-2902 , USA .
| | - Patrick G. Holder
- Department of Chemistry and Chemical Biology , 12 Oxford Street , Cambridge , MA 02138-2902 , USA .
| | - JoAnne Stubbe
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139-4307 , USA .
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology , 12 Oxford Street , Cambridge , MA 02138-2902 , USA .
| |
Collapse
|
33
|
Lemon CM, Karnas E, Han X, Bruns OT, Kempa TJ, Fukumura D, Bawendi MG, Jain RK, Duda DG, Nocera DG. Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors. J Am Chem Soc 2015; 137:9832-42. [PMID: 26149349 DOI: 10.1021/jacs.5b04765] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Micelles have been employed to encapsulate the supramolecular assembly of quantum dots with palladium(II) porphyrins for the quantification of O2 levels in aqueous media and in vivo. Förster resonance energy transfer from the quantum dot (QD) to the palladium porphyrin provides a means for signal transduction under both one- and two-photon excitation. The palladium porphyrins are sensitive to O2 concentrations in the range of 0-160 Torr. The micelle-encapsulated QD-porphyrin assemblies have been employed for in vivo multiphoton imaging and lifetime-based oxygen measurements in mice with chronic dorsal skinfold chambers or cranial windows. Our results establish the utility of the QD-micelle approach for in vivo biological sensing applications.
Collapse
Affiliation(s)
- Christopher M Lemon
- †Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.,‡Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth Karnas
- ‡Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiaoxing Han
- §Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox-7, Boston, Massachusetts 02114, United States
| | - Oliver T Bruns
- ‡Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thomas J Kempa
- †Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Dai Fukumura
- §Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox-7, Boston, Massachusetts 02114, United States
| | - Moungi G Bawendi
- ‡Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rakesh K Jain
- §Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox-7, Boston, Massachusetts 02114, United States
| | - Dan G Duda
- §Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox-7, Boston, Massachusetts 02114, United States
| | - Daniel G Nocera
- †Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
Lemon CM, Halbach RL, Huynh M, Nocera DG. Photophysical Properties of β-Substituted Free-Base Corroles. Inorg Chem 2015; 54:2713-25. [DOI: 10.1021/ic502860g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Christopher M. Lemon
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Robert L. Halbach
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Michael Huynh
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
35
|
Lemon CM, Nocera DG. Comparison of self-assembled and micelle encapsulated QD chemosensor constructs for biological sensing. Faraday Discuss 2015; 185:249-66. [DOI: 10.1039/c5fd00093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whereas a variety of covalent conjugation strategies have been utilized to prepare quantum dot (QD)-based nanosensors, supramolecular approaches of self-assembly have been underexplored. A major advantage of self-assembly is the ability to circumvent laborious synthetic efforts attendant to covalent conjugation of a chemosensor to functionalized QDs. Here, we combine a CdSe/ZnS core–shell QD with gold(iii) corroles using both self-assembly and micelle encapsulation to form QD nanosensors. Appreciable spectral overlap between QD emission and corrole absorption results in efficient Förster resonance energy transfer (FRET), which may be initiated by one- or two-photon excitation. The triplet state of the gold(iii) corroles is quenched by molecular oxygen, enabling these constructs to function as optical O2 sensors, which is useful for the metabolic profiling of tumours. The photophysical properties, including QD and corrole lifetimes, FRET efficiency, and O2 sensitivity, have been determined for each construct. The relative merits of each conjugation strategy are assessed with regard to their implementation as sensors.
Collapse
Affiliation(s)
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology
- Harvard University
- Cambridge
- USA
| |
Collapse
|
36
|
Williamson HR, Dow BA, Davidson VL. Mechanisms for control of biological electron transfer reactions. Bioorg Chem 2014; 57:213-221. [PMID: 25085775 PMCID: PMC4285783 DOI: 10.1016/j.bioorg.2014.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
Electron transfer (ET) through and between proteins is a fundamental biological process. The rates and mechanisms of these ET reactions are controlled by the proteins in which the redox centers that donate and accept electrons reside. The protein influences the magnitudes of the ET parameters, the electronic coupling and reorganization energy that are associated with the ET reaction. The protein can regulate the rates of the ET reaction by requiring reaction steps to optimize the system for ET, leading to kinetic mechanisms of gated or coupled ET. Amino acid residues in the segment of the protein through which long range ET occurs can also modulate the ET rate by serving as staging points for hopping mechanisms of ET. Specific examples are presented to illustrate these mechanisms by which proteins control rates of ET reactions.
Collapse
Affiliation(s)
- Heather R Williamson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Brian A Dow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States.
| |
Collapse
|
37
|
Olshansky L, Pizano AA, Wei Y, Stubbe J, Nocera DG. Kinetics of hydrogen atom abstraction from substrate by an active site thiyl radical in ribonucleotide reductase. J Am Chem Soc 2014; 136:16210-6. [PMID: 25353063 PMCID: PMC4244835 DOI: 10.1021/ja507313w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ribonucleotide
reductases (RNRs) catalyze the conversion of nucleotides
to deoxynucleotides in all organisms. Active E. coli class Ia RNR is an α2β2 complex
that undergoes reversible, long-range proton-coupled electron transfer
(PCET) over a pathway of redox active amino acids (β-Y122 → [β-W48] → β-Y356 → α-Y731 → α-Y730 → α-C439) that spans ∼35 Å.
To unmask PCET kinetics from rate-limiting conformational changes,
we prepared a photochemical RNR containing a [ReI] photooxidant
site-specifically incorporated at position 355 ([Re]-β2), adjacent to PCET pathway residue Y356 in β. [Re]-β2 was further modified by replacing Y356 with 2,3,5-trifluorotyrosine
to enable photochemical generation and spectroscopic observation of
chemically competent tyrosyl radical(s). Using transient absorption
spectroscopy, we compare the kinetics of Y· decay in the presence
of substrate and wt-α2, Y731F-α2 ,or C439S-α2, as well as with
3′-[2H]-substrate and wt-α2. We
find that only in the presence of wt-α2 and the unlabeled
substrate do we observe an enhanced rate of radical decay indicative
of forward radical propagation. This observation reveals that cleavage
of the 3′-C–H bond of substrate by the transiently formed
C439· thiyl radical is rate-limiting in forward PCET
through α and has allowed calculation of a lower bound for the
rate constant associated with this step of (1.4 ± 0.4) ×
104 s–1. Prompting radical propagation
with light has enabled observation of PCET events heretofore inaccessible,
revealing active site chemistry at the heart of RNR catalysis.
Collapse
Affiliation(s)
- Lisa Olshansky
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | | | | |
Collapse
|
38
|
Minnihan EC, Nocera DG, Stubbe J. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res 2013; 46:2524-35. [PMID: 23730940 DOI: 10.1021/ar4000407] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversionof nucleotides to 2'-deoxynucleotides and are classified on the basis of the metallo-cofactor used to conduct this chemistry. The class Ia RNRs initiate nucleotide reduction when a stable diferric-tyrosyl radical (Y•, t1/2 of 4 days at 4 °C) cofactor in the β2 subunit transiently oxidizes a cysteine to a thiyl radical (S•) in the active site of the α2 subunit. In the active α2β2 complex of the class Ia RNR from E. coli , researchers have proposed that radical hopping occurs reversibly over 35 Å along a specific pathway comprised of redox-active aromatic amino acids: Y122• ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2. Each step necessitates a proton-coupled electron transfer (PCET). Protein conformational changes constitute the rate-limiting step in the overall catalytic scheme and kinetically mask the detailed chemistry of the PCET steps. Technology has evolved to allow the site-selective replacement of the four pathway tyrosines with unnatural tyrosine analogues. Rapid kinetic techniques combined with multifrequency electron paramagnetic resonance, pulsed electron-electron double resonance, and electron nuclear double resonance spectroscopies have facilitated the analysis of stable and transient radical intermediates in these mutants. These studies are beginning to reveal the mechanistic underpinnings of the radical transfer (RT) process. This Account summarizes recent mechanistic studies on mutant E. coli RNRs containing the following tyrosine analogues: 3,4-dihydroxyphenylalanine (DOPA) or 3-aminotyrosine (NH2Y), both thermodynamic radical traps; 3-nitrotyrosine (NO2Y), a thermodynamic barrier and probe of local environmental perturbations to the phenolic pKa; and fluorotyrosines (FnYs, n = 2 or 3), dual reporters on local pKas and reduction potentials. These studies have established the existence of a specific pathway spanning 35 Å within a globular α2β2 complex that involves one stable (position 122) and three transient (positions 356, 730, and 731) Y•s. Our results also support that RT occurs by an orthogonal PCET mechanism within β2, with Y122• reduction accompanied by proton transfer from an Fe1-bound water in the diferric cluster and Y356 oxidation coupled to an off-pathway proton transfer likely involving E350. In α2, RT likely occurs by a co-linear PCET mechanism, based on studies of light-initiated radical propagation from photopeptides that mimic the β2 subunit to the intact α2 subunit and on [(2)H]-ENDOR spectroscopic analysis of the hydrogen-bonding environment surrounding a stabilized NH2Y• formed at position 730. Additionally, studies on the thermodynamics of the RT pathway reveal that the relative reduction potentials decrease according to Y122 < Y356 < Y731 ≈ Y730 ≤ C439, and that the pathway in the forward direction is thermodynamically unfavorable. C439 oxidation is likely driven by rapid, irreversible loss of water during the nucleotide reduction process. Kinetic studies of radical intermediates reveal that RT is gated by conformational changes that occur on the order of >100 s(-1) in addition to the changes that are rate-limiting in the wild-type enzyme (∼10 s(-1)). The rate constant of one of the PCET steps is ∼10(5) s(-1), as measured in photoinitiated experiments.
Collapse
Affiliation(s)
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
39
|
Lemon CM, Karnas E, Bawendi MG, Nocera DG. Two-photon oxygen sensing with quantum dot-porphyrin conjugates. Inorg Chem 2013; 52:10394-406. [PMID: 23978247 PMCID: PMC3881537 DOI: 10.1021/ic4011168] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Supramolecular assemblies of a quantum dot (QD) associated to palladium(II) porphyrins have been developed to detect oxygen (pO2) in organic solvents. Palladium porphyrins are sensitive in the 0-160 Torr range, making them ideal phosphors for in vivo biological oxygen quantification. Porphyrins with meso pyridyl substituents bind to the surface of the QD to produce self-assembled nanosensors. Appreciable overlap between QD emission and porphyrin absorption features results in efficient Förster resonance energy transfer (FRET) for signal transduction in these sensors. The QD serves as a photon antenna, enhancing porphyrin emission under both one- and two-photon excitation, demonstrating that QD-palladium porphyrin conjugates may be used for oxygen sensing over physiological oxygen ranges.
Collapse
Affiliation(s)
- Christopher M Lemon
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
40
|
Xu J, Guo Z. Biomimetic photonic materials with tunable structural colors. J Colloid Interface Sci 2013; 406:1-17. [DOI: 10.1016/j.jcis.2013.05.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 05/05/2013] [Accepted: 05/10/2013] [Indexed: 11/28/2022]
|
41
|
Pizano AA, Olshansky L, Holder PG, Stubbe J, Nocera DG. Modulation of Y356 photooxidation in E. coli class Ia ribonucleotide reductase by Y731 across the α2:β2 interface. J Am Chem Soc 2013; 135:13250-3. [PMID: 23927429 DOI: 10.1021/ja405498e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substrate turnover in class Ia ribonucleotide reductase (RNR) requires reversible radical transport across two subunits over 35 Å, which occurs by a multistep proton-coupled electron-transfer mechanism. Using a photooxidant-labeled β2 subunit of Escherichia coli class Ia RNR, we demonstrate photoinitiated oxidation of a tyrosine in an α2:β2 complex, which results in substrate turnover. Using site-directed mutations of the redox-active tyrosines at the subunit interface, Y356F(β) and Y731F(α), this oxidation is identified to be localized on Y356. The rate of Y356 oxidation depends on the presence of Y731 across the interface. This observation supports the proposal that unidirectional PCET across the Y356(β)-Y731(α)-Y730(α) triad is crucial to radical transport in RNR.
Collapse
Affiliation(s)
- Arturo A Pizano
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
42
|
Kan HI, Chen IY, Zulfajri M, Wang CC. Subunit disassembly pathway of human hemoglobin revealing the site-specific role of its cysteine residues. J Phys Chem B 2013; 117:9831-9. [PMID: 23902424 DOI: 10.1021/jp402292b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cysteine residues play a unique role in human hemoglobin (Hb) by affecting its cooperative oxygen binding behavior and the stability of its tetrameric structure. However, how these cysteine residues fulfill their biophysical functions from the molecular level is yet unclear. Here we study the subunit disassembly pathway of human hemoglobin using the sulfhydryl reagent, p-hydroxymercuribenzoate (PMB) and investigate the functional roles of cysteine residues in human hemoglobin. We show evidence from the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry that all three types of cysteine residues, including the surface-exposed βCys93 and the shielded αCys104 and βCys112 are reactive to PMB, resolving an issue long under debate. It is demonstrated that all three types of cysteine residues must be blocked by PMB to accomplish the subunit disassembly, and the PMB-cysteine reactions proceed in a stepwise manner with an order of βCys93, αCys104, and βCys112. The PMB reactions with the three different cysteine residues demonstrate strong site-specificity. The possible influence of PMB-cysteine reactions to the stability of various intersubunit salt bridges has been discussed based on the crystallographic structure of hemoglobin, providing insights in understanding the hemoglobin subunit disassembly pathway and the site-specific functional role of each cysteine residue in hemoglobin.
Collapse
Affiliation(s)
- Heng-I Kan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. 80424
| | | | | | | |
Collapse
|
43
|
Tommos C, Valentine KG, Martínez-Rivera MC, Liang L, Moorman VR. Reversible phenol oxidation and reduction in the structurally well-defined 2-Mercaptophenol-α₃C protein. Biochemistry 2013; 52:1409-18. [PMID: 23373469 DOI: 10.1021/bi301613p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Mercaptophenol-α₃C serves as a biomimetic model for enzymes that use tyrosine residues in redox catalysis and multistep electron transfer. This model protein was tailored for electrochemical studies of phenol oxidation and reduction with specific emphasis on the redox-driven protonic reactions occurring at the phenol oxygen. This protein contains a covalently modified 2-mercaptophenol-cysteine residue. The radical site and the phenol compound were specifically chosen to bury the phenol OH group inside the protein. A solution nuclear magnetic resonance structural analysis (i) demonstrates that the synthetic 2-mercaptophenol-α₃C model protein behaves structurally as a natural protein, (ii) confirms the design of the radical site, (iii) reveals that the ligated phenol forms an interhelical hydrogen bond to glutamate 13 (phenol oxygen-carboxyl oxygen distance of 3.2 ± 0.5 Å), and (iv) suggests a proton-transfer pathway from the buried phenol OH (average solvent accessible surface area of 3 ± 5%) via glutamate 13 (average solvent accessible surface area of the carboxyl oxygens of 37 ± 18%) to the bulk solvent. A square-wave voltammetry analysis of 2-mercaptophenol-α₃C further demonstrates that (v) the phenol oxidation-reduction cycle is reversible, (vi) formal phenol reduction potentials can be obtained, and (vii) the phenol-O(•) state is long-lived with an estimated lifetime of ≥180 millisecond. These properties make 2-mercaptophenol-α₃C a unique system for characterizing phenol-based proton-coupled electron transfer in a low-dielectric and structured protein environment.
Collapse
Affiliation(s)
- Cecilia Tommos
- Graduate Group in Biochemistry and Molecular Biophysics and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, United States.
| | | | | | | | | |
Collapse
|
44
|
Pizano AA, Yang JL, Nocera DG. Photochemical Tyrosine Oxidation with a Hydrogen-Bonded Proton Acceptor by Bidirectional Proton-Coupled Electron Transfer. Chem Sci 2012; 3:2457-2461. [PMID: 23495362 DOI: 10.1039/c2sc20113e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amino acid radical generation and transport are fundamentally important to numerous essential biological processes to which small molecule models lend valuable mechanistic insights. Pyridyl-amino acid-methyl esters are appended to a rhenium(I) tricarbonyl 1,10-phenanthroline core to yield rhenium-amino acid complexes with tyrosine ([Re]-Y-OH) and phenylalanine ([Re]-F). The emission from the [Re] center is more significantly quenched for [Re]-Y-OH upon addition of base. Time-resolved studies establish that excited-state quenching occurs by a combination of static and dynamic mechanisms. The degree of quenching depends on the strength of the base, consistent with a proton-coupled electron transfer (PCET) quenching mechanism. Comparative studies of [Re]-Y-OH and [Re]-F enable a detailed mechanistic analysis of a bidirectional PCET process.
Collapse
Affiliation(s)
- Arturo A Pizano
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307; Tel: 61d53 5537
| | | | | |
Collapse
|