1
|
Lisowska M, Lickiss F, Gil-Mir M, Huart AS, Trybala Z, Way L, Hernychova L, Krejci A, Muller P, Krejcir R, Zhukow I, Jurczak P, Rodziewicz-Motowidło S, Ball K, Vojtesek B, Hupp T, Kalathiya U. Next-generation sequencing of a combinatorial peptide phage library screened against ubiquitin identifies peptide aptamers that can inhibit the in vitro ubiquitin transfer cascade. Front Microbiol 2022; 13:875556. [PMID: 36532480 PMCID: PMC9755681 DOI: 10.3389/fmicb.2022.875556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/13/2022] [Indexed: 09/01/2023] Open
Abstract
Defining dynamic protein-protein interactions in the ubiquitin conjugation reaction is a challenging research area. Generating peptide aptamers that target components such as ubiquitin itself, E1, E2, or E3 could provide tools to dissect novel features of the enzymatic cascade. Next-generation deep sequencing platforms were used to identify peptide sequences isolated from phage-peptide libraries screened against Ubiquitin and its ortholog NEDD8. In over three rounds of selection under differing wash criteria, over 13,000 peptides were acquired targeting ubiquitin, while over 10,000 peptides were selected against NEDD8. The overlap in peptides against these two proteins was less than 5% suggesting a high degree in specificity of Ubiquitin or NEDD8 toward linear peptide motifs. Two of these ubiquitin-binding peptides were identified that inhibit both E3 ubiquitin ligases MDM2 and CHIP. NMR analysis highlighted distinct modes of binding of the two different peptide aptamers. These data highlight the utility of using next-generation sequencing of combinatorial phage-peptide libraries to isolate peptide aptamers toward a protein target that can be used as a chemical tool in a complex multi-enzyme reaction.
Collapse
Affiliation(s)
- Małgorzata Lisowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Fiona Lickiss
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Maria Gil-Mir
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Anne-Sophie Huart
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Zuzanna Trybala
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Luke Way
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Adam Krejci
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Petr Muller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Igor Zhukow
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Kathryn Ball
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted Hupp
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Sloan-Dennison S, Laing S, Graham D, Faulds K. From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring. Chem Commun (Camb) 2021; 57:12436-12451. [PMID: 34734952 PMCID: PMC8609625 DOI: 10.1039/d1cc04805h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is a non-invasive technique that allows specific chemical information to be obtained from various types of sample. The detailed molecular information that is present in Raman spectra permits monitoring of biochemical changes that occur in diseases, such as cancer, and can be used for the early detection and diagnosis of the disease, for monitoring treatment, and to distinguish between cancerous and non-cancerous biological samples. Several techniques have been developed to enhance the capabilities of Raman spectroscopy by improving detection sensitivity, reducing imaging times and increasing the potential applicability for in vivo analysis. The different Raman techniques each have their own advantages that can accommodate the alternative detection formats, allowing the techniques to be applied in several ways for the detection and diagnosis of cancer. This feature article discusses the various forms of Raman spectroscopy, how they have been applied for cancer detection, and the adaptation of the techniques towards their use for in vivo cancer detection and in clinical diagnostics. Despite the advances in Raman spectroscopy, the clinical application of the technique is still limited and certain challenges must be overcome to enable clinical translation. We provide an outlook on the future of the techniques in this area and what we believe is required to allow the potential of Raman spectroscopy to be achieved for clinical cancer diagnostics.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
3
|
Lee TH, Lee CC, Chen JJ, Fan PC, Tu YR, Yen CL, Kuo G, Chen SW, Tsai FC, Chang CH. Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery. J Clin Med 2021; 10:jcm10132741. [PMID: 34206256 PMCID: PMC8268369 DOI: 10.3390/jcm10132741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Urinary liver-type fatty acid binding protein (L-FABP) is a novel biomarker with promising performance in detecting kidney injury. Previous studies reported that L-FABP showed moderate discrimination in patients that underwent cardiac surgery, and other studies revealed that longer duration of cardiopulmonary bypass (CPB) was associated with a higher risk of postoperative acute kidney injury (AKI). This study aims to examine assessing CPB duration first, then examining L-FABP can improve the discriminatory ability of L-FABP in postoperative AKI. A total of 144 patients who received cardiovascular surgery were enrolled. Urinary L-FABP levels were examined at 4 to 6 and 16 to 18 h postoperatively. In the whole study population, the AUROC of urinary L-FABP in predicting postoperative AKI within 7 days was 0.720 at 16 to 18 h postoperatively. By assessing patients according to CPB duration, the urinary L-FABP at 16 to 18 h showed more favorable discriminating ability with AUROC of 0.742. Urinary L-FABP exhibited good performance in discriminating the onset of AKI within 7 days after cardiovascular surgery. Assessing postoperative risk of AKI through CPB duration first and then using urinary L-FABP examination can provide more accurate and satisfactory performance in predicting postoperative AKI.
Collapse
Affiliation(s)
- Tao Han Lee
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (T.H.L.); (C.-C.L.); (J.-J.C.); (P.-C.F.); (Y.-R.T.); (C.-L.Y.); (G.K.)
| | - Cheng-Chia Lee
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (T.H.L.); (C.-C.L.); (J.-J.C.); (P.-C.F.); (Y.-R.T.); (C.-L.Y.); (G.K.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jia-Jin Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (T.H.L.); (C.-C.L.); (J.-J.C.); (P.-C.F.); (Y.-R.T.); (C.-L.Y.); (G.K.)
| | - Pei-Chun Fan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (T.H.L.); (C.-C.L.); (J.-J.C.); (P.-C.F.); (Y.-R.T.); (C.-L.Y.); (G.K.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Ran Tu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (T.H.L.); (C.-C.L.); (J.-J.C.); (P.-C.F.); (Y.-R.T.); (C.-L.Y.); (G.K.)
| | - Chieh-Li Yen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (T.H.L.); (C.-C.L.); (J.-J.C.); (P.-C.F.); (Y.-R.T.); (C.-L.Y.); (G.K.)
| | - George Kuo
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (T.H.L.); (C.-C.L.); (J.-J.C.); (P.-C.F.); (Y.-R.T.); (C.-L.Y.); (G.K.)
| | - Shao-Wei Chen
- Department of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (S.-W.C.); (F.-C.T.)
| | - Feng-Chun Tsai
- Department of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (S.-W.C.); (F.-C.T.)
| | - Chih-Hsiang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (T.H.L.); (C.-C.L.); (J.-J.C.); (P.-C.F.); (Y.-R.T.); (C.-L.Y.); (G.K.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200
| |
Collapse
|
4
|
Chee SMQ, Wongsantichon J, Yi LS, Sana B, Frosi Y, Robinson RC, Ghadessy FJ. Functional display of bioactive peptides on the vGFP scaffold. Sci Rep 2021; 11:10127. [PMID: 33980885 PMCID: PMC8115314 DOI: 10.1038/s41598-021-89421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Grafting bioactive peptides into recipient protein scaffolds can often increase their activities by conferring enhanced stability and cellular longevity. Here, we describe use of vGFP as a novel scaffold to display peptides. vGFP comprises GFP fused to a bound high affinity Enhancer nanobody that potentiates its fluorescence. We show that peptides inserted into the linker region between GFP and the Enhancer are correctly displayed for on-target interaction, both in vitro and in live cells by pull-down, measurement of target inhibition and imaging analyses. This is further confirmed by structural studies highlighting the optimal display of a vGFP-displayed peptide bound to Mdm2, the key negative regulator of p53 that is often overexpressed in cancer. We also demonstrate a potential biosensing application of the vGFP scaffold by showing target-dependent modulation of intrinsic fluorescence. vGFP is relatively thermostable, well-expressed and inherently fluorescent. These properties make it a useful scaffold to add to the existing tool box for displaying peptides that can disrupt clinically relevant protein–protein interactions.
Collapse
Affiliation(s)
- Sharon Min Qi Chee
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lau Sze Yi
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Barindra Sana
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Yuri Frosi
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Farid J Ghadessy
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore.
| |
Collapse
|
5
|
Ye Z, Li C, Chen Q, Xu Y, Bell SEJ. Ultra-Stable Plasmonic Colloidal Aggregates for Accurate and Reproducible Quantitative SE(R)RS in Protein-Rich Biomedia. Angew Chem Int Ed Engl 2019; 58:19054-19059. [PMID: 31652024 DOI: 10.1002/anie.201911608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 01/16/2023]
Abstract
Au/Ag colloids aggregated with simple salts are amongst the most commonly used substrates in surface-enhanced (resonance) Raman spectroscopy (SE(R)RS). However, salt-induced aggregation is a dynamic process, which means that SE(R)RS enhancements vary with time and that measurements therefore need to be taken at a fixed time point, normally within a short time-window of a few minutes. Here, we present an emulsion templated method which allows formation of densely-packed quasi-spherical Au/Ag colloidal aggregates. Since the particles in the product aggregates retain their weakly adsorbed charged ligands and the ionic strength remains low these charged aggregates resist further aggregation while still providing intense SE(R)RS enhancement which remains stable for days. This eliminates a major source of irreproducibility in conventional colloidal SE(R)RS measurements and paves the way for SE(R)RS analysis in complex systems, such as protein-rich bio-solutions where conventional aggregated colloids fail.
Collapse
Affiliation(s)
- Ziwei Ye
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, University Road, Belfast, BT9 5AG, Northern Ireland, UK
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, University Road, Belfast, BT9 5AG, Northern Ireland, UK
| | - Qinglu Chen
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, University Road, Belfast, BT9 5AG, Northern Ireland, UK
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, University Road, Belfast, BT9 5AG, Northern Ireland, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, University Road, Belfast, BT9 5AG, Northern Ireland, UK
| |
Collapse
|
6
|
Ye Z, Li C, Chen Q, Xu Y, Bell SEJ. Ultra‐Stable Plasmonic Colloidal Aggregates for Accurate and Reproducible Quantitative SE(R)RS in Protein‐Rich Biomedia. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziwei Ye
- School of Chemistry and Chemical EngineeringQueen's University of Belfast University Road Belfast BT9 5AG Northern Ireland UK
| | - Chunchun Li
- School of Chemistry and Chemical EngineeringQueen's University of Belfast University Road Belfast BT9 5AG Northern Ireland UK
| | - Qinglu Chen
- School of Chemistry and Chemical EngineeringQueen's University of Belfast University Road Belfast BT9 5AG Northern Ireland UK
| | - Yikai Xu
- School of Chemistry and Chemical EngineeringQueen's University of Belfast University Road Belfast BT9 5AG Northern Ireland UK
| | - Steven E. J. Bell
- School of Chemistry and Chemical EngineeringQueen's University of Belfast University Road Belfast BT9 5AG Northern Ireland UK
| |
Collapse
|
7
|
Nam W, Ren X, Tali SAS, Ghassemi P, Kim I, Agah M, Zhou W. Refractive-Index-Insensitive Nanolaminated SERS Substrates for Label-Free Raman Profiling and Classification of Living Cancer Cells. NANO LETTERS 2019; 19:7273-7281. [PMID: 31525057 DOI: 10.1021/acs.nanolett.9b02864] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an ultrasensitive molecular-fingerprint-based technique for label-free biochemical analysis of biological systems. However, for conventional SERS substrates, SERS enhancement factors (EFs) strongly depend on background refractive index (RI), which prevents reliable spatiotemporal SERS analysis of living cells consisting of different extra-/intracellular organelles with a heterogeneous distribution of local RI values between 1.30 and 1.60. Here, we demonstrate that nanolaminated SERS substrates can support uniform arrays of vertically oriented nanogap hot spots with large SERS EFs (>107) insensitive to background RI variations. Experimental and numerical studies reveal that the observed RI-insensitive SERS response is due to the broadband multiresonant optical properties of nanolaminated plasmonic nanostructures. As a proof-of-concept demonstration, we use RI-insensitive nanolaminated SERS substrates to achieve label-free Raman profiling and classification of living cancer cells with a high prediction accuracy of 96%. We envision that RI-insensitive high-performance nanolaminated SERS substrates can potentially enable label-free spatiotemporal biochemical analysis of living biological systems.
Collapse
Affiliation(s)
- Wonil Nam
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Xiang Ren
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Seied Ali Safiabadi Tali
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Parham Ghassemi
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Inyoung Kim
- Department of Statistics , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Masoud Agah
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Wei Zhou
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
8
|
Ilimbi D, Buess‐Herman C, Doneux T. Chronopotentiometry as a Sensitive Interfacial Characterisation Tool for Peptide Aptamer Monolayers. ELECTROANAL 2019. [DOI: 10.1002/elan.201900285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Diane Ilimbi
- Chemistry of Surfaces, Interfaces and Nanomaterials, Faculté des SciencesUniversité libre de Bruxelles (ULB) Boulevard du Triomphe 2, CP 255 B-1050 Bruxelles Belgium
| | - Claudine Buess‐Herman
- Chemistry of Surfaces, Interfaces and Nanomaterials, Faculté des SciencesUniversité libre de Bruxelles (ULB) Boulevard du Triomphe 2, CP 255 B-1050 Bruxelles Belgium
| | - Thomas Doneux
- Chemistry of Surfaces, Interfaces and Nanomaterials, Faculté des SciencesUniversité libre de Bruxelles (ULB) Boulevard du Triomphe 2, CP 255 B-1050 Bruxelles Belgium
| |
Collapse
|
9
|
Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, Saranya G, Arya JS, Vijayan VM, Maiti KK. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Biomaterials 2018; 181:140-181. [PMID: 30081304 DOI: 10.1016/j.biomaterials.2018.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Excellent multiplexing capability, molecular specificity, high sensitivity and the potential of resolving complex molecular level biological compositions augmented the diagnostic modality of surface-enhanced Raman scattering (SERS) in biology and medicine. While maintaining all the merits of classical Raman spectroscopy, SERS provides a more sensitive and selective detection and quantification platform. Non-invasive, chemically specific and spatially resolved analysis facilitates the exploration of SERS-based nano probes in diagnostic and theranostic applications with improved clinical outcomes compared to the currently available so called state-of-art technologies. Adequate knowledge on the mechanism and properties of SERS based nano probes are inevitable in utilizing the full potential of this modality for biomedical applications. The safety and efficiency of metal nanoparticles and Raman reporters have to be critically evaluated for the successful translation of SERS in to clinics. In this context, the present review attempts to give a comprehensive overview about the selected medical, biomedical and allied applications of SERS while highlighting recent and relevant outcomes ranging from simple detection platforms to complicated clinical applications.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Nisha Narayanan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jyothi B Nair
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Adukkadan N Ramya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Palasseri T Sujai
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jayadev S Arya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Vineeth M Vijayan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India.
| |
Collapse
|
10
|
Wissler J, Bäcker S, Feis A, Knauer SK, Schlücker S. Site-Specific SERS Assay for Survivin Protein Dimer: From Ensemble Experiments to Correlative Single-Particle Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700802. [PMID: 28675620 DOI: 10.1002/smll.201700802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Indexed: 06/07/2023]
Abstract
An assay for Survivin, a small dimeric protein which functions as modulator of apoptosis and cell division and serves as a promising diagnostic biomarker for different types of cancer, is presented. The assay is based on switching on surface-enhanced Raman scattering (SERS) upon incubation of the Survivin protein dimer with Raman reporter-labeled gold nanoparticles (AuNP). Site-specificity is achieved by complexation of nickel-chelated N-nitrilo-triacetic acid (Ni-NTA) anchors on the particle surface by multiple histidines (His6 -tag) attached to each C-terminus of the centrosymmetric protein dimer. Correlative single-particle analysis using light sheet laser microscopy enables the simultaneous observation of both elastic and inelastic light scattering from the same sample volume. Thereby, the SERS-inactive AuNP-protein monomers can be directly discriminated from the SERS-active AuNP-protein dimers/oligomers. This information, i.e. the percentage of SERS-active AuNP in colloidal suspension, is not accessible from conventional SERS experiments due to ensemble averaging. The presented correlative single-particle approach paves the way for quantitative site-specific SERS assays in which site-specific protein recognition by small chemical and in particular supramolecular ligands can be tested.
Collapse
Affiliation(s)
- Jörg Wissler
- Physical Chemistry I, Department of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstrasse 5, Essen, D-45141, Germany
| | - Sandra Bäcker
- Molecular Biology II, Department of Biology, University Duisburg-Essen and Zentrum für Molekulare Biotechnologie (ZMB), Universitätsstrasse 5, Essen, D-45141, Germany
| | - Alessandro Feis
- Dipartimento di Chimica "Ugo Schiff", Universita' di Firenze, Via della Lastruccia 3, Sesto Fiorentino, FI, I-50019, Italy
| | - Shirley K Knauer
- Molecular Biology II, Department of Biology, University Duisburg-Essen and Zentrum für Molekulare Biotechnologie (ZMB), Universitätsstrasse 5, Essen, D-45141, Germany
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstrasse 5, Essen, D-45141, Germany
| |
Collapse
|
11
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
12
|
Li Y, Wang Z, Mu X, Ma A, Guo S. Raman tags: Novel optical probes for intracellular sensing and imaging. Biotechnol Adv 2016; 35:168-177. [PMID: 28017904 DOI: 10.1016/j.biotechadv.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/25/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
Abstract
Optical labels are needed for probing specific target molecules in complex biological systems. As a newly emerging category of tags for molecular imaging in live cells, the Raman label attracts much attention because of the rich information obtained from targeted and untargeted molecules by detecting molecular vibrations. Here, we list three types of Raman probes based on different mechanisms: Surface Enhanced Raman Scattering (SERS) probes, bioorthogonal Raman probes, and Resonance Raman (RR) probes. We review how these Raman probes work for detecting and imaging proteins, nucleic acids, lipids, and other biomolecules in vitro, within cells, or in vivo. We also summarize recent noteworthy studies, expound on the construction of every type of Raman probe and operating principle, sum up in tables typically targeting molecules for specific binding, and provide merits, drawbacks, and future prospects for the three Raman probes.
Collapse
Affiliation(s)
- Yuee Li
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China.
| | - Zhong Wang
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China
| | - Xijiao Mu
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China
| | - Aning Ma
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China
| | - Shu Guo
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China
| |
Collapse
|
13
|
Abstract
This review focuses on the recent advances in SERS and its potential to detect multiple biomolecules in clinical samples.
Collapse
Affiliation(s)
- Stacey Laing
- Centre for Molecular Nanometrology
- WestCHEM
- Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
| | - Kirsten Gracie
- Centre for Molecular Nanometrology
- WestCHEM
- Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
| | - Karen Faulds
- Centre for Molecular Nanometrology
- WestCHEM
- Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
| |
Collapse
|
14
|
Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis. J Mol Biol 2014; 427:1728-47. [PMID: 25543083 DOI: 10.1016/j.jmb.2014.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
Mouse double minute 2 (MDM2) has a phosphorylation site within a lid motif at Ser17 whose phosphomimetic mutation to Asp17 stimulates MDM2-mediated polyubiquitination of p53. MDM2 lid deletion, but not Asp17 mutation, induced a blue shift in the λ(max) of intrinsic fluorescence derived from residues in the central domain including Trp235, Trp303, Trp323, and Trp329. This indicates that the Asp17 mutation does not alter the conformation of MDM2 surrounding the tryptophan residues. In addition, Phe235 mutation enhanced MDM2 binding to p53 but did not stimulate its ubiquitination function, thus uncoupling increases in p53 binding from its E3 ubiquitin ligase function. However, the Asp17 mutation in MDM2 stimulated its discharge of the UBCH5a-ubiquitin thioester adduct (UBCH5a is a ubiquitin-conjugating enzyme E2D 1 UBC4/5 homolog yeast). This stimulation of ubiquitin discharge from E2 was independent of the p53 substrate. There are now four known effects of the Asp17 mutation on MDM2: (i) it alters the conformation of the isolated N-terminus as defined by NMR; (ii) it induces increased thermostability of the isolated N-terminal domain; (iii) it stimulates the allosteric interaction of MDM2 with the DNA-binding domain of p53; and (iv) it stimulates a novel protein-protein interaction with the E2-ubiquitin complex in the absence of substrate p53 that, in turn, increases hydrolysis of the E2-ubiquitin thioester bond. These data also suggest a new strategy to disrupt MDM2 function by targeting the E2-ubiquitin discharge reaction.
Collapse
|
15
|
Abstract
MDM2 and MDMX are homologous proteins that bind to p53 and regulate its activity. Both contain three folded domains and ~70% intrinsically disordered regions. Previous detailed structural and biophysical studies have concentrated on the isolated folded domains. The N-terminal domains of both exhibit high affinity for the disordered N-terminal of p53 (p53TAD) and inhibit its transactivation function. Here, we have studied full-length MDMX and found a ~100-fold weaker affinity for p53TAD than does its isolated N-terminal domain. We found from NMR spectroscopy and binding studies that MDMX (but not MDM2) contains a conserved, disordered self-inhibitory element that competes intramolecularly for binding with p53TAD. This motif, which we call the WWW element, is centered around residues Trp200 and Trp201. Deletion or mutation of the element increased binding affinity of MDMX to that of the isolated N-terminal domain level. The self-inhibition of MDMX implies a regulatory, allosteric mechanism of its activity. MDMX rests in a latent state in which its binding activity with p53TAD is masked by autoinhibition. Activation of MDMX would require binding to a regulatory protein. The inhibitory function of the WWW element may explain the oncogenic effects of an alternative splicing variant of MDMX that does not contain the WWW element and is found in some aggressive cancers.
Collapse
|
16
|
Harper MM, McKeating KS, Faulds K. Recent developments and future directions in SERS for bioanalysis. Phys Chem Chem Phys 2013; 15:5312-28. [PMID: 23318580 DOI: 10.1039/c2cp43859c] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability to develop new and sensitive methods of biomolecule detection is crucial to the advancement of pre-clinical disease diagnosis and effective patient specific treatment. Surface enhanced Raman scattering (SERS) is an optical spectroscopy amenable to this goal, as it is capable of extremely sensitive biomolecule detection and multiplexed analysis. This perspective highlights where SERS has been successfully used to detect target biomolecules, specifically DNA and proteins, and where in vivo analysis has been successfully utilised. The future of SERS development is discussed and emphasis is placed on the steps required to transport this novel technique from the research laboratory to a clinical setting for medical diagnostics.
Collapse
Affiliation(s)
- Mhairi M Harper
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
17
|
Gray TA, Murray E, Nowicki MW, Remnant L, Scherl A, Muller P, Vojtesek B, Hupp TR. Development of a fluorescent monoclonal antibody-based assay to measure the allosteric effects of synthetic peptides on self-oligomerization of AGR2 protein. Protein Sci 2013; 22:1266-78. [PMID: 23780840 DOI: 10.1002/pro.2299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/12/2022]
Abstract
Many regulatory proteins are homo-oligomeric and designing assays that measure self-assembly will provide novel approaches to study protein allostery and screen for novel small molecule modulators of protein interactions. We present an assay to begin to define the biochemical determinants that regulate dimerization of the cancer-associated oncoprotein AGR2. A two site-sandwich microtiter assay ((2S) MTA) was designed using a DyLight800-labeled monoclonal antibody that binds to an epitope in AGR2 to screen for synthetic self-peptides that might regulate dimer stability. Peptides derived from the intrinsically disordered N-terminal region of AGR2 increase in trans oligomer stability as defined using the (2S) MTA assay. A DSS-crosslinking assay that traps the AGR2 dimer through K95-K95 adducts confirmed that Δ45-AGR2 was a more stable dimer using denaturing gel electrophoresis. A titration of wt-AGR2, Δ45-AGR2 (more stable dimer), and monomeric AGR2(E60A) revealed that Δ45-AGR2 was more active in binding to Reptin than either wt-AGR2 or the AGR2(E60A) mutant. Our data have defined a functional role for the AGR2 dimer in the binding to its most well characterized interacting protein, Reptin. The ability to regulate AGR2 oligomerization in trans opens the possibility for developing small molecules that regulate its' biochemical activity as potential cancer therapeutics. The data also highlight the utility of this oligomerization assay to screen chemical libraries for ligands that could regulate AGR2 dimer stability and its' oncogenic potential.
Collapse
Affiliation(s)
- Terry A Gray
- Institute of Genetics and Molecular Medicine, Cell Signaling Unit, University of Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 2013; 31:249-57. [DOI: 10.1016/j.tibtech.2013.01.013] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
19
|
James AE, Driskell JD. Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). Analyst 2013; 138:1212-8. [DOI: 10.1039/c2an36467k] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Ponnuswamy A, Hupp T, Fåhraeus R. Concepts in MDM2 Signaling: Allosteric Regulation and Feedback Loops. Genes Cancer 2012; 3:291-7. [PMID: 23150762 DOI: 10.1177/1947601912454140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The function and regulation of MDM2 as a component of a p53-dependent negative feedback loop has formed a core paradigm in the p53 field. This concept, now 20 years old, has been solidified by fields of protein science, transgenic technology, and drug discovery in human cancer. However, it has been noted that a simple negative feedback loop between p53 and MDM2 lacks an intrinsic "activating" step that counteracts this inhibition and permits oscillation of the feedback to occur as p53 is switched on and off. More recent work has identified a solution to the missing piece of the picture that counters the negative feedback loop, which is MDM2 itself. Under conditions of genotoxic stress, MDM2 helps to activate p53 by increasing its rate of protein synthesis. This simple observation makes certain aspects of the p53 response more comprehensible such as why MDM2 is upregulated by p53 early on following DNA damage and how phosphorylation of MDM2 at the C-terminal Ser395 by ATM translates into p53 activation. The latter acts by inducing allosteric changes in the RING domain of MDM2 that expose its RNA binding pocket, support p53 synthesis, and suppress its degradation. This allosteric nature of MDM2 in the C-terminus mirrors the allosteric effects of the binding of small molecules to the p53 interacting pocket at the N-terminus of MDM2, which opens the core domain of MDM2 to central domains of p53, which controls p53 ubiquitination. Thus, the highly allosteric nature of MDM2 provides the basis for dynamic protein-protein interactions and protein-RNA interactions through which MDM2's activity is regulated in p53 protein destruction or in p53 protein synthesis. We discuss these mechanisms and how this information can be exploited for drug development programs aimed at activating p53 via targeting MDM2.
Collapse
Affiliation(s)
- Anand Ponnuswamy
- Cibles Therapeutiques, INSERM Unité 940, Institut de Génétique Moléculaire, IUH Hôpital St. Louis, Paris, France ; RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | | |
Collapse
|