1
|
Wu Z, Famous M, Stoikidou T, Bowden FES, Dominic G, Huws SA, Godoy-Santos F, Oyama LB. Unravelling AMR dynamics in the rumenofaecobiome: Insights, challenges and implications for One Health. Int J Antimicrob Agents 2025; 66:107494. [PMID: 40120959 DOI: 10.1016/j.ijantimicag.2025.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Antimicrobial resistance (AMR) is a critical global threat to human, animal and environmental health, exacerbated by horizontal gene transfer (HGT) via mobile genetic elements. This poses significant challenges that have a negative impact on the sustainability of the One Health approach, hindering its long-term viability and effectiveness in addressing the interconnectedness of global health. Recent studies on livestock animals, specifically ruminants, indicate that culturable ruminal bacteria harbour AMR genes with the potential for HGT. However, these studies have focused predominantly on using the faecobiome as a proxy to the rumen microbiome or using easily isolated and culturable bacteria, overlooking the unculturable population. These unculturable microbial groups could have a profound influence on the rumen resistome and AMR dynamics within livestock ecosystems, potentially holding critical insights for advanced understanding of AMR in One Health. In order to address this gap, this review of current research on the burden of AMR in livestock was undertaken, and it is proposed that combined study of the rumen microbiome and faecobiome, termed the 'rumenofaecobiome', should be performed to enhance understanding of the risks of AMR in ruminant livestock. This review discusses the complexities of the rumen microbiome and the risks of AMR transmission in this microbiome in a One Health context. AMR transmission dynamics and methodologies for assessing the risks of AMR in livestock are summarized, and future considerations for researching the impact of AMR in the rumen microbiome and the implications within the One Health framework are discussed.
Collapse
Affiliation(s)
- Ziming Wu
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| | - Mustasim Famous
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK; Department of Animal Science, Khulna Agricultural University, Khulna, Bangladesh
| | - Theano Stoikidou
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Freya E S Bowden
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Gama Dominic
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Sharon A Huws
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Fernanda Godoy-Santos
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Linda B Oyama
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
2
|
González-López A, Ge X, Larsson DSD, Sihlbom Wallem C, Sanyal S, Selmer M. Structural mechanism of FusB-mediated rescue from fusidic acid inhibition of protein synthesis. Nat Commun 2025; 16:3693. [PMID: 40251147 PMCID: PMC12008383 DOI: 10.1038/s41467-025-58902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
The antibiotic resistance protein FusB rescues protein synthesis from inhibition by fusidic acid (FA), which locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis. Here, we present time-resolved single-particle cryo-EM structures explaining the mechanism of FusB-mediated rescue. FusB binds to the FA-trapped EF-G on the ribosome, causing large-scale conformational changes of EF-G that break interactions with the ribosome, tRNA, and mRNA. This leads to dissociation of EF-G from the ribosome, followed by FA release. We also observe two independent binding sites of FusB on the classical-state ribosome, overlapping with the binding site of EF-G to each of the ribosomal subunits, yet not inhibiting tRNA delivery. The affinity of FusB to the ribosome and the concentration of FusB in S. aureus during FusB-mediated resistance support that direct binding of FusB to ribosomes could occur in the cell. Our results reveal an intricate resistance mechanism involving specific interactions of FusB with both EF-G and the ribosome, and a non-canonical release pathway of EF-G.
Collapse
Affiliation(s)
- Adrián González-López
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
- Uppsala Antibiotic Center, Uppsala University, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Daniel S D Larsson
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Carina Sihlbom Wallem
- Proteomics Core Facility, Scilifelab and University of Gothenburg, Gothenburg, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden.
- Uppsala Antibiotic Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Kumari S, Kumar A, Lepcha A, Kumar R. Cold-adapted Exiguobacterium sibiricum K1 as a potential bioinoculant in cold regions: Physiological and genomic elucidation of biocontrol and plant growth promotion. Gene 2024; 916:148439. [PMID: 38583819 DOI: 10.1016/j.gene.2024.148439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The scarcity of soil nutrient availability under cold conditions of Himalayan regions needs a sustainable approach for better crop yields. The cold-adapted bacteria, Exiguobacterium sibiricum K1, with the potential to produce several plant growth-promoting (PGP) attributes, nitrogen fixation, indole acetic acid production, phosphate and potassium solubilization at 10 °C can provide an opportunity to promote crop yield improvement in an eco-friendly way under cold conditions. The bacterium also exhibited biocontrol activity against two phytopathogens and produced siderophore (53.0 ± 0.5 % psu). The strain's PGP properties were investigated using a spinach-based bioassay under controlled conditions. The bacterized seeds showed a notable increase in germination rate (23.2 %), shoot length (65.3 %), root length (56.6 %), leaf area (73.7 %), number of leaflets (65.2 %), and dry matter (65.2 %). Additionally, the leaf analysis indicated elevated chlorophyll pigments, i.e., chlorophyll a (55.5 %), chlorophyll b (42.8 %), carotenoids (35.2 %), percentage radical scavenging activity (47.4 %), and leaf nutrient uptake such as nitrogen (23.4 %), calcium (60.8 %), potassium (62.3 %), and magnesium (28.9 %). Moreover, the whole-genome sequencing and genome mining endorsed various biofertilisation-related genes, including genes for potassium and phosphate solubilization, iron and nitrogen acquisition, carbon dioxide fixation, and biocontrol ability of Exiguobacterium sibiricum K1. Overall, this study highlights the role of Exiguobacterium sibiricum K1 as a potential bioinoculant for improving crop yield under cold environments.
Collapse
Affiliation(s)
- Sareeka Kumari
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Ayush Lepcha
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
4
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
5
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 506] [Impact Index Per Article: 253.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Koller TO, Turnbull KJ, Vaitkevicius K, Crowe-McAuliffe C, Roghanian M, Bulvas O, Nakamoto JA, Kurata T, Julius C, Atkinson G, Johansson J, Hauryliuk V, Wilson D. Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes. Nucleic Acids Res 2022; 50:11285-11300. [PMID: 36300626 PMCID: PMC9638945 DOI: 10.1093/nar/gkac934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 08/09/2023] Open
Abstract
HflX is a ubiquitous bacterial GTPase that splits and recycles stressed ribosomes. In addition to HflX, Listeria monocytogenes contains a second HflX homolog, HflXr. Unlike HflX, HflXr confers resistance to macrolide and lincosamide antibiotics by an experimentally unexplored mechanism. Here, we have determined cryo-EM structures of L. monocytogenes HflXr-50S and HflX-50S complexes as well as L. monocytogenes 70S ribosomes in the presence and absence of the lincosamide lincomycin. While the overall geometry of HflXr on the 50S subunit is similar to that of HflX, a loop within the N-terminal domain of HflXr, which is two amino acids longer than in HflX, reaches deeper into the peptidyltransferase center. Moreover, unlike HflX, the binding of HflXr induces conformational changes within adjacent rRNA nucleotides that would be incompatible with drug binding. These findings suggest that HflXr confers resistance using an allosteric ribosome protection mechanism, rather than by simply splitting and recycling antibiotic-stalled ribosomes.
Collapse
Affiliation(s)
| | | | - Karolis Vaitkevicius
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Mohammad Roghanian
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
- Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Tatsuaki Kurata
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Christina Julius
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Jörgen Johansson
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | | | - Daniel N Wilson
- To whom correspondence should be addressed. Tel: +49 40 42838 2841;
| |
Collapse
|
7
|
Tu B, Cao N, Zhang B, Zheng W, Li J, Tang X, Su K, Li J, Zhang Z, Yan Z, Li D, Zheng X, Zhang K, Hong WD, Wu P. Synthesis and Biological Evaluation of Novel Fusidic Acid Derivatives as Two-in-One Agent with Potent Antibacterial and Anti-Inflammatory Activity. Antibiotics (Basel) 2022; 11:antibiotics11081026. [PMID: 36009895 PMCID: PMC9405029 DOI: 10.3390/antibiotics11081026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Fusidic acid (FA), a narrow-spectrum antibiotics, is highly sensitive to various Gram-positive cocci associated with skin infections. It has outstanding antibacterial effects against certain Gram-positive bacteria whilst no cross-resistance with other antibiotics. Two series of FA derivatives were synthesized and their antibacterial activities were tested. A new aromatic side-chain analog, FA-15 exhibited good antibacterial activity with MIC values in the range of 0.781–1.563 µM against three strains of Staphylococcus spp. Furthermore, through the assessment by the kinetic assay, similar characteristics of bacteriostasis by FA and its aromatic derivatives were observed. In addition, anti-inflammatory activities of FA and its aromatic derivatives were evaluated by using a 12-O-tetradecanoylphorbol-13-acetate (TPA) induced mouse ear edema model. The results also indicated that FA and its aromatic derivatives effectively reduced TPA-induced ear edema in a dose-dependent manner. Following, multiform computerized simulation, including homology modeling, molecular docking, molecular dynamic simulation and QSAR was conducted to clarify the mechanism and regularity of activities. Overall, the present work gave vital clues about structural modifications and has profound significance in deeply scouting for bioactive potentials of FA and its derivatives.
Collapse
Affiliation(s)
- Borong Tu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Nana Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Bingjie Zhang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jiahao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xiaowen Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kaize Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| |
Collapse
|
8
|
Ero R, Yan XF, Gao YG. Ribosome Protection Proteins-"New" Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Int J Mol Sci 2021; 22:5356. [PMID: 34069640 PMCID: PMC8161019 DOI: 10.3390/ijms22105356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/07/2023] Open
Abstract
Bacteria have evolved an array of mechanisms enabling them to resist the inhibitory effect of antibiotics, a significant proportion of which target the ribosome. Indeed, resistance mechanisms have been identified for nearly every antibiotic that is currently used in clinical practice. With the ever-increasing list of multi-drug-resistant pathogens and very few novel antibiotics in the pharmaceutical pipeline, treatable infections are likely to become life-threatening once again. Most of the prevalent resistance mechanisms are well understood and their clinical significance is recognized. In contrast, ribosome protection protein-mediated resistance has flown under the radar for a long time and has been considered a minor factor in the clinical setting. Not until the recent discovery of the ATP-binding cassette family F protein-mediated resistance in an extensive list of human pathogens has the significance of ribosome protection proteins been truly appreciated. Understanding the underlying resistance mechanism has the potential to guide the development of novel therapeutic approaches to evade or overcome the resistance. In this review, we discuss the latest developments regarding ribosome protection proteins focusing on the current antimicrobial arsenal and pharmaceutical pipeline as well as potential implications for the future of fighting bacterial infections in the time of "superbugs."
Collapse
Affiliation(s)
- Rya Ero
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
9
|
Garcia Chavez M, Garcia A, Lee HY, Lau GW, Parker EN, Komnick KE, Hergenrother PJ. Synthesis of Fusidic Acid Derivatives Yields a Potent Antibiotic with an Improved Resistance Profile. ACS Infect Dis 2021; 7:493-505. [PMID: 33522241 DOI: 10.1021/acsinfecdis.0c00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fusidic acid (FA) is a potent steroidal antibiotic that has been used in Europe for more than 60 years to treat a variety of infections caused by Gram-positive pathogens. Despite its clinical success, FA requires significantly elevated dosing (3 g on the first day, 1.2 g on subsequent days) to minimize resistance, as FA displays a high resistance frequency, and a large shift in minimum inhibitory concentration is observed for resistant bacteria. Despite efforts to improve on these aspects, all previously constructed derivatives of FA have worse antibacterial activity against Gram-positive bacteria than the parent natural product. Here, we report the creation of a novel FA analogue that has equivalent potency against clinical isolates of Staphylococcus aureus (S. aureus) and Enterococcus faecium (E. faecium) as well as an improved resistance profile in vitro when compared to FA. Importantly, this new compound displays efficacy against an FA-resistant strain of S. aureus in a soft-tissue murine infection model. This work delineates the structural features of FA necessary for potent antibiotic activity and demonstrates that the resistance profile can be improved for this scaffold and target.
Collapse
Affiliation(s)
- Martin Garcia Chavez
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alfredo Garcia
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gee W. Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana−Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61801, United States
| | - Erica N. Parker
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kailey E. Komnick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois at Urbana−Champaign, Roger Adams
Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Batool N, Shamim A, Chaurasia AK, Kim KK. Genome-Wide Analysis of Staphylococcus aureus Sequence Type 72 Isolates Provides Insights Into Resistance Against Antimicrobial Agents and Virulence Potential. Front Microbiol 2021; 11:613800. [PMID: 33552024 PMCID: PMC7854921 DOI: 10.3389/fmicb.2020.613800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus sequence type 72 (ST72) is a major community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) that has rapidly entered the hospital setting in Korea, causing mild superficial skin wounds to severe bloodstream infections. In this study, we sequenced and analyzed the genomes of one methicillin-resistant human isolate and one methicillin-sensitive human isolate of ST72 from Korea, K07-204 and K07-561, respectively. We used a subtractive genomics approach to compare these two isolates to other 27 ST72 isolates to investigate antimicrobial resistance (AMR) and virulence potential. Furthermore, we validated genotypic differences by phenotypic characteristics analysis. Comparative and subtractive genomics analysis revealed that K07-204 contains methicillin (mecA), ampicillin (blaZ), erythromycin (ermC), aminoglycoside (aadD), and tetracycline (tet38, tetracycline efflux pump) resistance genes while K07-561 has ampicillin (blaZ) and tetracycline (tet38) resistance genes. In addition to antibiotics, K07-204 was reported to show resistance to lysostaphin treatment. K07-204 also has additional virulence genes (adsA, aur, hysA, icaABCDR, lip, lukD, sdrC, and sdrE) compared to K07-561, which may explain the differential virulence potential of these human isolates of ST72. Unexpectedly, the virulence potential of K07-561 was higher in an in vivo wax-worm infection model than that of K07-204, putatively due to the presence of a 20-fold higher staphyloxanthin concentration than K07-204. Comprehensive genomic analysis of these two human isolates, with 27 ST72 isolates, and S. aureus USA300 (ST8) suggested that acquisition of both virulence and antibiotics resistance genes by ST72 isolates might have facilitated their adaptation from a community to a hospital setting where the selective pressure imposed by antibiotics selects for more resistant and virulent isolates. Taken together, the results of the current study provide insight into the genotypic and phenotypic features of various ST72 clones across the globe, delivering more options for developing therapeutics and rapid molecular diagnostic tools to detect resistant bacteria.
Collapse
Affiliation(s)
- Nayab Batool
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Amen Shamim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Institute of Antimicrobial Resistance and Therapeutics (IAMRT), Sungkyunkwan University (SKKU), Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Institute of Antimicrobial Resistance and Therapeutics (IAMRT), Sungkyunkwan University (SKKU), Suwon, South Korea.,Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Tomlinson JH, Kalverda AP, Calabrese AN. Fusidic acid resistance through changes in the dynamics of the drug target. Proc Natl Acad Sci U S A 2020; 117:25523-25531. [PMID: 32999060 PMCID: PMC7568287 DOI: 10.1073/pnas.2008577117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Antibiotic resistance in clinically important bacteria can be mediated by target protection mechanisms, whereby a protein binds to the drug target and protects it from the inhibitory effects of the antibiotic. The most prevalent source of clinical resistance to the antibiotic fusidic acid (FA) is expression of the FusB family of proteins that bind to the drug target (Elongation factor G [EF-G]) and promote dissociation of EF-G from FA-stalled ribosome complexes. FusB binding causes changes in both the structure and conformational flexibility of EF-G, but which of these changes drives FA resistance was not understood. We present here detailed characterization of changes in the conformational flexibility of EF-G in response to FusB binding and show that these changes are responsible for conferring FA resistance. Binding of FusB to EF-G causes a significant change in the dynamics of domain III of EF-GC3 that leads to an increase in a minor, more disordered state of EF-G domain III. This is sufficient to overcome the steric block of transmission of conformational changes within EF-G by which FA prevents release of EF-G from the ribosome. This study has identified an antibiotic resistance mechanism mediated by allosteric effects on the dynamics of the drug target.
Collapse
Affiliation(s)
- Jennifer H Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom;
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Antonio N Calabrese
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
12
|
Abstract
Antibiotic resistance is mediated through several distinct mechanisms, most of which are relatively well understood and the clinical importance of which has long been recognized. Until very recently, neither of these statements was readily applicable to the class of resistance mechanism known as target protection, a phenomenon whereby a resistance protein physically associates with an antibiotic target to rescue it from antibiotic-mediated inhibition. In this Review, we summarize recent progress in understanding the nature and importance of target protection. In particular, we describe the molecular basis of the known target protection systems, emphasizing that target protection does not involve a single, uniform mechanism but is instead brought about in several mechanistically distinct ways.
Collapse
|
13
|
Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0057-2018. [PMID: 30900543 PMCID: PMC11590431 DOI: 10.1128/microbiolspec.gpp3-0057-2018] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through de novo mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of S. aureus infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that S. aureus employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
14
|
Ayyub SA, Lahry K, Dobriyal D, Mondal S, Varshney U. Antimicrobial activity of fusidic acid in Escherichia coli is dependent on the relative levels of ribosome recycling factor and elongation factor G. FEMS Microbiol Lett 2018; 365:5004850. [PMID: 29846570 DOI: 10.1093/femsle/fny133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/23/2018] [Indexed: 11/14/2022] Open
Abstract
During protein synthesis, elongation factor G (EFG) participates at the steps of translocation and ribosome recycling. Fusidic acid (FA) is a bacteriostatic antibiotic, which traps EFG on ribosomes, stalling them on mRNAs. How the bacterial susceptibility to FA is determined, and which of the two functions of EFG (translocation or ribosome recycling) is more vulnerable, has remained debatable. The in vivo studies addressing these aspects of FA mediated inhibition of protein synthesis are lacking. Here, we used a system of Escherichia coli strains and their complementation/supplementation with the plasmid borne copies of the inducible versions of EFG and ribosome recycling factor (RRF) genes. Additionally, we investigated FA sensitivity in a strain with increased proportion of stalled ribosomes. We show that the cells with high EFG/RRF (or low RRF/EFG) ratios are more susceptible to FA than those with low EFG/RRF (or high RRF/EFG) ratios. Our in vivo observations are consistent with the recent in vitro reports of dependence of FA susceptibility on EFG/RRF ratios, and the notion that an overriding target of FA is the translocation function of EFG. An applied outcome of our in vivo study is that FA mediated growth inhibition could be facilitated by depletion or inactivation of cellular RRF.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Divya Dobriyal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Sanjay Mondal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064
| |
Collapse
|
15
|
Sharkey LKR, O’Neill AJ. Antibiotic Resistance ABC-F Proteins: Bringing Target Protection into the Limelight. ACS Infect Dis 2018; 4:239-246. [PMID: 29376318 DOI: 10.1021/acsinfecdis.7b00251] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Members of the ATP-binding cassette (ABC)-F protein subfamily collectively mediate resistance to a broader range of clinically important antibiotic classes than any other group of resistance proteins and are widespread in pathogenic bacteria. Following over 25 years' of controversy regarding the mechanism by which these proteins work, it has recently been established that they provide antibiotic resistance through the previously recognized but underappreciated phenomenon of target protection; they bind to the ribosome to effect the release of ribosome-targeted antibiotics, thereby rescuing the translation apparatus from antibiotic-mediated inhibition. Here we review the ABC-F resistance proteins with an emphasis on their mechanism of action, first exploring the history of the debate about how these proteins work and outlining our current state of knowledge and then considering key questions to be addressed in understanding the molecular detail of their function.
Collapse
Affiliation(s)
- Liam K. R. Sharkey
- Antimicrobial Research Centre and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Alex J. O’Neill
- Antimicrobial Research Centre and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
16
|
Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2018; 41:430-449. [PMID: 28419231 DOI: 10.1093/femsre/fux007] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/12/2017] [Indexed: 12/11/2022] Open
Abstract
The major targets for antibiotics in staphylococci are (i) the cell envelope, (ii) the ribosome and (iii) nucleic acids. Several novel targets emerged from recent targeted drug discovery programmes including the ClpP protease and FtsZ from the cell division machinery. Resistance can either develop by horizontal transfer of resistance determinants encoded by mobile genetic elements viz plasmids, transposons and the staphylococcal cassette chromosome or by mutations in chromosomal genes. Horizontally acquired resistance can occur by one of the following mechanisms: (i) enzymatic drug modification and inactivation, (ii) enzymatic modification of the drug binding site, (iii) drug efflux, (iv) bypass mechanisms involving acquisition of a novel drug-resistant target, (v) displacement of the drug to protect the target. Acquisition of resistance by mutation can result from (i) alteration of the drug target that prevents the inhibitor from binding, (ii) derepression of chromosomally encoded multidrug resistance efflux pumps and (iii) multiple stepwise mutations that alter the structure and composition of the cell wall and/or membrane to reduce drug access to its target. This review focuses on development of resistance to currently used antibiotics and examines future prospects for new antibiotics and informed use of drug combinations.
Collapse
|
17
|
Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin Microbiol Rev 2017; 30:827-860. [PMID: 28592405 DOI: 10.1128/cmr.00112-16] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial skin infections represent some of the most common infectious diseases globally. Prevention and treatment of skin infections can involve application of a topical antimicrobial, which may be an antibiotic (such as mupirocin or fusidic acid) or an antiseptic (such as chlorhexidine or alcohol). However, there is limited evidence to support the widespread prophylactic or therapeutic use of topical agents. Challenges involved in the use of topical antimicrobials include increasing rates of bacterial resistance, local hypersensitivity reactions (particularly to older agents, such as bacitracin), and concerns about the indiscriminate use of antiseptics potentially coselecting for antibiotic resistance. We review the evidence for the major clinical uses of topical antibiotics and antiseptics. In addition, we review the mechanisms of action of common topical agents and define the clinical and molecular epidemiology of antimicrobial resistance in these agents. Moreover, we review the potential use of newer and emerging agents, such as retapamulin and ebselen, and discuss the role of antiseptic agents in preventing bacterial skin infections. A comprehensive understanding of the clinical efficacy and drivers of resistance to topical agents will inform the optimal use of these agents to preserve their activity in the future.
Collapse
|
18
|
Abouelfetouh A, Kassem M, Naguib M, El-Nakeeb M. Investigation and Treatment of Fusidic Acid Resistance Among Methicillin-Resistant Staphylococcal Isolates from Egypt. Microb Drug Resist 2017; 23:8-17. [DOI: 10.1089/mdr.2015.0336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Alaa Abouelfetouh
- Department of Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mervat Kassem
- Department of Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa Naguib
- Department of Microbiology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Moustafa El-Nakeeb
- Department of Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Pushkin R, Iglesias-Ussel MD, Keedy K, MacLauchlin C, Mould DR, Berkowitz R, Kreuzer S, Darouiche R, Oldach D, Fernandes P. A Randomized Study Evaluating Oral Fusidic Acid (CEM-102) in Combination With Oral Rifampin Compared With Standard-of-Care Antibiotics for Treatment of Prosthetic Joint Infections: A Newly Identified Drug-Drug Interaction. Clin Infect Dis 2016; 63:1599-1604. [PMID: 27682068 DOI: 10.1093/cid/ciw665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fusidic acid (FA) has been used for decades for bone infection, including prosthetic joint infection (PJI), often in combination with rifampin (RIF). An FA/RIF pharmacokinetic interaction has not previously been described. METHODS In a phase 2 open-label randomized study, we evaluated oral FA/RIF vs standard-of-care (SOC) intravenous antibiotics for treatment of hip or knee PJI. Outcome assessment occurred at reimplantation (week 12) for subjects with 2-stage exchange, and after 3 or 6 months of treatment for subjects with hip or knee debride and retain strategies, respectively. RESULTS Fourteen subjects were randomized 1:1 to FA/RIF or SOC. Pharmacokinetic profiles were obtained for 6 subjects randomized to FA/RIF. FA concentrations were lower than anticipated in all subjects during the first week of therapy, and at weeks 4 and 6, blood levels continued to decline. By week 6, FA exposures were 40%-45% lower than expected. CONCLUSIONS The sponsor elected to terminate this study due to a clearly illustrated drug-drug interaction between FA and RIF, which lowered FA levels to a degree that could influence subject outcomes. Optimization of FA exposure if used in combination with RIF should be a topic of future research. CLINICAL TRIALS REGISTRATION NCT01756924.
Collapse
Affiliation(s)
| | | | | | | | - Diane R Mould
- Projections Research Inc, Phoenixville, Pennsylvania
| | | | - Stephan Kreuzer
- Memorial Bone and Joint Clinic and University of Texas Health Science Center at Houston
| | - Rabih Darouiche
- Departments of Medicine, Surgery, and Physical Medicine and Rehabilitation, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
20
|
Abstract
Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. Antimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which include lsa(A), msr(A), optr(A), and vga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.
Collapse
|
21
|
Borg A, Pavlov M, Ehrenberg M. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome. Nucleic Acids Res 2016; 44:3264-75. [PMID: 27001509 PMCID: PMC4838388 DOI: 10.1093/nar/gkw178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/07/2016] [Indexed: 01/13/2023] Open
Abstract
The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.
Collapse
Affiliation(s)
- Anneli Borg
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Michael Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
22
|
Tomlinson JH, Thompson GS, Kalverda AP, Zhuravleva A, O'Neill AJ. A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance. Sci Rep 2016; 6:19524. [PMID: 26781961 PMCID: PMC4725979 DOI: 10.1038/srep19524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 11/09/2022] Open
Abstract
Antibiotic resistance in clinically important bacteria can be mediated by proteins that physically associate with the drug target and act to protect it from the inhibitory effects of an antibiotic. We present here the first detailed structural characterization of such a target protection mechanism mediated through a protein-protein interaction, revealing the architecture of the complex formed between the FusB fusidic acid resistance protein and the drug target (EF-G) it acts to protect. Binding of FusB to EF-G induces conformational and dynamic changes in the latter, shedding light on the molecular mechanism of fusidic acid resistance.
Collapse
Affiliation(s)
- Jennifer H Tomlinson
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| | - Gary S Thompson
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| | - Anastasia Zhuravleva
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| | - Alex J O'Neill
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| |
Collapse
|
23
|
Fernandes P. Fusidic Acid: A Bacterial Elongation Factor Inhibitor for the Oral Treatment of Acute and Chronic Staphylococcal Infections. Cold Spring Harb Perspect Med 2016; 6:a025437. [PMID: 26729758 DOI: 10.1101/cshperspect.a025437] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fusidic acid is an oral antistaphylococcal antibiotic that has been used in Europe for more than 40 years to treat skin infections as well as chronic bone and joint infections. It is a steroidal antibiotic and the only marketed member of the fusidane class. Fusidic acid inhibits protein synthesis by binding EF-G-GDP, which results in the inhibition of both peptide translocation and ribosome disassembly. It has a novel structure and novel mode of action and, therefore, there is little cross-resistance with other known antibiotics. Many mutations can occur in the FusA gene that codes for EF-G, and some of these mutations can result in high-level resistance (minimum inhibitory concentration [MIC] > 64 mg/L), whereas others result in biologically unfit staphylococci that require compensatory mutations to survive. Low-level resistance (<8 mg/L) is more common and is mediated by fusB, fusC, and fusD genes that code for small proteins that protect EF-G-GDP from binding fusidic acid. The genes for these proteins are spread by plasmids and can be selected mostly by topical antibiotic use. Reports of resistance have led to combination use of fusidic acid with rifampin, which is superseded by the development of a new dosing regimen for fusidic acid that can be used in monotherapy. It consists of a front-loading dose to decrease the potential for resistance development followed by a maintenance dose. This dosing regimen is now being used in clinical trials in the United States for skin and refractory bone and joint infections.
Collapse
|
24
|
Hung WC, Chen HJ, Lin YT, Tsai JC, Chen CW, Lu HH, Tseng SP, Jheng YY, Leong KH, Teng LJ. Skin Commensal Staphylococci May Act as Reservoir for Fusidic Acid Resistance Genes. PLoS One 2015; 10:e0143106. [PMID: 26581090 PMCID: PMC4651549 DOI: 10.1371/journal.pone.0143106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
We analyzed the occurrence and mechanisms of fusidic acid resistance present in staphylococci isolated from 59 healthy volunteers. The fingers of the volunteers were screened for the presence of staphylococci, and the collected isolates were tested for resistance to fusidic acid. A total of 34 fusidic acid resistant staphylococcal strains (all were coagulase-negative) were isolated from 22 individuals (22/59, 37.3%). Examination of the resistance genes revealed that acquired fusB or fusC was present in Staphylococcus epidermidis, Staphylococcus capitis subsp. urealyticus, Staphylococcus hominis subsp. hominis, Staphylococcus warneri and Staphylococcus haemolyticus. Resistance islands (RIs) carrying fusB were found in S. epidermidis and S. capitis subsp. urealyticus, while staphylococcal chromosome cassette (SCC)-related structures harboring fusC were found in S. hominis subsp. hominis. Genotypic analysis of S. epidermidis and S. hominis subsp. hominis indicated that the fus elements were disseminated in diverse genetic strain backgrounds. The fusC elements in S. hominis subsp. hominis strains were highly homologous to SCCfusC in the epidemic sequence type (ST) 239/SCCmecIII methicillin-resistant S. aureus (MRSA) or the pseudo SCCmec in ST779 MRSA. The presence of acquired fusidic acid resistance genes and their genetic environment in commensal staphylococci suggested that the skin commensal staphylococci may act as reservoir for fusidic acid resistance genes.
Collapse
Affiliation(s)
- Wei-Chun Hung
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Jan Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tzu Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jui-Chang Tsai
- Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Yu Jheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kin Hong Leong
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
25
|
Baragaña B, Hallyburton I, Lee MCS, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, Ruecker A, Upton LM, Abraham TS, Almeida MJ, Pradhan A, Porzelle A, Luksch T, Martínez MS, Luksch T, Bolscher JM, Woodland A, Norval S, Zuccotto F, Thomas J, Simeons F, Stojanovski L, Osuna-Cabello M, Brock PM, Churcher TS, Sala KA, Zakutansky SE, Jiménez-Díaz MB, Sanz LM, Riley J, Basak R, Campbell M, Avery VM, Sauerwein RW, Dechering KJ, Noviyanti R, Campo B, Frearson JA, Angulo-Barturen I, Ferrer-Bazaga S, Gamo FJ, Wyatt PG, Leroy D, Siegl P, Delves MJ, Kyle DE, Wittlin S, Marfurt J, Price RN, Sinden RE, Winzeler EA, Charman SA, Bebrevska L, Gray DW, Campbell S, Fairlamb AH, Willis PA, Rayner JC, Fidock DA, Read KD, Gilbert IH. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 2015; 522:315-20. [PMID: 26085270 PMCID: PMC4700930 DOI: 10.1038/nature14451] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
Collapse
Affiliation(s)
- Beatriz Baragaña
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Marcus C S Lee
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Neil R Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Raffaella Grimaldi
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - William R Proto
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Stephan Meister
- University of California, San Diego, School of Medicine, 9500 Gilman Drive 0760, La Jolla, California 92093, USA
| | - Grennady Wirjanata
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Leanna M Upton
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Tara S Abraham
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Mariana J Almeida
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Anupam Pradhan
- Department of Global Health, College of Public Health University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, USA
| | - Achim Porzelle
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - María Santos Martínez
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | | | - Judith M Bolscher
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Andrew Woodland
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Suzanne Norval
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Fabio Zuccotto
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - John Thomas
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Frederick Simeons
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laste Stojanovski
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paddy M Brock
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Tom S Churcher
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | | | - María Belén Jiménez-Díaz
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Laura Maria Sanz
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Jennifer Riley
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rajshekhar Basak
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Michael Campbell
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vicky M Avery
- Eskitis Institute, Brisbane Innovation Park, Nathan Campus, Griffith University, Queensland 4111, Australia
| | - Robert W Sauerwein
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Koen J Dechering
- TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands
| | - Rintis Noviyanti
- Malaria Pathogenesis Laboratory, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, 10430 Jakarta, Indonesia
| | - Brice Campo
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Julie A Frearson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Santiago Ferrer-Bazaga
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Francisco Javier Gamo
- GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Paul G Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Didier Leroy
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Peter Siegl
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Michael J Delves
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Dennis E Kyle
- Department of Global Health, College of Public Health University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, USA
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
| | - Jutta Marfurt
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia
| | - Ric N Price
- 1] Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Robert E Sinden
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Elizabeth A Winzeler
- University of California, San Diego, School of Medicine, 9500 Gilman Drive 0760, La Jolla, California 92093, USA
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lidiya Bebrevska
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - David W Gray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simon Campbell
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Alan H Fairlamb
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul A Willis
- Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - David A Fidock
- 1] Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA [2] Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Kevin D Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
26
|
Chen HJ, Hung WC, Lin YT, Tsai JC, Chiu HC, Hsueh PR, Teng LJ. A novel fusidic acid resistance determinant, fusF, in Staphylococcus cohnii. J Antimicrob Chemother 2014; 70:416-9. [DOI: 10.1093/jac/dku408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
The ribosome is one of the main antibiotic targets in the bacterial cell. Crystal structures of naturally produced antibiotics and their semi-synthetic derivatives bound to ribosomal particles have provided unparalleled insight into their mechanisms of action, and they are also facilitating the design of more effective antibiotics for targeting multidrug-resistant bacteria. In this Review, I discuss the recent structural insights into the mechanism of action of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance, in addition to the approaches that are being pursued for the production of improved drugs that inhibit bacterial protein synthesis.
Collapse
|
29
|
Petriz BA, Franco OL. Application of Cutting-Edge Proteomics Technologies for Elucidating Host–Bacteria Interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:1-24. [DOI: 10.1016/b978-0-12-800453-1.00001-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Guo X, Peisker K, Bäckbro K, Chen Y, Koripella RK, Mandava CS, Sanyal S, Selmer M. Structure and function of FusB: an elongation factor G-binding fusidic acid resistance protein active in ribosomal translocation and recycling. Open Biol 2013; 2:120016. [PMID: 22645663 PMCID: PMC3352095 DOI: 10.1098/rsob.120016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/23/2012] [Indexed: 11/12/2022] Open
Abstract
Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis during elongation and ribosome recycling. The plasmid pUB101-encoded protein FusB causes FA resistance in clinical isolates of Staphylococcus aureus through an interaction with EF-G. Here, we report 1.6 and 2.3 Å crystal structures of FusB. We show that FusB is a two-domain protein lacking homology to known structures, where the N-terminal domain is a four-helix bundle and the C-terminal domain has an alpha/beta fold containing a C4 treble clef zinc finger motif and two loop regions with conserved basic residues. Using hybrid constructs between S. aureus EF-G that binds to FusB and Escherichia coli EF-G that does not, we show that the sequence determinants for FusB recognition reside in domain IV and involve the C-terminal helix of S. aureus EF-G. Further, using kinetic assays in a reconstituted translation system, we demonstrate that FusB can rescue FA inhibition of tRNA translocation as well as ribosome recycling. We propose that FusB rescues S. aureus from FA inhibition by preventing formation or facilitating dissociation of the FA-locked EF-G–ribosome complex.
Collapse
Affiliation(s)
- Xiaohu Guo
- Department of Cell and Molecular Biology, BMC, P.O. Box 596, SE 751 24, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang J, Ye M, Ding H, Guo Q, Ding B, Wang M. Prevalence of fusB in Staphylococcus aureus clinical isolates. J Med Microbiol 2013; 62:1199-1203. [PMID: 23639984 DOI: 10.1099/jmm.0.058305-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fusidic acid (FA) resistance in Staphylococcus aureus markedly varied among different regions. Few data for FA resistance are available in China. In this study, FA susceptibility testing was performed, and the prevalence of fusB and fusC in 116 clinical isolates of S. aureus was investigated by PCR. Mutations in fusA were also determined by sequencing of PCR products. Molecular typing of fusB-positive strains was based on multilocus sequence typing (MLST), spa typing and pulsed-field gel electrophoresis (PFGE). A DNA fragment flanking fusB was sequenced. Transformation experiments were carried out in fusB-positive S. aureus. Of 116 S. aureus including 19 meticillin-resistant S. aureus (MRSA) and 97 meticillin-susceptible S. aureus (MSSA), four (3.5 %) were resistant to FA with MICs of 6–12 µg ml−1, including one MRSA from blood and three MSSA from wound exudates. All four FA-resistant isolates were found to be fusB gene positive. Three FA-resistant MSSA strains had the same MLST profile of ST630 and spa type of t377, whilst the MRSA strain belonged to ST630-t4549. Only one PFGE pattern was recognized for these four strains. No fusC and fusA mutations were detected in any of the isolates. FA resistance in fusB-positive clinical isolates could be transferred to S. aureus RN4220. The fusB gene was located in a transposon-like element, which had 99 % identity with that found in pUB101. In conclusion, the FA resistance rate is low in S. aureus, and the fusB gene is responsible for the resistance.
Collapse
Affiliation(s)
- Jinwei Huang
- Lishui Central Hospital, Zhejiang, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Meiping Ye
- Wenzhou Medical College, Zhejiang, PR China
| | - Hui Ding
- Lishui Central Hospital, Zhejiang, PR China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Minggui Wang
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
32
|
Mutagenesis mapping of the protein-protein interaction underlying FusB-type fusidic acid resistance. Antimicrob Agents Chemother 2013; 57:4640-4. [PMID: 23836182 PMCID: PMC3811445 DOI: 10.1128/aac.00198-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FusB-type proteins represent the predominant mechanism of resistance to fusidic acid in staphylococci and act by binding to and modulating the function of the drug target (elongation factor G [EF-G]). To gain further insight into this antibiotic resistance mechanism, we sought to identify residues important for the interaction of FusB with EF-G and thereby delineate the binding interface within the FusB–EF-G complex. Replacement with alanine of any one of four conserved residues within the C-terminal domain of FusB (F156, K184, Y187, and F208) abrogated the ability of the protein to confer resistance to fusidic acid; the purified mutant proteins also lost the ability to bind S. aureus EF-G in vitro. E. coli EF-G, which is not ordinarily able to bind FusB-type proteins, was rendered competent for binding to FusB following deletion of a 3-residue tract (529SNP531) from domain IV of the protein. This study has identified key regions of both FusB and EF-G that are important for the interaction between the proteins, findings which corroborate our previous in silico prediction for the architecture of the complex formed between the resistance protein and the drug target (G. Cox, G. S. Thompson, H. T. Jenkins, F. Peske, A. Savelsbergh, M. V. Rodnina, W. Wintermeyer, S. W. Homans, T. A. Edwards, and A. J. O'Neill, Proc. Natl. Acad. Sci. U. S. A. 109:2102-2107, 2012).
Collapse
|
33
|
Lima TB, Pinto MFS, Ribeiro SM, de Lima LA, Viana JC, Gomes Júnior N, Cândido EDS, Dias SC, Franco OL. Bacterial resistance mechanism: what proteomics can elucidate. FASEB J 2013; 27:1291-303. [PMID: 23349550 DOI: 10.1096/fj.12-221127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotics are important therapeutic agents commonly used for the control of bacterial infectious diseases; however, resistance to antibiotics has become a global public health problem. Therefore, effective therapy in the treatment of resistant bacteria is necessary and, to achieve this, a detailed understanding of mechanisms that underlie drug resistance must be sought. To fill the multiple gaps that remain in understanding bacterial resistance, proteomic tools have been used to study bacterial physiology in response to antibiotic stress. In general, the global analysis of changes in the protein composition of bacterial cells in response to treatment with antibiotic agents has made it possible to construct a database of proteins involved in the process of resistance to drugs with similar mechanisms of action. In the past few years, progress in using proteomic tools has provided the most realistic picture of the infective process, since these tools detect the end products of gene biosynthetic pathways, which may eventually determine a biological phenotype. In most bacterial species, alterations occur in energy and nitrogen metabolism regulation; glucan biosynthesis is up-regulated; amino acid, protein, and nucleotide synthesis is affected; and various proteins show a stress response after exposing these microorganisms to antibiotics. These issues have been useful in identifying targets for the development of novel antibiotics and also in understanding, at the molecular level, how bacteria resist antibiotics.
Collapse
Affiliation(s)
- Thais Bergamin Lima
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang JL, Tang HJ, Hsieh PH, Chiu FY, Chen YH, Chang MC, Huang CT, Liu CP, Lau YJ, Hwang KP, Ko WC, Wang CT, Liu CY, Liu CL, Hsueh PR. Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2012; 40:103-7. [DOI: 10.1016/j.ijantimicag.2012.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/29/2022]
|
35
|
Making a fus over FA. Nat Rev Microbiol 2012; 10:238-9. [DOI: 10.1038/nrmicro2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|