1
|
Ding Q, Wu Y, Xie Y, Hu Y, Huang W, Jia Y. Turbulence control in memristive neural network via adaptive magnetic flux based on DLS-ADMM technique. Neural Netw 2025; 187:107379. [PMID: 40101556 DOI: 10.1016/j.neunet.2025.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/02/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
High-voltage defibrillation for eliminating cardiac spiral waves has significant side effects, necessitating the pursuit of low-energy alternatives for a long time. Adaptive optimization techniques and machine learning methods provide promising solutions for adaptive control of cardiac wave propagation. In this paper, the control of spiral waves and turbulence, as well as 2D and 3D heterogeneity in memristive neural network by using adaptive magnetic flux (AMF) is investigated based on dynamic learning of synchronization - alternating direction method of multipliers (DLS-ADMM). The results show that AMF can achieve global electrical synchronization under multiple complex conditions. There is a trade-off between AMF accuracy and computational speed, lowering the resolution of AMF requires a higher flux of magnetic fields to achieve the network synchronization, resulting in an increase in average Hamiltonian energy, which implies greater energy consumption. The AMF method is more energy efficient than existing DC and AC methods, but it relies on adequate resolution. The ADMM constraints can enhance the synchronization robustness and energy efficiency of DLS techniques, albeit at the cost of increased the computational complexity. The adaptive elimination of spiral waves and turbulence using AMF presented in this paper may provide a novel approach for the low-energy defibrillation studies, and its practical application and performance enhancement deserve further research.
Collapse
Affiliation(s)
- Qianming Ding
- Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yong Wu
- Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Ying Xie
- Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yipeng Hu
- Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Weifang Huang
- Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Ya Jia
- Department of Physics, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Chen X, Wu S, Wang S, Yu C, Guo Z, Huang S, Cai P, Miao Y, Li S, Chen Q. Real world pharmacovigilance assessment of drug related macular degeneration risks. Sci Rep 2025; 15:1220. [PMID: 39774257 PMCID: PMC11707227 DOI: 10.1038/s41598-024-84679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Macular degeneration is a leading cause of irreversible vision loss, significantly impacting quality of life. To enhance clinical practice and reduce the risk of drug-related macular degeneration, we analyzed drug-related trends using real-world data. Disproportionality analysis of adverse event reports from the FDA Adverse Event Reporting System (FAERS, 2004-2023) identified 67,683 cases involving 1402 drugs. Among these, 42 drugs were linked to significant risks, including treatments for breast cancer (tamoxifen, raloxifene, anastrozole, letrozole) and diabetes (insulin lispro, insulin human). The BCPNN algorithm revealed that 45.2% (19/42) of these drugs had the strongest associations with macular degeneration, with pentosan polysulfate sodium, travoprost, and tolterodine being the highest-risk drugs. Lifitegrast, nicotine, and travoprost were associated with the shortest onset times for ocular adverse events. Among drug classes, glucocorticosteroids were linked to the most rapid onset of ocular side effects (P < 0.001), typically occurring within two months compared to other drugs. Drug-related macular degeneration was more common in women (70.4%) and predominantly affected those aged 60-80. The incidence of drug-related macular degeneration has steadily increased in recent years. This study offers valuable pharmacovigilance insights, highlighting drugs and demographic factors linked to macular degeneration.
Collapse
Affiliation(s)
- Xiaodong Chen
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shinan Wu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shaopan Wang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chaofeng Yu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zihan Guo
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shiya Huang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Peixin Cai
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yanliang Miao
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China.
| | - Qian Chen
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, 361101, Fujian, China.
| |
Collapse
|
3
|
Amrutha SV, Sebastian A, Sibeesh P, Punacha S, Shajahan TK. Theory and experiments of spiral unpinning in the Belousov-Zhabotinsky reaction using a circularly polarized electric field. CHAOS (WOODBURY, N.Y.) 2023; 33:063157. [PMID: 37368041 DOI: 10.1063/5.0145251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
We present the first experimental study of unpinning an excitation wave using a circularly polarized electric field. The experiments are conducted using the excitable chemical medium, the Belousov-Zhabotinsky (BZ) reaction, which is modeled with the Oregenator model. The excitation wave in the chemical medium is charged so that it can directly interact with the electric field. This is a unique feature of the chemical excitation wave. The mechanism of wave unpinning in the BZ reaction with a circularly polarized electric field is investigated by varying the pacing ratio, the initial phase of the wave, and field strength. The chemical wave in the BZ reaction unpins when the electric force opposite the direction of the spiral is equal to or above a threshold. We developed an analytical relation of the unpinning phase with the initial phase, the pacing ratio, and the field strength. This is then verified in experiments and simulations.
Collapse
Affiliation(s)
- S V Amrutha
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Anupama Sebastian
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Puthiyapurayil Sibeesh
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Shreyas Punacha
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington 98195, USA
| | - T K Shajahan
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| |
Collapse
|
4
|
Kalita H, Khan P, Dutta S. Rotational synchronization of pinned spiral waves. Phys Rev E 2022; 106:034201. [PMID: 36266837 DOI: 10.1103/physreve.106.034201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Coupled rotors can spontaneously synchronize, giving rise to a plethora of intriguing dynamics. We present here a pair of spiral waves as two synchronizing rotors, coupled by diffusion. The spirals are pinned to unexcitable obstacles, which enables us to modify their frequencies and restrain their drift. In experiments with the Belousov-Zhabotinsky reaction, we show that two counterrotating spiral rotors, pinned to circular heterogeneities, can synchronize in frequency and phase. The nature of the phase synchronization varies depending on the difference in their characteristic frequencies. We observe in-phase and out-of-phase synchronization, lag synchronization, and phase resetting across the experiments. The time required for the two spirals to synchronize is found to depend upon the relative size of their pinning obstacles and the distance separating them. This distance can also modify the phase lag of the two rotors upon synchronization. Our experimental observations are reproduced and explained further on the basis of numerical simulations of an excitable reaction-diffusion model.
Collapse
Affiliation(s)
- Hrishikesh Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Parvej Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sumana Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
5
|
Troy WC. Logarithmic spiral solutions of the Kopell-Howard lambda-omega reaction-diffusion equations. CHAOS (WOODBURY, N.Y.) 2022; 32:053104. [PMID: 35649994 DOI: 10.1063/5.0082736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Our investigation of logarithmic spirals is motivated by disparate experimental results: (i) the discovery of logarithmic spiral shaped precipitate formation in chemical garden experiments. Understanding precipitate formation in chemical gardens is important since analogous precipitates form in deep ocean hydrothermal vents, where conditions may be compatible with the emergence of life. (ii) The discovery that logarithmic spiral shaped waves of spreading depression can spontaneously form and cause macular degeneration in hypoglycemic chick retina. The role of reaction-diffusion mechanisms in spiral formation in these diverse experimental settings is poorly understood. To gain insight, we use the topological shooting to prove the existence of 0-bump stationary logarithmic spiral solutions, and rotating logarithmic spiral wave solutions, of the Kopell-Howard lambda-omega reaction-diffusion model.
Collapse
Affiliation(s)
- William C Troy
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
6
|
Zheng Z, Luo J, Cao Z, Tan S, Lv J. Spatiotemporal Patterns of Spreading Depolarization and its Correlation with Brain Injury During the Acute Stage of Subarachnoid Hemorrhage in Mice. J Stroke Cerebrovasc Dis 2022; 31:106476. [PMID: 35413591 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/19/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Spreading depolarization (SD) has been regarded as one cause of neuronal injury in subarachnoid hemorrhage (SAH). However, SD in the hyperacute phase of SAH is still unclear. The objective of this study was to detect real-time spatial-temporal patterns of SD, assess the effect of SD on cerebral blood flow, and test the relationship between SD and brain injury in the acute phase of SAH. METHODS Twenty-eight mice were separated into two groups: 16 animals in the SAH group and 12 animals in the sham group. Experimental SAH was done with an endovascular filament perforation model. Changes in optical reflection were registered with intrinsic optical signal imaging (IOSI) after SAH. Spatial-temporal patterns of SDs were analyzed and brain injury including brain edema and infarction was tested. RESULTS Totally, 117 SDs occurred after SAH. According to the hemodynamic response and duration, SDs could be classified into Type I (short SD), Type II (intermediate SD), and Type III (persistent SD). Most of SDs originated from the somatosensory and visual cortex. SDs demonstrated distinct spreading patterns. Moreover, the number and duration of SDs associated with brain water content (p < 0.05, p < 0.01). SDs, especially, persistent SDs associated with infarct volume in the hyperacute phase of SAH (p < 0.001, p < 0.001). CONCLUSION Our results suggest that SD occurs with a high incidence during the acute stage of SAH in mice. And the lissencephalic mouse brain is capable of different SD propagation patterns. Additionally, SD may aggravate brain edema and induce brain infarction, contributing to early brain injury after SAH.
Collapse
Affiliation(s)
- Zelong Zheng
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China
| | - Jinbiao Luo
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China
| | - Zhikai Cao
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China
| | - Shaojuan Tan
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China
| | - Jianping Lv
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China.
| |
Collapse
|
7
|
Rappel WJ, Krummen DE, Baykaner T, Zaman J, Donsky A, Swarup V, Miller JM, Narayan SM. Stochastic termination of spiral wave dynamics in cardiac tissue. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:809532. [PMID: 36187938 PMCID: PMC9524168 DOI: 10.3389/fnetp.2022.809532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rotating spiral waves are self-organized features in spatially extended excitable media and may play an important role in cardiac arrhythmias including atrial fibrillation (AF). In homogeneous media, spiral wave dynamics are perpetuated through spiral wave breakup, leading to the continuous birth and death of spiral waves, but have a finite probability of termination. In non-homogeneous media, however, heterogeneities can act as anchoring sources that result in sustained spiral wave activity. It is thus unclear how and if AF may terminate following the removal of putative spiral wave sources in patients. Here, we address this question using computer simulations in which a stable spiral wave is trapped by an heterogeneity and is surrounded by spiral wave breakup. We show that, following ablation of spatial heterogeneity to render that region of the medium unexcitable, termination of spiral wave dynamics is stochastic and Poisson-distributed. Furthermore, we show that the dynamics can be accurately described by a master equation using birth and death rates. To validate these predictions in vivo, we mapped spiral wave activity in patients with AF and targeted the locations of spiral wave sources using radiofrequency ablation. Targeted ablation was indeed able to terminate AF, but only after a variable delay of up to several minutes. Furthermore, and consistent with numerical simulations, termination was not accompanied by gradual temporal or spatial organization. Our results suggest that spiral wave sources and tissue heterogeneities play a critical role in the maintenance of AF and that the removal of sources results in spiral wave dynamics with a finite termination time, which could have important clinical implications.
Collapse
Affiliation(s)
| | | | - Tina Baykaner
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California
| | - Junaid Zaman
- Department of Medicine, Division of Cardiology, University of Southern California, Los Angeles, California
| | | | - Vijay Swarup
- Arizona Heart Rhythm Institute, Phoenix, Arizona
| | - John M Miller
- Krannert Institute, Indiana University, Indianapolis, Indiana
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California
| |
Collapse
|
8
|
Rappel WJ. Intermittent trapping of spiral waves in a cardiac model. Phys Rev E 2022; 105:014404. [PMID: 35193211 PMCID: PMC9020409 DOI: 10.1103/physreve.105.014404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 01/21/2023]
Abstract
Spiral waves are found in many excitable systems and are thought to play a role in the incoherent electrical activation that underlies cardiac arrhythmias. It is well-known that spiral waves can be permanently trapped by local heterogeneities. In this paper, we demonstrate that spiral waves can also be intermittently trapped by such heterogeneities. Using simulations of a cardiac model in two dimensions, we show that a tissue heterogeneity of sufficient strength or size can result in a spiral wave that is trapped for a few rotations, after which it dislodges and meanders away from the heterogeneity. We also show that these results can be captured by a particle model in which the particle represents the spiral wave tip. For both models, we construct a phase diagram which quantifies which parameter combinations of heterogeneity size and strength result in permanent, intermittent, or no trapping. Our results are consistent with clinical observations in patients with atrial fibrillation that showed that spiral wave reentry can be intermittent.
Collapse
|
9
|
Srienc AI, Chiang PP, Schmitt AJ, Newman EA. Cortical spreading depolarizations induced by surgical field blood in a mouse model of neurosurgery. J Neurosurg 2020; 132:1820-1828. [PMID: 30952117 PMCID: PMC7306253 DOI: 10.3171/2018.12.jns181130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/11/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cortical spreading depolarization (CSD) has been linked to poor clinical outcomes in the setting of traumatic brain injury, malignant stroke, and subarachnoid hemorrhage. There is evidence that electrocautery during neurosurgical procedures can also evoke CSD waves in the brain. It is unknown whether blood contacting the cortical surface during surgical bleeding affects the frequency of spontaneous or surgery-induced CSDs. Using a mouse neurosurgical model, the authors tested the hypothesis that electrocautery can induce CSD waves and that surgical field blood (SFB) is associated with more CSDs. The authors also investigated whether CSD can be reliably observed by monitoring the fluorescence of GCaMP6f expressed in neurons. METHODS CSD waves were monitored by using confocal microscopy to detect fluorescence increases at the cortical surface in mice expressing GCaMP6f in CamKII-positive neurons. The cortical surface was electrocauterized through an adjacent burr hole. SFB was simulated by applying a drop of tail vein blood to the brain through the same burr hole. RESULTS CSD waves were readily detected in GCaMP6f-expressing mice. Monitoring GCaMP6f fluorescence provided far better sensitivity and spatial resolution than detecting CSD events by observing changes in the intrinsic optical signal (IOS). Forty-nine percent of the CSD waves identified by GCaMP6f had no corresponding IOS signal. Electrocautery evoked CSD waves. On average, 0.67 ± 0.08 CSD events were generated per electrocautery episode, and multiple CSD waves could be induced in the same mouse by repeated cauterization (average, 7.9 ± 1.3 events; maximum number in 1 animal, 13 events). In the presence of SFB, significantly more spontaneous CSDs were generated (1.35 ± 0.37 vs 0.13 ± 0.16 events per hour, p = 0.002). Ketamine effectively decreased the frequency of spontaneous CSD waves (1.35 ± 0.37 to 0.36 ± 0.15 CSD waves per hour, p = 0.016) and electrocautery-stimulated CSD waves (0.80 ± 0.05 to 0.18 ± 0.08 CSD waves per electrocautery, p = 0.00002). CONCLUSIONS CSD waves are detected with far greater sensitivity and fidelity by monitoring GCaMP6f signals in neurons than by monitoring IOSs. Electrocautery reliably evokes CSD waves, and the frequency of spontaneous CSD waves is increased when blood is applied to the cortical surface. These experimental conditions recapitulate common scenarios in the neurosurgical operating room. Ketamine, a clinically available pharmaceutical agent, can block stimulated and spontaneous CSDs. More research is required to understand the clinical importance of intraoperative CSD.
Collapse
Affiliation(s)
- Anja I. Srienc
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota
| | - Pei-Pei Chiang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Abby J. Schmitt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Eric A. Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
10
|
Roney CH, Wit AL, Peters NS. Challenges Associated with Interpreting Mechanisms of AF. Arrhythm Electrophysiol Rev 2020; 8:273-284. [PMID: 32685158 PMCID: PMC7358959 DOI: 10.15420/aer.2019.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023] Open
Abstract
Determining optimal treatment strategies for complex arrhythmogenesis in AF is confounded by the lack of consensus regarding the mechanisms causing AF. Studies report different mechanisms for AF, ranging from hierarchical drivers to anarchical multiple activation wavelets. Differences in the assessment of AF mechanisms are likely due to AF being recorded across diverse models using different investigational tools, spatial scales and clinical populations. The authors review different AF mechanisms, including anatomical and functional re-entry, hierarchical drivers and anarchical multiple wavelets. They then describe different cardiac mapping techniques and analysis tools, including activation mapping, phase mapping and fibrosis identification. They explain and review different data challenges, including differences between recording devices in spatial and temporal resolutions, spatial coverage and recording surface, and report clinical outcomes using different data modalities. They suggest future research directions for investigating the mechanisms underlying human AF.
Collapse
Affiliation(s)
- Caroline H Roney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Andrew L Wit
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, US
| | - Nicholas S Peters
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
11
|
Punacha S, Berg S, Sebastian A, Krinski VI, Luther S, Shajahan TK. Spiral wave unpinning facilitated by wave emitting sites in cardiac monolayers. Proc Math Phys Eng Sci 2019; 475:20190420. [PMID: 31736652 DOI: 10.1098/rspa.2019.0420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2019] [Indexed: 11/12/2022] Open
Abstract
Rotating spiral waves of electrical activity in the heart can anchor to unexcitable tissue (an obstacle) and become stable pinned waves. A pinned rotating wave can be unpinned either by a local electrical stimulus applied close to the spiral core, or by an electric field pulse that excites the core of a pinned wave independently of its localization. The wave will be unpinned only when the pulse is delivered inside a narrow time interval called the unpinning window (UW) of the spiral. In experiments with cardiac monolayers, we found that other obstacles situated near the pinning centre of the spiral can facilitate unpinning. In numerical simulations, we found increasing or decreasing of the UW depending on the location, orientation and distance between the pinning centre and an obstacle. Our study indicates that multiple obstacles could contribute to unpinning in experiments with intact hearts.
Collapse
Affiliation(s)
- Shreyas Punacha
- National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Sebastian Berg
- Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany
| | - Anupama Sebastian
- National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Valentin I Krinski
- Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany
| | - Stefan Luther
- Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany
| | - T K Shajahan
- National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India.,Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany
| |
Collapse
|
12
|
Mahanta D, Dutta S. Reconnection of multiple scroll rings in a three-dimensional reaction-diffusion system. Phys Rev E 2019; 100:022222. [PMID: 31574755 DOI: 10.1103/physreve.100.022222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 11/07/2022]
Abstract
Two scroll rings, placed in close proximity, can interact. When they come within one core length of each other, these waves can reconnect to form a single, large filament. In this article we show that three or more scroll rings can also reconnect when they come within the critical distance. Multiple scroll rings form larger vortices of varied filament geometry, depending on their initial sizes and placements. Different filaments, resulting from a reconnection of the same number of scroll rings placed in diverse ways, can have different lifetimes. In experiments with the Belousov-Zhabotinsky reaction and numerical simulations based on a corresponding reaction-diffusion model, we demonstrate the interaction and reconnection of multiple scroll waves and try to elucidate their lifetimes and dynamics.
Collapse
Affiliation(s)
- Dhriti Mahanta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sumana Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
13
|
Dispelling myths about connexins, pannexins and P2X7 in hypoxic-ischemic central nervous system. Neurosci Lett 2019; 695:76-85. [PMID: 29195910 DOI: 10.1016/j.neulet.2017.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
Abstract
In membrane physiology, as in other fields, myths or speculations may be repeated so often and so widely that they are perceived as facts. To some extent, this has occurred with regard to gap junctions, hemichannels, pannexin channels and P2X7 (ionotropic receptors), especially concerning the interpretation of the individual role of these channels in hypoxic-ischemic CNS since these channels may be closed by the same pharmacological blockers. Significance of existing controversial data are highlighted and contradictory views from different groups are critically discussed herein.
Collapse
|
14
|
Luo C, Yang Q, Liu Y, Zhou S, Jiang J, Reiter RJ, Bhattacharya P, Cui Y, Yang H, Ma H, Yao J, Lawler SE, Zhang X, Fu J, Rozental R, Aly H, Johnson MD, Chiocca EA, Wang X. The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 2019; 130:215-233. [PMID: 30315933 DOI: 10.1016/j.freeradbiomed.2018.10.402] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/01/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone associated with sleep and wakefulness and is mainly produced by the pineal gland. Numerous physiological functions of melatonin have been demonstrated including anti-inflammation, suppressing neoplastic growth, circadian and endocrine rhythm regulation, and its potent antioxidant activity as well as its role in regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others. In this review, we summarize the recent advances related to the multiple protective roles of melatonin receptor agonists, melatonin and N-acetylserotonin (NAS), in brain injury, liver damage, and bone health. Brain injury, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and newborn perinatal hypoxia-ischemia encephalopathy, is a major cause of mortality and disability. Liver disease causes serious public health problems and various factors including alcohol, chemical pollutants, and drugs induce hepatic damage. Osteoporosis is the most common bone disease in humans. Due in part to an aging population, both the cost of care of fracture patients and the annual fracture rate have increased steadily. Despite the discrepancy in the pathophysiological processes of these disorders, time frames and severity, they may share several common molecular mechanisms. Oxidative stress is considered to be a critical factor in these pathogeneses. We update the current state of knowledge related to the molecular processes, mainly including anti-oxidative stress, anti-apoptosis, autophagy dysfunction, and anti-inflammation as well as other properties of melatonin and NAS. Particularly, the abilities of melatonin and NAS to directly scavenge oxygen-centered radicals and toxic reactive oxygen species, and indirectly act through antioxidant enzymes are disscussed. In this review, we summarize the similarities and differences in the protection provided by melatonin and/or NAS in brain, liver and bone damage. We analyze the involvement of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2), and melatonin receptor 1C (MT3) in the protection of melatonin and/or NAS. Additionally, we evaluate their potential clinical applications. The multiple mechanisms of action and multiple organ-targeted properties of melatonin and NAS may contribute to development of promising therapies for clinical trials.
Collapse
Affiliation(s)
- Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University Texas Health Science Center, San Antonio, TX, USA
| | - Pallab Bhattacharya
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Yongchun Cui
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongwei Yang
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinmu Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Renato Rozental
- Lab Neuroproteção & Estratégias Regenerativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Mark D Johnson
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Zykov VS. Spiral wave initiation in excitable media. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0379. [PMID: 30420544 PMCID: PMC6232601 DOI: 10.1098/rsta.2017.0379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 05/15/2023]
Abstract
Spiral waves represent an important example of dissipative structures observed in many distributed systems in chemistry, biology and physics. By definition, excitable media occupy a stationary resting state in the absence of external perturbations. However, a perturbation exceeding a threshold results in the initiation of an excitation wave propagating through the medium. These waves, in contrast to acoustic and optical ones, disappear at the medium's boundary or after a mutual collision, and the medium returns to the resting state. Nevertheless, an initiation of a rotating spiral wave results in a self-sustained activity. Such activity unexpectedly appearing in cardiac or neuronal tissues usually destroys their dynamics which results in life-threatening diseases. In this context, an understanding of possible scenarios of spiral wave initiation is of great theoretical importance with many practical applications.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)'.
Collapse
Affiliation(s)
- V S Zykov
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
| |
Collapse
|
16
|
Zykov VS. Spiral wave initiation in excitable media. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0385. [PMID: 30420544 DOI: 10.1098/rsta.2017.0385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 05/20/2023]
Abstract
Spiral waves represent an important example of dissipative structures observed in many distributed systems in chemistry, biology and physics. By definition, excitable media occupy a stationary resting state in the absence of external perturbations. However, a perturbation exceeding a threshold results in the initiation of an excitation wave propagating through the medium. These waves, in contrast to acoustic and optical ones, disappear at the medium's boundary or after a mutual collision, and the medium returns to the resting state. Nevertheless, an initiation of a rotating spiral wave results in a self-sustained activity. Such activity unexpectedly appearing in cardiac or neuronal tissues usually destroys their dynamics which results in life-threatening diseases. In this context, an understanding of possible scenarios of spiral wave initiation is of great theoretical importance with many practical applications.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)'.
Collapse
Affiliation(s)
- V S Zykov
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
| |
Collapse
|
17
|
Jahanbazi Jahan-Abad A, Alizadeh L, Sahab Negah S, Barati P, Khaleghi Ghadiri M, Meuth SG, Kovac S, Gorji A. Apoptosis Following Cortical Spreading Depression in Juvenile Rats. Mol Neurobiol 2018; 55:4225-4239. [PMID: 28612259 DOI: 10.1007/s12035-017-0642-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022]
Abstract
Repetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders, such as stroke and epilepsy. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo, we thus aimed to investigate the effect of repetitive CSD on the expression caspase-3, caspase-8, caspase-9, and caspase-12 in different brain regions using immunohistochemistry and western blotting techniques. Higher numbers of dark neurons and TUNEL-positive cells were observed in the hippocampal CA1 and CA3 regions as well as in the entorhinal and somatosensory cortices after CSD in juvenile rats. This was accompanied by higher expressions of caspase-3, caspase-8, and caspase-9. Caspase-12 levels remained unchanged after CSD, suggesting that endoplasmic reticulum stress is not involved in CSD-triggered apoptosis. Changes in caspase expression were paralleled by a decrease of procaspase-3, procaspase-8, and procaspase-9 in juvenile rat brain tissue subjected to CSD. In contrast, repetitive CSD in adult rats did not result in the upregulation of caspase signaling. Our data points to a maturation-dependent vulnerability of brain tissue to repetitive CSD with a higher degree of apoptotic damage and caspase upregulation observed in juvenile tissue. Findings suggest a key role of caspase signaling in CSD-induced cell death in the immature brain. This implies that anti-apoptotic treatment may prevent CSD-related functional deficits in the immature brain.
Collapse
Affiliation(s)
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Sajad Sahab Negah
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parastoo Barati
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Straße 45, 48149, Münster, Germany.
| |
Collapse
|
18
|
Gao X, Feng X, Li TC, Qu S, Wang X, Zhang H. Dynamics of spiral waves rotating around an obstacle and the existence of a minimal obstacle. Phys Rev E 2017; 95:052218. [PMID: 28618528 DOI: 10.1103/physreve.95.052218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/07/2022]
Abstract
Pinning of vortices by obstacles plays an important role in various systems. In the heart, anatomical reentry is created when a vortex, also known as the spiral wave, is pinned to an anatomical obstacle, leading to a class of physiologically very important arrhythmias. Previous analyses of its dynamics and instability provide fine estimates in some special circumstances, such as large obstacles or weak excitabilities. Here, to expand theoretical analyses to all circumstances, we propose a general theory whose results quantitatively agree with direct numerical simulations. In particular, when obstacles are small and pinned spiral waves are destabilized, an accurate explanation of the instability in two-dimensional media is provided by the usage of a mapping rule and dimension reduction. The implications of our results are to better understand the mechanism of arrhythmia and thus improve its early prevention.
Collapse
Affiliation(s)
- Xiang Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.,Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Xia Feng
- Faculty of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Teng-Chao Li
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Shixian Qu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Xingang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Hong Zhang
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Mahanta D, Dutta S, Steinbock O. Pinning of scroll waves to flat and highly branched unexcitable heterogeneities. Phys Rev E 2017; 95:032204. [PMID: 28415270 DOI: 10.1103/physreve.95.032204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 11/07/2022]
Abstract
System heterogeneities such as organelles, cells, and anatomical features strongly affect nonlinear wave patterns in biological systems. These effects are more readily studied in otherwise homogeneous chemical reactions that allow the introduction of tailored structures. Following this approach, we investigate the dynamics of three-dimensional excitation vortices pinned to inert sheets with circular holes arranged on a hexagonal lattice. Experiments with the Belousov-Zhabotinsky reaction and numerical simulations of an excitable reaction-diffusion model reveal vortex pinning that circumvents the rapid collapse of free vortex rings. The pinned scroll waves are affected by the topological mismatch between their looplike rotation backbone and the branched pinning structure. Depending on the initial condition, a multitude of stable vortex states exist, all of which obey topological constraints, suggesting spinlike states for the involved obstacle holes.
Collapse
Affiliation(s)
- Dhriti Mahanta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sumana Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
20
|
Srienc AI, Biesecker KR, Shimoda AM, Kur J, Newman EA. Ischemia-induced spreading depolarization in the retina. J Cereb Blood Flow Metab 2016; 36:1579-91. [PMID: 27389181 PMCID: PMC5012528 DOI: 10.1177/0271678x16657836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/17/2016] [Accepted: 06/07/2016] [Indexed: 02/04/2023]
Abstract
Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients.
Collapse
Affiliation(s)
- Anja I Srienc
- Graduate Program in Neuroscience, University of Minnesota, MN, USA Medical Scientist Training Program, University of Minnesota, MN, USA
| | - Kyle R Biesecker
- Graduate Program in Neuroscience, University of Minnesota, MN, USA
| | | | - Joanna Kur
- Department of Neuroscience, University of Minnesota, MN, USA
| | - Eric A Newman
- Department of Neuroscience, University of Minnesota, MN, USA
| |
Collapse
|
21
|
Li BW, Cai MC, Zhang H, Panfilov AV, Dierckx H. Chiral selection and frequency response of spiral waves in reaction-diffusion systems under a chiral electric field. J Chem Phys 2015; 140:184901. [PMID: 24832300 DOI: 10.1063/1.4874645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chirality is one of the most fundamental properties of many physical, chemical, and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.
Collapse
Affiliation(s)
- Bing-Wei Li
- Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
| | - Mei-Chun Cai
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hong Zhang
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
| | - Hans Dierckx
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
| |
Collapse
|
22
|
Hütt MT, Kaiser M, Hilgetag CC. Perspective: network-guided pattern formation of neural dynamics. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130522. [PMID: 25180302 PMCID: PMC4150299 DOI: 10.1098/rstb.2013.0522] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics.
Collapse
Affiliation(s)
- Marc-Thorsten Hütt
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Marcus Kaiser
- School of Computing Science, Newcastle University, Claremont Tower, Newcastle upon Tyne NE1 7RU, UK Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg, Germany Department of Health Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
23
|
Santos E, Schöll M, Sánchez-Porras R, Dahlem MA, Silos H, Unterberg A, Dickhaus H, Sakowitz OW. Radial, spiral and reverberating waves of spreading depolarization occur in the gyrencephalic brain. Neuroimage 2014; 99:244-55. [PMID: 24852458 DOI: 10.1016/j.neuroimage.2014.05.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/01/2014] [Accepted: 05/10/2014] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The detection of the hemodynamic and propagation patterns of spreading depolarizations (SDs) in the gyrencephalic brain using intrinsic optical signal imaging (IOS). METHODS The convexity of the brain surface was surgically exposed in fourteen male swine. Within the boundaries of this window, brains were immersed and preconditioned with an elevated K(+) concentration (7 mmol/l) in the standard Ringer lactate solution for 30-40 min. SDs were triggered using 3-5 μl of 1 mol/l KCl solution. Changes in tissue absorbency or reflection were registered with a CCD camera at a wavelength of 564 nm (14 nm FWHM), which was mounted 25 cm above the exposed cortex. Additional monitoring by electrocorticography and laser-Doppler was used in a subset of animals (n=7) to validate the detection of SD. RESULTS Of 198 SDs quantified in all of the experiments, 187 SDs appeared as radial waves that developed semi-planar fronts. The morphology was affected by the surface of the gyri, the sulci and the pial vessels. Other SD patterns such as spirals and reverberating waves, which have not been described before in gyrencephalic brains, were also observed. Diffusion gradients created in the cortex surface (i.e., KCl concentrations), sulci, vessels and SD-SD interactions make the gyrencephalic brain prone to the appearance of irregular SD waves. CONCLUSION The gyrencephalic brain is capable of irregular SD propagation patterns. The irregularities of the gyrencephalic brain cortex may promote the presence of re-entrance waves, such as spirals and reverberating waves.
Collapse
Affiliation(s)
- Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Germany.
| | - Michael Schöll
- Department of Neurosurgery, University Hospital Heidelberg, Germany
| | | | - Markus A Dahlem
- Department of Physics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Humberto Silos
- Department of Neurosurgery, University Hospital Heidelberg, Germany
| | | | - Hartmut Dickhaus
- Institute for Medical Biometry and Informatics, University of Heidelberg, Germany
| | | |
Collapse
|
24
|
Afshar S, Cohen GK, Wang RM, Van Schaik A, Tapson J, Lehmann T, Hamilton TJ. The ripple pond: enabling spiking networks to see. Front Neurosci 2013; 7:212. [PMID: 24298234 PMCID: PMC3829577 DOI: 10.3389/fnins.2013.00212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/23/2013] [Indexed: 11/24/2022] Open
Abstract
We present the biologically inspired Ripple Pond Network (RPN), a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns (TP) suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilizing the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable TP and the use of asynchronous frames for information binding.
Collapse
Affiliation(s)
- Saeed Afshar
- Bioelectronics and Neurosciences, The MARCS Institute, University of Western Sydney Penrith, NSW, Australia ; School of Electrical Engineering and Telecommunications, The University of New South Wales Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Karunasinghe RN, Lipski J. Oxygen and glucose deprivation (OGD)-induced spreading depression in the Substantia Nigra. Brain Res 2013; 1527:209-21. [PMID: 23796781 DOI: 10.1016/j.brainres.2013.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/14/2013] [Indexed: 01/07/2023]
Abstract
Spreading depression (SD) is a profound depolarization of neurons and glia that propagates in a wave-like manner across susceptible brain regions, and can develop during periods of compromised cellular energy such as ischemia, when it influences the severity of acute neuronal damage. Although SD has been well characterized in the cerebral cortex and hippocampus, little is known of this event in the Substantia Nigra (SN), a brainstem nucleus engaged in motor control and reward-related behavior. Transverse brain slices (250 μm; P21-23 rats) containing the SN were subject to oxygen and glucose deprivation (OGD) tests, modeling brain ischemia. SD developed in lateral aspects of the SN within 3.3±0.2 min of OGD onset, and spread through the Substantia Nigra pars reticulata (SNr), as indicated by fast-occurring and propagating increased tissue light transmittance and negative shift of extracellular DC potential. These events were associated with profound mitochondrial membrane depolarization (ΔΨm) throughout the SN, as demonstrated by increased Rhodamine 123 fluorescence. Extracellular recordings from individual SNr neurons indicated rapid depolarization followed by depolarizing block, while dopaminergic neurons in the Substantia Nigra pars compacta (SNc) showed inhibition of firing associated with hyperpolarization. SD evoked in the SNr was similar to OGD-induced SD in the CA1 region in hippocampal slices. In the hippocampus, SD also developed during anoxia or aglycemia alone (associated with less profound ΔΨm than OGD), while these conditions rarely led to SD in the SNr. Our results demonstrate that OGD consistently evokes SD in the SN, and that this phenomenon only involves the SNr. It remains to be established whether nigral SD contributes to neuronal damage associated with a sudden-onset form of Parkinson's disease known as 'vascular parkinsonism'.
Collapse
Affiliation(s)
- Rashika N Karunasinghe
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 92019, New Zealand
| | | |
Collapse
|
26
|
Li BW, Deng LY, Zhang H. Chiral symmetry breaking in a reaction-diffusion system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042905. [PMID: 23679487 DOI: 10.1103/physreve.87.042905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 09/19/2012] [Indexed: 06/02/2023]
Abstract
The emergence of order in far-from-equilibrium systems is often accompanied by the formation of spatially asymmetric patterns. About 30 years ago, a general mechanism to select a chiral solution by coupling a reaction-diffusion system to an external chiral electric field was proposed by Nicolis and Prigogine [Proc. Natl. Acad. Sci. USA 78, 659 (1981)]. However, no experimental or even numerical evidence in reaction-diffusion systems has been reported yet. Here we report a chiral symmetry-breaking phenomenon in a reaction-diffusion system coupled to a circularly polarized electric field (CPEF). Specifically, we show that the CPEF breaks the zero-rotation chiral symmetry between clockwise and counterclockwise spiral defects and that ordered spiral waves with preferred chirality arise from defect-mediated turbulence. The occurrence of such chiral symmetry breaking can be understood by the competition between spiral defects with opposite chirality.
Collapse
Affiliation(s)
- Bing-Wei Li
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou, 310027 China
| | | | | |
Collapse
|