1
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hu S, Ma W, Wang J, Ma Y, Zhou Z, Zhang R, Du K, Zhang H, Sun M, Jiang X, Tu H, Tang X, Yao X, Chen P. Synthesis and anticancer evaluations of novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative for the treatment of colorectal cancer. Eur J Pharmacol 2022; 928:175120. [PMID: 35753402 DOI: 10.1016/j.ejphar.2022.175120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
1H-imidazole [4,5-f][1,10] phenanthroline is a promising chemical structure for cancer treatment. Herein, we synthesized a novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative named IPM714 and found it exhibited selectively colorectal cancer (CRC) cells inhibitory activities, with half maximal inhibitory concentration (IC50) of 1.74 μM and 2 μM in HCT116 cells and SW480 cells, respectively. The present study is intended to explore the cytotoxicity of IPM714 in cancer cells of various types and its anticancer mechanism in vitro. Cellular functional analyses indicated IPM714 can arrest HCT116 cell cycle in S phase and induce apoptosis in both HCT116 and SW480 cells. Western blot and molecular docking showed that IPM714 may suppress PI3K/AKT/mTOR pathway to inhibit cell proliferation and regulate cell cycle and apoptosis. This study proved IPM714 to be a promising drug in CRC therapy.
Collapse
Affiliation(s)
- Shujian Hu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junyi Wang
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengze Sun
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hongyuan Tu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoliang Tang
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Xiaojun Yao
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
Rejeski K, Duque-Afonso J, Lübbert M. AML1/ETO and its function as a regulator of gene transcription via epigenetic mechanisms. Oncogene 2021; 40:5665-5676. [PMID: 34331016 PMCID: PMC8460439 DOI: 10.1038/s41388-021-01952-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/11/2021] [Accepted: 07/07/2021] [Indexed: 01/10/2023]
Abstract
The chromosomal translocation t(8;21) and the resulting oncofusion gene AML1/ETO have long served as a prototypical genetic lesion to model and understand leukemogenesis. In this review, we describe the wide-ranging role of AML1/ETO in AML leukemogenesis, with a particular focus on the aberrant epigenetic regulation of gene transcription driven by this AML-defining mutation. We begin by analyzing how structural changes secondary to distinct genomic breakpoints and splice changes, as well as posttranscriptional modifications, influence AML1/ETO protein function. Next, we characterize how AML1/ETO recruits chromatin-modifying enzymes to target genes and how the oncofusion protein alters chromatin marks, transcription factor binding, and gene expression. We explore the specific impact of these global changes in the epigenetic network facilitated by the AML1/ETO oncofusion on cellular processes and leukemic growth. Furthermore, we define the genetic landscape of AML1/ETO-positive AML, presenting the current literature concerning the incidence of cooperating mutations in genes such as KIT, FLT3, and NRAS. Finally, we outline how alterations in transcriptional regulation patterns create potential vulnerabilities that may be exploited by epigenetically active agents and other therapeutics.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany.,Department of Hematology and Oncology, University Hospital of the LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK) Freiburg Partner Site, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jesús Duque-Afonso
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany. .,German Cancer Consortium (DKTK) Freiburg Partner Site, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv 2021; 4:229-238. [PMID: 31935293 DOI: 10.1182/bloodadvances.2019000168] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-RUNX1T1, one of the core-binding factor leukemias, is one of the most common subtypes of AML with recurrent genetic abnormalities and is associated with a favorable outcome. The translocation leads to the formation of a pathological RUNX1-RUNX1T1 fusion that leads to the disruption of the normal function of the core-binding factor, namely, its role in hematopoietic differentiation and maturation. The consequences of this alteration include the recruitment of repressors of transcription, thus blocking the expression of genes involved in hematopoiesis, and impaired apoptosis. A number of concurrent and cooperating mutations clearly play a role in modulating the proliferative potential of cells, including mutations in KIT, FLT3, and possibly JAK2. RUNX1-RUNX1T1 also appears to interact with microRNAs during leukemogenesis. Epigenetic factors also play a role, especially with the recruitment of histone deacetylases. A better understanding of the concurrent mutations, activated pathways, and epigenetic modulation of the cellular processes paves the way for exploring a number of approaches to achieve cure. Potential approaches include the development of small molecules targeting the RUNX1-RUNX1T1 protein, the use of tyrosine kinase inhibitors such as dasatinib and FLT3 inhibitors to target mutations that lead to a proliferative advantage of the leukemic cells, and experimentation with epigenetic therapies. In this review, we unravel some of the recently described molecular pathways and explore potential therapeutic strategies.
Collapse
|
5
|
Zhou B, Qin Y, Zhou J, Ruan J, Xiong F, Dong J, Huang X, Yu Z, Gao S. Bortezomib suppresses self-renewal and leukemogenesis of leukemia stem cell by NF-ĸB-dependent inhibition of CDK6 in MLL-rearranged myeloid leukemia. J Cell Mol Med 2021; 25:3124-3135. [PMID: 33599085 PMCID: PMC7957264 DOI: 10.1111/jcmm.16377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) with chromosomal rearrangements involving the H3K4 methyltransferase mixed‐lineage leukaemia (MLL) is an aggressive subtype with low overall survival. Bortezomib (Bort) is first applied in multiple myeloma. However, whether bort possesses anti‐self‐renewal and leukemogenesis of leukaemia stem cell (LSC) in AML with MLL rearrangements is still unclear. Here, we found that bort suppressed cell proliferation and decreased colony formation in human and murine leukaemic blasts. Besides, bort reduced the frequency and function of LSC, inhibited the progression, and extended the overall survival in MLL‐AF9 (MF9) ‐transformed leukaemic mice. Furthermore, bort decreased the percentage of human LSC (CD34+CD38‐) cells and extended the overall survival in AML blasts‐xenografted NOD/SCID‐IL2Rγ (NSG) mice. Mechanistically, cyclin dependent kinase 6 (CDK6) was identified as a bort target by RNA sequencing. Bort reduced the expressions of CDK6 by inhibiting NF ĸB recruitment to the promoter of CDK6, leading to the abolishment of NF ĸB DNA‐binding activity for CDK6 promoter. Overexpression of CDK6 partially rescued bort‐induced anti‐leukemogenesis. Most importantly, bort had little side‐effect against the normal haematological stem and progenitor cell (HSPC) and did not affect CDK6 expression in normal HSPC. In conclusion, our results suggest that bort selectively targets LSC in MLL rearrangements. Bort might be a prospective drug for AML patients bearing MLL rearrangements.
Collapse
Affiliation(s)
- Bin Zhou
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaqian Qin
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingying Zhou
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Xiong
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinglai Dong
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingzhou Huang
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Chen Y, Wang L, Lin X, Zhang Q, Xu Y, Lin D, Xu J, Feng S, Hu J. Cytological and spectroscopic characteristics of c-KIT N822K mutation in core binding factor acute myeloid leukemia cells. JOURNAL OF BIOPHOTONICS 2020; 13:e202000103. [PMID: 32390317 DOI: 10.1002/jbio.202000103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The frequency of N822K mutation is high in the A-loop region of c-KIT which is highly associated with poor prognosis of core binding factor acute myeloid leukemia. The current work used common assays including cell cycle, apoptosis, clone formation and western blot to perform cytological detection for HL60 (wild type), NB4 (carrying t[15;17] chromosome translocation) and Kasumi-1 (with c-KIT N822K mutation); and meanwhile, the laser tweezers Raman spectroscopy (LTRS) was also used to perform label-free detection of single living cells. The results demonstrated that Kasumi-1 cell line bearing c-KIT N822K mutation has a stable cell cycle, while there was a significant difference between early and late apoptosis within 48 hours. The LTRS detection initially reflected the spectral differences induced by genetic abnormalities and highlighted progressive patterns of DNA and amino acids band contents which were appropriately consistent with that of cell clone ratio and the c-KIT phosphorylation level. It is concluded that methodology of LTRS-based single living cell characterization could be potential and effective to reveal gene mutation-induced cell differentiation.
Collapse
Affiliation(s)
- Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Lingyan Wang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xindi Lin
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Qian Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Yunchao Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Donghong Lin
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Jianping Xu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianda Hu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
7
|
Li F, Mladenov E, Mortoga S, Iliakis G. SCF SKP2 regulates APC/C CDH1-mediated degradation of CTIP to adjust DNA-end resection in G 2-phase. Cell Death Dis 2020; 11:548. [PMID: 32683422 PMCID: PMC7368859 DOI: 10.1038/s41419-020-02755-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022]
Abstract
The cell cycle-dependent engagement of DNA-end resection at DSBs is regulated by phosphorylation of CTIP by CDKs, the central regulators of cell cycle transitions. Cell cycle transitions are also intimately regulated by protein degradation via two E3 ubiquitin ligases: SCFSKP2 and APC/CCDH1 complex. Although APC/CCDH1 regulates CTIP in G1– and G2-phase, contributions by SCFSKP2 have not been reported. We demonstrate that SCFSKP2 is a strong positive regulator of resection. Knockdown of SKP2, fully suppresses resection in several cell lines. Notably, this suppression is G2-phase specific and is not observed in S-phase or G1–phase cells. Knockdown of SKP2 inactivates SCFSKP2 causing APC/CCDH1 activation, which degrades CTIP. The stabilizing function of SCFSKP2 on CTIP promotes resection and supports gene conversion (GC), alternative end joining (alt-EJ) and cell survival. We propose that CDKs and SCFSKP2-APC/CCDH1 cooperate to regulate resection and repair pathway choice at DSBs in G2-phase.
Collapse
Affiliation(s)
- Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Sharif Mortoga
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany.
| |
Collapse
|
8
|
Schmidt-Arras D, Böhmer FD. Mislocalisation of Activated Receptor Tyrosine Kinases - Challenges for Cancer Therapy. Trends Mol Med 2020; 26:833-847. [PMID: 32593582 DOI: 10.1016/j.molmed.2020.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Activating mutations in genes encoding receptor tyrosine kinases (RTKs) mediate proliferation, cell migration, and cell survival, and are therefore important drivers of oncogenesis. Numerous targeted cancer therapies are directed against activated RTKs, including small compound inhibitors, and immunotherapies. It has recently been discovered that not only certain RTK fusion proteins, but also many full-length RTKs harbouring activating mutations, notably RTKs of the class III family, are to a large extent mislocalised in intracellular membranes. Active kinases in these locations cause aberrant activation of signalling pathways. Moreover, low levels of activated RTKs at the cell surface present an obstacle for immunotherapy. We outline here why understanding of the mechanisms underlying mislocalisation will help in improving existing and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Dirk Schmidt-Arras
- Christian-Albrechts-University Kiel, Institute of Biochemistry, 24118 Kiel, Germany.
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| |
Collapse
|
9
|
Obata Y, Hara Y, Shiina I, Murata T, Tasaki Y, Suzuki K, Ito K, Tsugawa S, Yamawaki K, Takahashi T, Okamoto K, Nishida T, Abe R. N822K- or V560G-mutated KIT activation preferentially occurs in lipid rafts of the Golgi apparatus in leukemia cells. Cell Commun Signal 2019; 17:114. [PMID: 31484543 PMCID: PMC6727407 DOI: 10.1186/s12964-019-0426-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background KIT tyrosine kinase is expressed in mast cells, interstitial cells of Cajal, and hematopoietic cells. Permanently active KIT mutations lead these host cells to tumorigenesis, and to such diseases as mast cell leukemia (MCL), gastrointestinal stromal tumor (GIST), and acute myeloid leukemia (AML). Recently, we reported that in MCL, KIT with mutations (D816V, human; D814Y, mouse) traffics to endolysosomes (EL), where it can then initiate oncogenic signaling. On the other hand, KIT mutants including KITD814Y in GIST accumulate on the Golgi, and from there, activate downstream. KIT mutations, such as N822K, have been found in 30% of core binding factor-AML (CBF-AML) patients. However, how the mutants are tyrosine-phosphorylated and where they activate downstream molecules remain unknown. Moreover, it is unclear whether a KIT mutant other than KITD816V in MCL is able to signal on EL. Methods We used leukemia cell lines, such as Kasumi-1 (KITN822K, AML), SKNO-1 (KITN822K, AML), and HMC-1.1 (KITV560G, MCL), to explore how KIT transduces signals in these cells and to examine the signal platform for the mutants using immunofluorescence microscopy and inhibition of intracellular trafficking. Results In AML cell lines, KITN822K aberrantly localizes to EL. After biosynthesis, KIT traffics to the cell surface via the Golgi and immediately migrates to EL through endocytosis in a manner dependent on its kinase activity. However, results of phosphorylation imaging show that KIT is preferentially activated on the Golgi. Indeed, blockade of KITN822K migration to the Golgi with BFA/M-COPA inhibits the activation of KIT downstream molecules, such as AKT, ERK, and STAT5, indicating that KIT signaling occurs on the Golgi. Moreover, lipid rafts in the Golgi play a role in KIT signaling. Interestingly, KITV560G in HMC-1.1 migrates and activates downstream in a similar manner to KITN822K in Kasumi-1. Conclusions In AML, KITN822K mislocalizes to EL. Our findings, however, suggest that the mutant transduces phosphorylation signals on lipid rafts of the Golgi in leukemia cells. Unexpectedly, the KITV560G signal platform in MCL is similar to that of KITN822K in AML. These observations provide new insights into the pathogenic role of KIT mutants as well as that of other mutant molecules. Electronic supplementary material The online version of this article (10.1186/s12964-019-0426-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan. .,Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan.
| | - Yasushi Hara
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Keiichi Ito
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Shou Tsugawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Kouhei Yamawaki
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Tsuyoshi Takahashi
- Department of Surgery, Osaka University, Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan. .,SIRC, Teikyo University, Itabashi-ku 2-11-1, Itabashi-ku, 173-8605, Tokyo, Japan.
| |
Collapse
|
10
|
Ma W, Xiang Y, Yang R, Zhang T, Xu J, Wu Y, Liu X, Xiang K, Zhao H, Liu Y, Si Y. Cucurbitacin B induces inhibitory effects via the CIP2A/PP2A/C-KIT signaling axis in t(8;21) acute myeloid leukemia. J Pharmacol Sci 2019; 139:304-310. [DOI: 10.1016/j.jphs.2018.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 01/01/2023] Open
|
11
|
Chai Y, Si Y, Xu J, Xiang Y, Zhao H, Si Y, Zhang T, Liu Y. Polyphyllin I Inhibits Proliferation and Induces Apoptosis by Downregulating AML1-ETO and Suppressing C-KIT/Akt Signaling in t(8;21) Acute Myeloid Leukemia. Chem Biodivers 2018; 15:e1800314. [PMID: 30194712 DOI: 10.1002/cbdv.201800314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/03/2018] [Indexed: 11/08/2022]
Abstract
Polyphyllin I (PPI), a bioactive constituent extracted from traditional medicinal herbs, is cytotoxic to several cancer types. However, whether PPI can be used to treat t(8;21) acute myeloid leukemia (AML) cells requires further investigation. Here, we determined the inhibitory effects of PPI on t(8;21) AML cells by Cell Counting Kit-8 (CCK-8) and the trypan blue dye exclusion assay. DAPI staining and Wright-Giemsa staining were performed to check for apoptosis. Detection of apoptotic protein and AML1-ETO signaling protein expression were conducted by Western blot analysis. Our results suggested that PPI decreased growth and induced apoptosis in a dosage-dependent manner in the t(8;21) AML cell line Kasumi-1. PPI significantly downregulated AML1-ETO expression in a dosage- and time-dependent manner. PPI also upregulated P21 and downregulated survivin expression by reducing AML1-ETO. Mechanistically, PPI significantly reduced the expression of C-KIT, another therapeutic target for AML with t(8;21), followed by inhibition of Akt signaling. These results suggest that PPI can suppress growth and induce apoptosis of t(8;21) AML by suppressing the AML1-ETO and C-KIT/Akt signaling pathways. Therefore, PPI may be an anticancer therapeutic to treat t(8;21) AML.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/metabolism
- Diosgenin/analogs & derivatives
- Diosgenin/chemistry
- Diosgenin/pharmacology
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Drug Screening Assays, Antitumor
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Medicine, Chinese Traditional
- Molecular Conformation
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Proto-Oncogene Proteins c-kit/metabolism
- RUNX1 Translocation Partner 1 Protein/antagonists & inhibitors
- RUNX1 Translocation Partner 1 Protein/metabolism
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yanting Chai
- Child Health Center, Shiyan Maternal and Child Health Hospital, Shiyan, 442000, P. R. China
| | - Ying Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, P. R. China
- Department of Rehabilitation Medicine, Gucheng People's Hospital, Hubei University of Arts and Science, Xiangyang, 441700, P. R. China
| | - Jiaxin Xu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, P. R. China
| | - Yuchen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, P. R. China
| | - Hongyan Zhao
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, P. R. China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, P. R. China
| | - Te Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, P. R. China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, P. R. China
| |
Collapse
|
12
|
Targeting c-KIT (CD117) by dasatinib and radotinib promotes acute myeloid leukemia cell death. Sci Rep 2017; 7:15278. [PMID: 29127384 PMCID: PMC5681687 DOI: 10.1038/s41598-017-15492-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Dasatinib and radotinib are oral BCR-ABL tyrosine kinase inhibitors that were developed as drugs for the treatment of chronic myeloid leukemia. We report here that the c-KIT (CD117) targeting with dasatinib and radotinib promotes acute myeloid leukemia (AML) cell death, and c-KIT endocytosis is essential for triggering c-KIT-positive AML cell death by dasatinib and radotinib during the early stages. In addition, dasatinib and radotinib reduce heat shock protein 90β (HSP90β) expression and release Apaf-1 in c-KIT-positive AML cells. Finally, this activates a caspase-dependent apoptotic pathway in c-KIT-positive AML cells. Moreover, the inhibition of c-KIT endocytosis by dynamin inhibitor (DY) reversed cell viability and c-KIT expression by dasatinib and radotinib. HSP90β expression was recovered by DY in c-KIT-positive AML cells as well. Furthermore, the effect of radotinib on c-KIT and HSP90β showed the same pattern in a xenograft animal model using HEL92.1.7 cells. Therefore, dasatinib and radotinib promote AML cell death by targeting c-KIT. Taken together, these results indicate that dasatinib and radotinib treatment have a potential role in anti-leukemic therapy on c-KIT-positive AML cells.
Collapse
|
13
|
Cheng X, Zhong F, He K, Sun S, Chen H, Zhou J. EHHM, a novel phenolic natural product from Livistona chinensis, induces autophagy-related apoptosis in hepatocellular carcinoma cells. Oncol Lett 2016; 12:3739-3748. [PMID: 27895725 PMCID: PMC5104158 DOI: 10.3892/ol.2016.5178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the second cause of cancer-associated mortality worldwide. In the present study, the effects and mechanisms of a new phenolic natural product E-[6′-(5′-hydroxypentyl)tricosyl]-4-hydroxy-3-methoxycinnamate (EHHM) isolated from Livistona chinensis on the growth of HCC cells were investigated. It was observed that EHHM treatment significantly suppressed cell proliferation and colony formation, and induced cell apoptosis via a mitochondria-dependent caspase pathway in HepG2 cells in a time- and dose-dependent manner. Meanwhile, EHHM treatment also led to upregulated expression of autophagy protein 5 (Atg5), Beclin 1 and light chain 3 (LC3)-II proteins, and accumulation of green fluorescent protein-LC3 punctate florescent foci in HCC cells, suggesting that EHHM-induced apoptosis is accompanied by autophagy induction. Western blotting revealed that EHHM-induced autophagy is related to the inhibition of the Akt/mechanistic target of rapamycin/p70 ribosomal protein S6 kinase signaling pathway. Furthermore, treatment with Atg5 small interfering RNA or autophagy inhibitors significantly enhanced EHHM-mediated growth inhibition and apoptotic cell death, indicating that autophagy serves as a self-protective mechanism in EHHM-treated HCC cells, and that combined treatment with EHHM and autophagy inhibitors may be an effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xinsheng Cheng
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Hepatobiliary Surgery, Nanshan Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Feng Zhong
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kun He
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shibo Sun
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hongbo Chen
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
14
|
Yu X, Ruan X, Zhang J, Zhao Q. Celastrol Induces Cell Apoptosis and Inhibits the Expression of the AML1-ETO/C-KIT Oncoprotein in t(8;21) Leukemia. Molecules 2016; 21:molecules21050574. [PMID: 27144550 PMCID: PMC6274014 DOI: 10.3390/molecules21050574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/16/2022] Open
Abstract
Resistance to chemotherapy is a major challenge to improving overall survival in Acute Myeloid Leukemia (AML). Therefore, the development of innovative therapies and the identification of more novel agents for AML are urgently needed. Celastrol, a compound extracted from the Chinese herb Tripterygium wilfordii Hook, exerts anticancer activity. We investigated the effect of celastrol in the t(8;21) AML cell lines Kasumi-1 and SKNO-1. We demonstrated that inhibition of cell proliferation activated caspases and disrupted mitochondrial function. In addition, we found that celastrol downregulated the AML1-ETO fusion protein, therefore downregulating C-KIT kinases and inhibiting AKT, STAT3 and Erk1/2. These findings provide clear evidence that celastrol might provide clinical benefits to patients with t(8;21) leukemia.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/biosynthesis
- Down-Regulation/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Pentacyclic Triterpenes
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins c-kit/biosynthesis
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/biosynthesis
- Translocation, Genetic
- Triterpenes/therapeutic use
Collapse
Affiliation(s)
- Xianjun Yu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Xuzhi Ruan
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Jingxuan Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Qun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
15
|
Basiorka AA, McGraw KL, De Ceuninck L, Griner LN, Zhang L, Clark JA, Caceres G, Sokol L, Komrokji RS, Reuther GW, Wei S, Tavernier J, List AF. Lenalidomide Stabilizes the Erythropoietin Receptor by Inhibiting the E3 Ubiquitin Ligase RNF41. Cancer Res 2016; 76:3531-40. [PMID: 27197154 DOI: 10.1158/0008-5472.can-15-1756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/08/2016] [Indexed: 01/05/2023]
Abstract
In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability of JAK2-associated EpoR in UT7 erythroid cells and primary CD71+ erythroid progenitors. The effects of lenalidomide on receptor turnover were Type I cytokine receptor specific, as evidenced by coregulation of the IL3-Rα receptor but not c-Kit. To elucidate this mechanism, we investigated the effects of lenalidomide on the E3 ubiquitin ligase RNF41. Lenalidomide promoted EpoR/RNF41 association and inhibited RNF41 auto-ubiquitination, accompanied by a reduction in EpoR ubiquitination. To confirm that RNF41 is the principal target responsible for EpoR stabilization, HEK293T cells were transfected with EpoR and/or RNF41 gene expression vectors. Steady-state EpoR expression was reduced in EpoR/RNF41 cells, whereas EpoR upregulation by lenalidomide was abrogated, indicating that cellular RNF41 is a critical determinant of drug-induced receptor modulation. Notably, shRNA suppression of CRBN gene expression failed to alter EpoR upregulation, indicating that drug-induced receptor modulation is independent of cereblon. Immunohistochemical staining showed that RNF41 expression decreased in primary erythroid cells of lenalidomide-responding patients, suggesting that cellular RNF41 expression merits investigation as a biomarker for lenalidomide response. Our findings indicate that lenalidomide has E3 ubiquitin ligase inhibitory effects that extend to RNF41 and that inhibition of RNF41 auto-ubiquitination promotes membrane accumulation of signaling competent JAK2/EpoR complexes that augment Epo responsiveness. Cancer Res; 76(12); 3531-40. ©2016 AACR.
Collapse
Affiliation(s)
- Ashley A Basiorka
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and the Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida
| | - Kathy L McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Leentje De Ceuninck
- VIB Department of Medical Protein Research, Ghent University, Albert Baertsoenkaai, Ghent, Belgium
| | - Lori N Griner
- National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Ling Zhang
- Department of Hematopathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Justine A Clark
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Gisela Caceres
- Morsani Molecular Diagnostic Laboratory, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Gary W Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jan Tavernier
- VIB Department of Medical Protein Research, Ghent University, Albert Baertsoenkaai, Ghent, Belgium
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
16
|
Cheng B, Lu SL, Fu XB. Regenerative medicine in China: main progress in different fields. Mil Med Res 2016; 3:24. [PMID: 27547444 PMCID: PMC4990848 DOI: 10.1186/s40779-016-0096-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022] Open
Abstract
Regenerative medicine (RM) is an emerging interdisciplinary field of research and China has developed the research quickly and impressed the world with numerous research findings in stem cells, tissue engineering, active molecules and gene therapy. Important directions are induced differentiation of induced pluripotent stem and embryo stem cells as well as somatic stem cell differentiation potential and their application in trauma, burns, diseases of aging and nerve regeneration. The products ActivSkin and bone repair scaffolds have been approved and are applied in the clinic, and similar products are being studied. About 10 engineered growth-factor drugs for repair and regeneration have been approved and are used in the clinic. Gene therapy, therapeutic cloning and xenotransplantation are some of the strategies being studied. However, China needs to develop standards, regulations and management practices suitable for the healthy development of RM. Aspects that should be strengthened include sound administrative systems, laws, and technical specifications and guidelines; conservation of stem cell resources; emphasis on training and retention of talented stem cell researchers; and reasonable allocation of resources, diversification of investment and breakthroughs in key areas. Finally, broad and deep international cooperation is necessary.
Collapse
Affiliation(s)
- Biao Cheng
- Medical College of PLA, General Hospital of PLA, College of Life Sciences, Beijing, 100853 China ; The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area of PLA, Guangzhou, 510010 China
| | - Shu-Liang Lu
- Shanghai Burns Institute, Ruijing Hospital, Shanghai Jiaotong University, Shanghai, 200025 China
| | - Xiao-Bing Fu
- Medical College of PLA, General Hospital of PLA, College of Life Sciences, Beijing, 100853 China
| |
Collapse
|
17
|
Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood 2015; 127:882-92. [PMID: 26286850 DOI: 10.1182/blood-2015-05-646497] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/29/2015] [Indexed: 01/16/2023] Open
Abstract
Internal tandem duplication of the Fms-like tyrosine kinase-3 receptor (FLT3) internal tandem duplication (ITD) is found in 30% of acute myeloid leukemia (AML) and is associated with a poor outcome. In addition to tyrosine kinase inhibitors, therapeutic strategies that modulate the expression of FLT3-ITD are also promising. We show that AML samples bearing FLT3-ITD mutations are more sensitive to proteasome inhibitors than wild-type samples and this sensitivity is strongly correlated with a higher FLT3-ITD allelic burden. Using pharmacologic inhibitors of autophagy, specific downregulation of key autophagy proteins including Vps34, autophagy gene (Atg)5, Atg12, Atg13, biochemical, and microscopy studies, we demonstrated that proteasome inhibitors induced cytotoxic autophagy in AML cells. FLT3-ITD molecules were detectable within autophagosomes after bortezomib treatment indicating that autophagy induction was responsible for the early degradation of FLT3-ITD, which preceded the inhibition of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), PI3K/AKT, and STAT5 pathways, and subsequent activation of cell death. Moreover, proteasome inhibitors overcome resistance to quizartinib induced by mutations in the kinase domain of FLT3, suggesting that these compounds may prevent the emergence of mutant clones arising from tyrosine kinase inhibitor treatments. In xenograft mice models, bortezomib stimulated the conversion of LC3-I to LC3-II, indicating induction of autophagy in vivo, downregulated FLT3-ITD protein expression and improved overall survival. Therefore, selecting patients according to FLT3-ITD mutations could be a new way to detect a significant clinical activity of proteasome inhibitors in AML patients.
Collapse
|
18
|
Dong Y, Liang C, Zhang B, Ma J, He X, Chen S, Zhang X, Chen W. Bortezomib enhances the therapeutic efficacy of dasatinib by promoting c-KIT internalization-induced apoptosis in gastrointestinal stromal tumor cells. Cancer Lett 2015; 361:137-146. [PMID: 25737303 DOI: 10.1016/j.canlet.2015.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 12/17/2022]
Abstract
Dasatinib-based therapy is often used as a second-line therapeutic strategy for imatinib-resistance gastrointestinal stromal tumors (GISTs); however, acquired aberrant activation of dasatinib target proteins, such as c-KIT and PDGFRβ, attenuates the therapeutic efficiency of dasatinib. Combination therapy which inhibits the activation of dasatinib target proteins may enhance the cytotoxicity of dasatinib in GISTs. Bortezomib, a proteasome inhibitor, significantly inhibited cell viability and promoted apoptosis of dasatinib-treated GIST-T1 cells, whereas GIST-T1 cells showed little dasatinib cytotoxicity when treated with dasatinib alone, as the upregulation of c-KIT caused by dasatinib itself interfered with the inhibition of c-KIT and PDGFRβ phosphorylation by dasatinib. Bortezomib induced internalization and degradation of c-KIT by binding c-KIT to Cbl, an E3 ubiquitin-protein ligase, and the subsequent release of Apaf-1, which was originally bound to the c-KIT-Hsp90β-Apaf-1 complex, induced primary apoptosis in GIST-T1 cells. Combined treatment with bortezomib plus dasatinib caused cell cycle arrest in the G1 phase through inactivation of PDGFRβ and promoted bortezomib-induced apoptosis in GIST-T1 cells. Our data suggest that combination therapy exerts better efficiency for eradicating GIST cells and may be a promising strategy for the future treatment of GISTs.
Collapse
Affiliation(s)
- Ying Dong
- Department of Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chao Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjuan Ma
- Department of Internal Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuexin He
- Department of Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Siyu Chen
- Department of Oncology, Xinhua Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai 200092, China
| | - Xianning Zhang
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
19
|
Ye BX, Deng X, Shao LD, Lu Y, Xiao R, Liu YJ, Jin Y, Xie YY, Zhao Y, Luo LF, Ma S, Gao M, Zhang LR, He J, Zhang WN, Chen Y, Xia CF, Deng M, Liu TX, Zhao QS, Chen SJ, Chen Z. Vibsanin B preferentially targets HSP90β, inhibits interstitial leukocyte migration, and ameliorates experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2015; 194:4489-97. [PMID: 25810397 DOI: 10.4049/jimmunol.1402798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/24/2015] [Indexed: 01/16/2023]
Abstract
Interstitial leukocyte migration plays a critical role in inflammation and offers a therapeutic target for treating inflammation-associated diseases such as multiple sclerosis. Identifying small molecules to inhibit undesired leukocyte migration provides promise for the treatment of these disorders. In this study, we identified vibsanin B, a novel macrocyclic diterpenoid isolated from Viburnum odoratissimum Ker-Gawl, that inhibited zebrafish interstitial leukocyte migration using a transgenic zebrafish line (TG:zlyz-enhanced GFP). We found that vibsanin B preferentially binds to heat shock protein (HSP)90β. At the molecular level, inactivation of HSP90 can mimic vibsanin B's effect of inhibiting interstitial leukocyte migration. Furthermore, we demonstrated that vibsanin B ameliorates experimental autoimmune encephalomyelitis in mice with pathological manifestation of decreased leukocyte infiltration into their CNS. In summary, vibsanin B is a novel lead compound that preferentially targets HSP90β and inhibits interstitial leukocyte migration, offering a promising drug lead for treating inflammation-associated diseases.
Collapse
Affiliation(s)
- Bai-Xin Ye
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li-Dong Shao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Lu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Run Xiao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Jie Liu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Jin
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yin-Yin Xie
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Zhao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liu-Fei Luo
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shun Ma
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Ming Gao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; and
| | - Lian-Ru Zhang
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Juan He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Na Zhang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cheng-Feng Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Min Deng
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting-Xi Liu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Zhu Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
20
|
Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors. Leukemia 2014; 29:279-89. [PMID: 24897507 PMCID: PMC4320295 DOI: 10.1038/leu.2014.179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
The RUNX1/ETO (RE) fusion protein, which originates from the t(8;21) chromosomal rearrangement, is one of the most frequent translocation products found in de novo acute myeloid leukemia (AML). In RE leukemias, activated forms of the c-KIT tyrosine kinase receptor are frequently found, thereby suggesting oncogenic cooperativity between these oncoproteins in the development and maintenance of t(8;21) malignancies. In this report, we show that activated c-KIT cooperates with a C-terminal truncated variant of RE, REtr, to expand human CD34+ hematopoietic progenitors ex vivo. CD34+ cells expressing both oncogenes resemble the AML-M2 myeloblastic cell phenotype, in contrast to REtr-expressing cells which largely undergo granulocytic differentiation. Oncogenic c-KIT amplifies REtr-depended clonogenic growth and protects cells from exhaustion. Activated c-KIT reverts REtr-induced DNA damage and apoptosis. In the presence of activated c-KIT, REtr-downregulated DNA-repair genes are re-expressed leading to an enhancement of DNA-repair efficiency via homologous recombination. Together, our results provide new mechanistic insight into REtr and c-KIT oncogenic cooperativity and suggest that augmented DNA repair accounts for the increased chemoresistance observed in t(8;21)-positive AML patients with activated c-KIT mutations. This cell-protective mechanism might represent a new therapeutic target, as REtr cells with activated c-KIT are highly sensitive to pharmacological inhibitors of DNA repair.
Collapse
|
21
|
Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells. Blood 2013; 122:2467-76. [PMID: 23970379 DOI: 10.1182/blood-2013-05-500629] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The role of autophagy during leukemia treatment is unclear. On the one hand, autophagy might be induced as a prosurvival response to therapy, thereby reducing treatment efficiency. On the other hand, autophagy may contribute to degradation of fusion oncoproteins, as recently demonstrated for promyelocytic leukemia-retinoic acid receptor α and breakpoint cluster region-abelson, thereby facilitating leukemia treatment. Here, we investigated these opposing roles of autophagy in t(8;21) acute myeloid leukemia (AML) cells, which express the most frequently occurring AML fusion oncoprotein, AML1-eight-twenty-one (ETO). We demonstrate that autophagy is induced by AML1-ETO-targeting drugs, such as the histone deacetylase inhibitors (HDACis) valproic acid (VPA) and vorinostat. Furthermore, we show that autophagy does not mediate degradation of AML1-ETO but rather has a prosurvival role in AML cells, as inhibition of autophagy significantly reduced the viability and colony-forming ability of HDACi-treated AML cells. Combined treatment with HDACis and autophagy inhibitors such as chloroquine (CQ) led to a massive accumulation of ubiquitinated proteins that correlated with increased cell death. Finally, we show that VPA induced autophagy in t(8;21) AML patient cells, and combined treatment with CQ enhanced cell death. Because VPA and CQ are well-tolerated drugs, combinatorial therapy with VPA and CQ could represent an attractive treatment option for AML1-ETO-positive leukemia.
Collapse
|
22
|
Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth. Proc Natl Acad Sci U S A 2013; 110:3501-6. [PMID: 23382202 DOI: 10.1073/pnas.1222893110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma of the gastrointestinal tract and arises from the interstitial cells of Cajal. It is characterized by expression of the receptor tyrosine kinase CD117 (KIT). In 70-80% of GIST cases, oncogenic mutations in KIT are present, leading to constitutive activation of the receptor, which drives the proliferation of these tumors. Treatment of GIST with imatinib, a small-molecule tyrosine kinase inhibitor, inhibits KIT-mediated signaling and initially results in disease control in 70-85% of patients with KIT-positive GIST. However, the vast majority of patients eventually develop resistance to imatinib treatment, leading to disease progression and posing a significant challenge in the clinical management of these tumors. Here, we show that an anti-KIT monoclonal antibody (mAb), SR1, is able to slow the growth of three human GIST cell lines in vitro. Importantly, these reductions in cell growth were equivalent between imatinib-resistant and imatinib-sensitive GIST cell lines. Treatment of GIST cell lines with SR1 reduces cell-surface KIT expression, suggesting that mAb-induced KIT down-regulation may be a mechanism by which SR1 inhibits GIST growth. Furthermore, we also show that SR1 treatment enhances phagocytosis of GIST cells by macrophages, indicating that treatment with SR1 may enhance immune cell-mediated tumor clearance. Finally, using two xenotransplantation models of imatinib-sensitive and imatinib-resistant GIST, we demonstrate that SR1 is able to strongly inhibit tumor growth in vivo. These results suggest that treatment with mAbs targeting KIT may represent an alternative, or complementary, approach for treating GIST.
Collapse
|
23
|
Ottosson-Wadlund A, Ceder R, Preta G, Pokrovskaja K, Grafström RC, Heyman M, Söderhäll S, Grandér D, Hedenfalk I, Robertson JD, Fadeel B. Requirement of apoptotic protease-activating factor-1 for bortezomib-induced apoptosis but not for Fas-mediated apoptosis in human leukemic cells. Mol Pharmacol 2013; 83:245-55. [PMID: 23093495 DOI: 10.1124/mol.112.080788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bortezomib is a highly selective inhibitor of the 26S proteasome and has been approved for clinical use in the treatment of relapsing and refractory multiple myeloma and mantle cell lymphoma. Clinical trials are also underway to assess the role of bortezomib in several other human malignancies, including leukemia. However, the mechanism(s) by which bortezomib acts remain to be fully understood. Here, we studied the molecular requirements of bortezomib-induced apoptosis using the human T-cell leukemic Jurkat cells stably transfected with or without shRNA against apoptotic protease-activating factor-1 (Apaf-1). The Apaf-1-deficient Jurkat T cells were resistant to bortezomib-induced apoptosis, as assessed by caspase-3 activity, poly(ADP-ribose) polymerase cleavage, phosphatidylserine externalization, and hypodiploid DNA content. In contrast, Apaf-1-deficient cells were sensitive to Fas-induced apoptosis. Bortezomib induced an upregulation of the pro-apoptotic protein Noxa, loss of mitochondrial transmembrane potential, and release of cytochrome c in cells expressing or not expressing Apaf-1. Transient silencing of Apaf-1 expression in RPMI 8402 T-cell leukemic cells also diminished bortezomib-induced apoptosis. Fas-associated death domain (FADD)-deficient Jurkat cells were resistant to Fas-mediated apoptosis yet remained sensitive to bortezomib. Our results show that bortezomib induces apoptosis by regulating pathways that are mechanistically different from those activated upon death receptor ligation. Furthermore, in silico analyses of public transcriptomics databases indicated elevated Apaf-1 expression in several hematologic malignancies, including acute lymphoblastic and myeloid leukemia. We also noted variable Apaf-1 expression in a panel of samples from patients with acute lymphoblastic leukemia. Our results suggest that the expression of Apaf-1 may be predictive of the response to proteasome inhibition.
Collapse
Affiliation(s)
- Astrid Ottosson-Wadlund
- Division of Molecular Toxicology, Institute of Environmental Medicine, Nobels väg 13, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang B, Jiao J, Liu Y, Guo LX, Zhou B, Li GQ, Yao ZJ, Zhou GB. Gefitinib analogue V1801 induces apoptosis of T790M EGFR-harboring lung cancer cells by up-regulation of the BH-3 only protein Noxa. PLoS One 2012; 7:e48748. [PMID: 23185274 PMCID: PMC3504066 DOI: 10.1371/journal.pone.0048748] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Treatment of non-small cell lung cancer (NSCLC) with drugs targeting the epidermal growth factor receptor (EGFR), e.g., gefitinib and erlotinib, will eventually fail because of the development of secondary mutations such as T790M in EGFR. Strategies to overcome this resistance are therefore an urgent need. In this study, we synthesized a dozen of novel gefitinib analogues and evaluated their effects on L858R/T790M-EGFR harboring NSCLC cells, and reported that one of these gefitinib mimetics, N-(2-bromo-5-(trifluoromethyl) phenyl)-6-methoxy-7-(3-(piperidin-1-yl)propoxy)quinazolin-4-amine (hereafter, V1801), triggered apoptosis of the NSCLC cells and overcame gefitinib-resistance in mice inoculated with NCI-H1975 cells. Though V1801 only moderately inhibited EGFR kinase activity, it markedly induced the expression of the BH3-only protein Noxa, and Noxa silencing significantly reduced V1801-induced apoptosis of NCI-H1975 cells. It is showed that V1801 interfered with the expression of the transcription factor c-Myc and the extracellular signal regulated kinase (Erk) pathway. V1801 in combination with proteasome inhibitor bortezomib exerted enhanced cytotoxicity in NCI-H1975 cells possibly due to potentiated induction of Noxa expression. These data indicate that gefinitib analogues with weak EGFR inhibitory activity may overcome drug-resistance via activation of BH-3 only pro-apoptotic proteins, and V1801 may have therapeutic potentials for NSCLC.
Collapse
Affiliation(s)
- Bo Zhang
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jiao Jiao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Liu
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Liang-Xia Guo
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhou
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang-Qin Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhu-Jun Yao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Biao Zhou
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Identification of an annonaceous acetogenin mimetic, AA005, as an AMPK activator and autophagy inducer in colon cancer cells. PLoS One 2012; 7:e47049. [PMID: 23056575 PMCID: PMC3466238 DOI: 10.1371/journal.pone.0047049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/11/2012] [Indexed: 01/13/2023] Open
Abstract
Annonaceous acetogenins, a large family of naturally occurring polyketides isolated from various species of the plant genus Annonaceae, have been found to exhibit significant cytotoxicity against a variety of cancer cells. Previous studies showed that these compounds could act on the mitochondria complex-I and block the corresponding electron transport chain and terminate ATP production. However, more details of the mechanisms of action remain ambiguous. In this study we tested the effects of a set of mimetics of annonaceous acetogenin on some cancer cell lines, and report that among them AA005 exhibits the most potent antitumor activity. AA005 depletes ATP, activates AMP-activated protein kinase (AMPK) and inhibits mTOR complex 1 (mTORC1) signal pathway, leading to growth inhibition and autophagy of colon cancer cells. AMPK inhibitors compound C and inosine repress, while AMPK activator AICAR enhances, AA005-caused proliferation suppression and subsequent autophagy of colon cancer cells. AA005 enhances the ATP depletion and AMPK activation caused by 2-deoxyglucose, an inhibitor of mitochondrial respiration and glycolysis. AA005 also inhibits chemotherapeutic agent cisplatin-triggered up-regulation of mTOR and synergizes with this drug in suppression of proliferation and induction of apoptosis of colon cancer cells. These data indicate that AA005 is a new metabolic inhibitor which exhibits therapeutic potentials in colon cancer.
Collapse
|
26
|
Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 2012; 6:248-62. [PMID: 22875638 DOI: 10.1007/s11684-012-0206-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022]
Abstract
The AML1-ETO fusion transcription factor is generated by the t(8;21) translocation, which is present in approximately 4%-12% of adult and 12%-30% of pediatric acute myeloid leukemia (AML) patients. Both human and mouse models of AML have demonstrated that AML1-ETO is insufficient for leukemogenesis in the absence of secondary events. In this review, we discuss the pathogenetic insights that have been gained from identifying the various events that can cooperate with AML1-ETO to induce AML in vivo. We also discuss potential therapeutic strategies for t(8;21) positive AML that involve targeting the fusion protein itself, the proteins that bind to it, or the genes that it regulates. Recently published studies suggest that a targeted therapy for t(8;21) positive AML is feasible and may be coming sometime soon.
Collapse
Affiliation(s)
- Megan A Hatlen
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
27
|
Tumor cells can evade dependence on autophagy through adaptation. Biochem Biophys Res Commun 2012; 425:684-8. [PMID: 22842577 DOI: 10.1016/j.bbrc.2012.07.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/19/2022]
Abstract
The autophagy-lysosome and the proteasome constitute the two major intracellular degradation systems. Suppression of the proteasome promotes autophagy for compensation and simultaneous inhibition of autophagy can selectively increase apoptosis in transformed cells, but not in untransformed or normal cells. Transformed cells are thus more dependent on autophagy for survival. However, it is unclear whether long-term autophagy inhibition/insufficiency would affect such dependency. To address this question, we transformed wild-type and autophagy-deficient cells lacking a key autophagy-related gene Atg5 with activated Ras. We found that such transformation did not make the autophagy-deficient tumor cells more susceptible to proteasome inhibitors than the wild type tumor cells, although the transformed cells were in general more sensitive to proteasome inhibition. We then compared the effect of acute versus constitutive knock-down of a key autophagy initiating molecule, Beclin 1, in an already transformed cancer cell line. In a wild-type U251 glioblastoma cell line (autophagy intact), increased sensitivity to proteasome inhibition was induced immediately after the knock-down of Beclin 1 expression with a specific siRNA (acute autophagy deficiency). On the other hand, when the tumor cell line was selected over a long period to achieve constitutive knock-down of Beclin 1, its sensitivity to proteasome inhibitors was no higher than that of the wild-type tumor cells. These results suggest that long-term autophagy deficiency either before or after oncogenic transformation can render the tumor cell survival independent of the autophagic activity, and the response to chemotherapy is no longer affected by the manipulation of the autophagy status.
Collapse
|
28
|
Chen SJ, Zhou GB. Targeted therapy: The new lease on life for acute promyelocytic leukemia, and beyond. IUBMB Life 2012; 64:671-5. [PMID: 22714999 DOI: 10.1002/iub.1055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/30/2012] [Indexed: 01/12/2023]
Abstract
Leukemia, a group of hematological malignancies characterized by abnormal proliferation, decreased apoptosis, and blocked differentiation of hematopoietic stem/progenitor cells, is a disease involving dynamic change in the genome. Chromosomal translocation and point mutation are the major mechanisms in leukemia, which lead to production of oncogenes with dominant gain of function and tumor suppressor genes with recessive loss of function. Targeted therapy refers to treatment strategies perturbing the molecules critical for leukemia pathogenesis. The t(15;17) which generates PML-RARα, t(8;21) that produces AML1-ETO, and t(9;22) which generates BCR-ABL are the three most frequently seen chromosomal translocations in myeloid leukemia. The past two to three decades have witnessed tremendous success in development of targeted therapies for acute and chronic myeloid leukemia caused by the three fusion proteins. Here, we review the therapeutic efficacies and the mechanisms of action of targeted therapies for myeloid leukemia and show how this strategy significantly improve the clinical outcome of patients and even turn acute promyelocytic leukemia from highly fatal to highly curable.
Collapse
Affiliation(s)
- Sai-Juan Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | |
Collapse
|
29
|
Yu XJ, Han QB, Wen ZS, Ma L, Gao J, Zhou GB. Gambogenic acid induces G1 arrest via GSK3β-dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett 2012; 322:185-94. [PMID: 22410463 DOI: 10.1016/j.canlet.2012.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/18/2012] [Accepted: 03/02/2012] [Indexed: 02/08/2023]
Abstract
Cyclin D1, an oncogenic G1 cyclin which can be induced by environmental carcinogens and whose over-expression may cause dysplasia and carcinoma, has been shown to be a target for cancer chemoprevention and therapy. In this study, we investigated the effects and underlying mechanisms of action of a polyprenylated xanthone, gambogenic acid (GEA) on gefitinib-sensitive and -resistant lung cancer cells. We found that GEA inhibited proliferation, caused G1 arrest and repressed colony-forming activity of lung cancer cells. GEA induced degradation of cyclin D1 via the proteasome pathway, and triggered dephosphorylation of GSK3β which was required for cyclin D1 turnover, because GSK3β inactivation by its inhibitor or specific siRNA markedly attenuated GEA-caused cyclin D1 catabolism. GEA induced autophagy of lung cancer cells, possibly due to activation of GSK3β and inactivation of AKT/mTOR signal pathway. These results indicate that GEA is a cyclin D1 inhibitor and a GSK3β activator which may have chemopreventive and therapeutic potential for lung cancer.
Collapse
Affiliation(s)
- Xian-Jun Yu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|