1
|
Gasparri F, Sarkar D, Bielickaite S, Poulsen MH, Hauser AS, Pless SA. P2X2 receptor subunit interfaces are missense variant hotspots where mutations tend to increase apparent ATP affinity. Br J Pharmacol 2022; 179:3859-3874. [PMID: 35285517 PMCID: PMC9314836 DOI: 10.1111/bph.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose P2X receptors are trimeric ligand‐gated ion channels that open a cation‐selective pore in response to ATP binding to their large extracellular domain. The seven known P2X subtypes can assemble as homotrimeric or heterotrimeric complexes and contribute to numerous physiological functions, including nociception, inflammation and hearing. The overall structure of P2X receptors is well established, but little is known about the range and prevalence of human genetic variations and the functional implications of specific domains. Experimental Approach Here, we examine the impact of P2X2 receptor inter‐subunit interface missense variants identified in the human population or by structural predictions. We test both single and double mutants through electrophysiological and biochemical approaches. Key Results We demonstrate that predicted extracellular domain inter‐subunit interfaces display a higher‐than‐expected density of missense variations and that the majority of mutations that disrupt putative inter‐subunit interactions result in channels with higher apparent ATP affinity. Lastly, we show that double mutants at the subunit interface show significant energetic coupling, especially if located in close proximity. Conclusion and Implications We provide the first structural mapping of the mutational distribution across the human population in a ligand‐gated ion channel and show that the density of missense mutations is constrained between protein domains, indicating evolutionary selection at the domain level. Our data may indicate that, unlike other ligand‐gated ion channels, P2X2 receptors have evolved an intrinsically high threshold for activation, possibly to allow for additional modulation or as a cellular protection mechanism against overstimulation.
Collapse
Affiliation(s)
- Federica Gasparri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Debayan Sarkar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Sarune Bielickaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Homann Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
2
|
Abstract
Thromboinflammation involves complex interactions between actors of inflammation and immunity and components of the hemostatic system, which are elicited upon infection or tissue injury. In this context, the interplay between platelets and innate immune cells has been intensively investigated. The ATP-gated P2X1 ion channel, expressed on both platelets and neutrophils is of particular interest. On platelets, this ion channel contributes to platelet activation and thrombosis, especially under high shear stress conditions of small arteries, whereas on neutrophils, it is involved in chemotaxis and in mitigating the activation of circulating cells. In vitro studies indicate that it may also be implicated in platelet-dependent immune responses during bacterial infection. More recently, in a mouse model of intestinal epithelial barrier disruption causing systemic inflammation, it has been reported that neutrophil P2X1 ion channel could play a protective role against exaggerated inflammation-associated thrombosis. This review will focus on this unique role of the ATP-gated P2X1 ion channel in thromboinflammation, highlighting possible implications and pointing to the need for further investigation of the role of P2X1 ion channels in the interplay between platelets and neutrophils during thrombus formation under various sterile or infectious inflammatory settings and in distinct vascular beds.
Collapse
Affiliation(s)
- Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Odile Wéra
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Abstract
Since the X-ray structure of the zebra fish P2X4 receptor in the closed state was published in 2009 homology modeling has been used to generate structural models for P2X receptors. In this chapter, we outline how to use the MODELLER software to generate such structural models for P2X receptors whose structures have not been solved yet.
Collapse
|
4
|
Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain 2019; 160:1989-2003. [DOI: 10.1097/j.pain.0000000000001587] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Bidula SM, Cromer BA, Walpole S, Angulo J, Stokes L. Mapping a novel positive allosteric modulator binding site in the central vestibule region of human P2X7. Sci Rep 2019; 9:3231. [PMID: 30824738 PMCID: PMC6397193 DOI: 10.1038/s41598-019-39771-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
P2X7 receptors are important in the regulation of inflammatory responses and immune responses to intracellular pathogens such as Mycobacterium tuberculosis and Toxoplasma gondii. Enhancement of P2X7 receptor responses may be useful in pathogen clearance particularly in individuals with defective microbial killing mechanisms. Ginsenosides from Panax ginseng have been discovered to act as positive allosteric modulators of P2X7. Here we describe a novel modulator binding site identified by computational docking located in the central vestibule of P2X7 involving S60, D318, and L320 in the lower body β-sheets lining the lateral portals. Potentiation of ATP-mediated responses by ginsenosides CK and Rd caused enhanced ionic currents, Ca2+ influx and YOPRO-1 uptake in stably transfected HEK-293 cells (HEK-hP2X7) plus enhanced cell death responses. Potentiation of ATP responses by CK and Rd was markedly reduced by mutations S59A, S60A, D318L and L320A supporting the proposed allosteric modulator binding site. Furthermore, mutation of the conserved residues S60 and D318 led to alterations in P2X7 response and a higher sensitivity to ATP in the absence of modulators suggesting residues in the connecting rods play an important role in regulating P2X7 gating. Identification of this novel binding site location in the central vestibule may also be relevant for structurally similar channels.
Collapse
Affiliation(s)
- Stefan M Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Brett A Cromer
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.,Department of Chemistry & Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Samuel Walpole
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
6
|
Schmid R, Evans RJ. ATP-Gated P2X Receptor Channels: Molecular Insights into Functional Roles. Annu Rev Physiol 2018; 81:43-62. [PMID: 30354932 DOI: 10.1146/annurev-physiol-020518-114259] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the nervous system, ATP is co-stored in vesicles with classical transmitters and released in a regulated manner. ATP from the intracellular compartment can also exit the cell through hemichannels and following shear stress or membrane damage. In the past 30 years, the action of ATP as an extracellular transmitter at cell-surface receptors has evolved from somewhat of a novelty that was treated with skepticism to purinergic transmission being accepted as having widespread important functional roles mediated by ATP-gated ionotropic P2X receptors (P2XRs). This review focuses on work published in the last five years and provides an overview of ( a) structural studies, ( b) the molecular basis of channel properties and regulation of P2XRs, and ( c) the physiological and pathophysiological roles of ATP acting at defined P2XR subtypes.
Collapse
Affiliation(s)
- Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; .,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom;
| |
Collapse
|
7
|
Zhang Q, Zhou M, Zhao L, Jiang H, Yang H. Dynamic States of the Ligand-Free Class A G Protein-Coupled Receptor Extracellular Side. Biochemistry 2018; 57:4767-4775. [PMID: 29999306 DOI: 10.1021/acs.biochem.8b00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) make up the largest family of drug targets. The second extracellular loop (ECL2) and extracellular end of the third transmembrane helix (TM3) are basic structural elements of the GPCR ligand binding site. Currently, the disulfide bond between the two conserved cysteines in the ECL2 and TM3 is considered to be a basic GPCR structural feature. This disulfide bond has a significant effect on receptor dynamics and ligand binding. Here, molecular dynamics simulations and experimental results show that the two cysteines are distant from one another in the highest-population conformational state of ligand-free class A GPCRs and do not form a disulfide bond, indicating that the dynamics of the GPCR extracellular side are different from our conventional understanding. These surprising dynamics should have important effects on the drug binding process. On the basis of the two distinct ligand-free states, we suggest two kinetic processes for binding of ligands to GPCRs. These results challenge our commonly held beliefs regarding both GPCR structural features and ligand binding.
Collapse
Affiliation(s)
- Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences , East China Normal University , Shanghai 200241 , China
| | - Mang Zhou
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Lifen Zhao
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Hualiang Jiang
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
8
|
Huo H, Fryatt AG, Farmer LK, Schmid R, Evans RJ. Mapping the binding site of the P2X receptor antagonist PPADS reveals the importance of orthosteric site charge and the cysteine-rich head region. J Biol Chem 2018; 293:12820-12831. [PMID: 29997254 PMCID: PMC6102130 DOI: 10.1074/jbc.ra118.003737] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
ATP is the native agonist for cell-surface ligand-gated P2X receptor (P2XR) cation channels. The seven mammalian subunits (P2X1-7) form homo- and heterotrimeric P2XRs having significant physiological and pathophysiological roles. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) is an effective antagonist at most mammalian P2XRs. Lys-249 in the extracellular domain of P2XR has previously been shown to contribute to PPADS action. To map this antagonist site, we generated human P2X1R cysteine substitutions within a circle centered at Lys-249 (with a radius of 13 Å equal to the length of PPADS). We hypothesized that cysteine substitutions of residues involved in PPADS binding would (i) reduce cysteine accessibility (measured by MTSEA-biotinylation), (ii) exhibit altered PPADS affinity, and (iii) quench the fluorescence of cysteine residues modified with MTS-TAMRA. Of the 26 residues tested, these criteria were met by only four (Lys-70, Asp-170, Lys-190, and Lys-249), defining the antagonist site, validating molecular docking results, and thereby providing the first experimentally supported model of PPADS binding. This binding site overlapped with the ATP-binding site, indicating that PPADS sterically blocks agonist access. Moreover, PPADS induced a conformational change at the cysteine-rich head (CRH) region adjacent to the orthosteric ATP-binding pocket. The importance of this movement was confirmed by demonstrating that substitution introducing positive charge present in the CRH of the hP2X1R causes PPADS sensitivity at the normally insensitive rat P2X4R. This study provides a template for developing P2XR subtype selectivity based on the differences among the mammalian subunits around the orthosteric P2XR-binding site and the CRH.
Collapse
Affiliation(s)
- Hong Huo
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Alistair G Fryatt
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Louise K Farmer
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
9
|
Abstract
Extracellular ATP-gated P2X receptors are trimeric non-selective cation channels important for many physiological events including immune response and neural transmission. These receptors belong to a unique class of ligand-gated ion channels composed of only six transmembrane helices and a relatively small extracellular domain that harbors three ATP-binding pockets. The crystal structures of P2X receptors, including the recent P2X3 structures representing three different stages of the gating cycle, have provided a compelling structural foundation for understanding how this class of ligand-gated ion channels function. These structures, in combination with numerous functional studies ranging from classic mutagenesis and electrophysiology to modern optogenetic pharmacology, have uncovered unique molecular mechanisms of P2X receptor function. This review article summarizes the current knowledge in P2X receptor activation, especially focusing on the mechanisms underlying ATP-binding, conformational changes in the extracellular domain, and channel gating and desensitization.
Collapse
|
10
|
Allsopp RC, Dayl S, Bin Dayel A, Schmid R, Evans RJ. Mapping the Allosteric Action of Antagonists A740003 and A438079 Reveals a Role for the Left Flipper in Ligand Sensitivity at P2X7 Receptors. Mol Pharmacol 2018; 93:553-562. [PMID: 29535152 PMCID: PMC5896373 DOI: 10.1124/mol.117.111021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 01/07/2023] Open
Abstract
P2X7 receptor (P2X7R) activation requires ∼100-fold higher concentrations of ATP than other P2X receptor (P2XR) subtypes. Such high levels are found during cellular stress, and P2X7Rs consequently contribute to a range of pathophysiological conditions. We have used chimeric and mutant P2X7Rs, coupled with molecular modeling, to produce a validated model of the binding mode of the subtype-selective antagonist A438079 at an intersubunit allosteric site. Within the allosteric site large effects on antagonist action were found for point mutants of residues F88A, D92A, F95A, and F103A that were conserved or similar between sensitive/insensitive P2XR subtypes, suggesting that these side-chain interactions were not solely responsible for high-affinity antagonist binding. Antagonist sensitivity was increased with mutations that remove the bulk of side chains around the center of the binding pocket, suggesting that the dimensions of the pocket make a significant contribution to selectivity. Chimeric receptors swapping the left flipper (around the orthosteric site) reduced both ATP and antagonist sensitivity. Point mutations within this region highlighted the contribution of a P2X7R-specific aspartic acid residue (D280) that modeling suggests forms a salt bridge with the lower body region of the receptor. The D280A mutant removing this charge increased ATP potency 15-fold providing a new insight into the low ATP sensitivity of the P2X7R. The ortho- and allosteric binding sites form either side of the β-strand Y291-E301 adjacent to the left flipper. This structural linking may explain the contribution of the left flipper to both agonist and antagonist action.
Collapse
Affiliation(s)
- Rebecca C Allsopp
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| | - Sudad Dayl
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| | - Anfal Bin Dayel
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| | - Ralf Schmid
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| | - Richard J Evans
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| |
Collapse
|
11
|
Abstract
Allosteric modulation provides exciting opportunities for drug discovery of enzymes, ion channels, and G protein-coupled receptors. As cation channels gated by extracellular ATP, P2X receptors have attracted wide attention as new drug targets. Although small molecules targeting P2X receptors have entered into clinical trials for rheumatoid arthritis, cough, and pain, negative allosteric modulation of these receptors remains largely unexplored. Here, combining X-ray crystallography, computational modeling, and functional studies of channel mutants, we identified a negative allosteric site on P2X3 receptors, fostered by the left flipper (LF), lower body (LB), and dorsal fin (DF) domains. Using two structurally analogous subtype-specific allosteric inhibitors of P2X3, AF-353 and AF-219, the latter being a drug candidate under phase II clinical trials for refractory chronic cough and idiopathic pulmonary fibrosis, we defined the molecular interactions between the drugs and receptors and the mechanism by which allosteric changes in the LF, DF, and LB domains modulate ATP activation of P2X3. Our detailed characterization of this druggable allosteric site should inspire new strategies to develop P2X3-specific allosteric modulators for clinical use.
Collapse
|
12
|
Stephan G, Huang L, Tang Y, Vilotti S, Fabbretti E, Yu Y, Nörenberg W, Franke H, Gölöncsér F, Sperlágh B, Dopychai A, Hausmann R, Schmalzing G, Rubini P, Illes P. The ASIC3/P2X3 cognate receptor is a pain-relevant and ligand-gated cationic channel. Nat Commun 2018; 9:1354. [PMID: 29636447 PMCID: PMC5893604 DOI: 10.1038/s41467-018-03728-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
Two subclasses of acid-sensing ion channels (ASIC3) and of ATP-sensitive P2X receptors (P2X3Rs) show a partially overlapping expression in sensory neurons. Here we report that both recombinant and native receptors interact with each other in multiple ways. Current measurements with the patch-clamp technique prove that ASIC3 stimulation strongly inhibits the P2X3R current partly by a Ca2+-dependent mechanism. The proton-binding site is critical for this effect and the two receptor channels appear to switch their ionic permeabilities during activation. Co-immunoprecipation proves the close association of the two protein structures. BN-PAGE and SDS-PAGE analysis is also best reconciled with the view that ASIC3 and P2X3Rs form a multiprotein structure. Finally, in vivo measurements in rats reveal the summation of pH and purinergically induced pain. In conclusion, the receptor subunits do not appear to form a heteromeric channel, but tightly associate with each other to form a protein complex, mediating unidirectional inhibition. Two subclasses of ligand-gated ion channels (ASIC3 and P2X3) are both present at sensory neurons and might be therefore subject to receptor crosstalk. Here authors use electrophysiology, biochemistry and co-immunoprecipitation to show that the two ion channels interact and affect P2X3 currents.
Collapse
Affiliation(s)
- Gabriele Stephan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Lumei Huang
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany.,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sandra Vilotti
- Neurobiology Sector, International School for Advanced Studies, Trieste, 34136, Italy
| | - Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Ye Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai, 100025, China
| | - Wolfgang Nörenberg
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1043, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1043, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1043, Hungary
| | - Anke Dopychai
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Günther Schmalzing
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany.
| |
Collapse
|
13
|
Latapiat V, Rodríguez FE, Godoy F, Montenegro FA, Barrera NP, Huidobro-Toro JP. P2X4 Receptor in Silico and Electrophysiological Approaches Reveal Insights of Ivermectin and Zinc Allosteric Modulation. Front Pharmacol 2017; 8:918. [PMID: 29326590 PMCID: PMC5737101 DOI: 10.3389/fphar.2017.00918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Protein allosteric modulation is a pillar of metabolic regulatory mechanisms; this concept has been extended to include ion channel regulation. P2XRs are ligand-gated channels activated by extracellular ATP, sensitive to trace metals and other chemicals. By combining in silico calculations with electrophysiological recordings, we investigated the molecular basis of P2X4R modulation by Zn(II) and ivermectin, an antiparasite drug currently used in veterinary medicine. To this aim, docking studies, molecular dynamics simulations and non-bonded energy calculations for the P2X4R in the apo and holo states or in the presence of ivermectin and/or Zn(II) were accomplished. Based on the crystallized Danio rerio P2X4R, the rat P2X4R, P2X2R, and P2X7R structures were modeled, to determine ivermectin binding localization. Calculations revealed that its allosteric site is restricted to transmembrane domains of the P2X4R; the role of Y42 and W46 plus S341 and non-polar residues were revealed as essential, and are not present in the homologous P2X2R or P2X7R transmembrane domains. This finding was confirmed by preferential binding conformations and electrophysiological data, revealing P2X4R modulator specificity. Zn(II) acts in the P2X4R extracellular domain neighboring the SS3 bridge. Molecular dynamics in the different P2X4R states revealed allosterism-induced stability. Pore and lateral fenestration measurements of the P2X4R showed conformational changes in the presence of both modulators compatible with a larger opening of the extracellular vestibule. Electrophysiological studies demonstrated additive effects in the ATP-gated currents by joint applications of ivermectin plus Zn(II). The C132A P2X4R mutant was insensitive to Zn(II); but IVM caused a 4.9 ± 0.7-fold increase in the ATP-evoked currents. Likewise, the simultaneous application of both modulators elicited a 7.1 ± 1.7-fold increase in the ATP-gated current. Moreover, the C126A P2X4R mutant evoked similar ATP-gated currents comparable to those of wild-type P2X4R. Finally, a P2X4/2R chimera did not respond to IVM but Zn(II) elicited a 2.7 ± 0.6-fold increase in the ATP-gated current. The application of IVM plus Zn(II) evoked a 2.7 ± 0.9-fold increase in the ATP-gated currents. In summary, allosteric modulators caused additive ATP-gated currents; consistent with lateral fenestration enlargement. Energy calculations demonstrated a favorable transition of the holo receptor state following both allosteric modulators binding, as expected for allosteric interactions.
Collapse
Affiliation(s)
- Verónica Latapiat
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E Rodríguez
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisca Godoy
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe A Montenegro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson P Barrera
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Huidobro-Toro
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile.,Centro Desarrollo de Nanociencia y Nanotecnología, CEDENNA, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
14
|
North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0427. [PMID: 27377721 DOI: 10.1098/rstb.2015.0427] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- R Alan North
- Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
15
|
Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. Nat Commun 2017; 8:876. [PMID: 29026074 PMCID: PMC5638823 DOI: 10.1038/s41467-017-00887-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/02/2017] [Indexed: 12/29/2022] Open
Abstract
P2X receptors are non-selective cation channels gated by extracellular ATP, and the P2X7 receptor subtype plays a crucial role in the immune and nervous systems. Altered expression and dysfunctions of P2X7 receptors caused by genetic deletions, mutations, and polymorphic variations have been linked to various diseases, such as rheumatoid arthritis and hypertension. Despite the availability of crystal structures of P2X receptors, the mechanism of competitive antagonist action for P2X receptors remains controversial. Here, we determine the crystal structure of the chicken P2X7 receptor in complex with the competitive P2X antagonist, TNP-ATP. The structure reveals an expanded, incompletely activated conformation of the channel, and identified the unique recognition manner of TNP-ATP, which is distinct from that observed in the previously determined human P2X3 receptor structure. A structure-based computational analysis furnishes mechanistic insights into the TNP-ATP-dependent inhibition. Our work provides structural insights into the functional mechanism of the P2X competitive antagonist. P2X receptors are nonselective cation channels that are gated by extracellular ATP. Here the authors present the crystal structure of chicken P2X7 with its bound competitive antagonist TNP-ATP and give mechanistic insights into TNP-ATP dependent inhibition through further computational analysis and electrophysiology measurements.
Collapse
|
16
|
Wang J, Sun LF, Cui WW, Zhao WS, Ma XF, Li B, Liu Y, Yang Y, Hu YM, Huang LD, Cheng XY, Li L, Lu XY, Tian Y, Yu Y. Intersubunit physical couplings fostered by the left flipper domain facilitate channel opening of P2X4 receptors. J Biol Chem 2017; 292:7619-7635. [PMID: 28302727 DOI: 10.1074/jbc.m116.771121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. Here, we propose that the ATP-induced allosteric changes of the LF domain enable it to foster intersubunit physical couplings among the DF and two lower body domains, which are pivotal for the channel gating of P2X4 receptors. Metadynamics analysis indicated that these newly established intersubunit couplings correlate well with the ATP-bound open state of the receptors. Moreover, weakening or strengthening these physical interactions with engineered intersubunit metal bridges remarkably decreased or increased the open probability of the receptors, respectively. Further disulfide cross-linking and covalent modification confirmed that the intersubunit physical couplings among the DF and two lower body domains fostered by the LF domain at the open state act as an integrated structural element that is stringently required for the channel gating of P2X4 receptors. Our observations provide new mechanistic insights into P2X receptor activation and will stimulate development of new allosteric modulators of P2X receptors.
Collapse
Affiliation(s)
- Jin Wang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang-Fei Sun
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wen Cui
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Shan Zhao
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xue-Fei Ma
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Bin Li
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Yan Liu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - You-Min Hu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Dong Huang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Yang Cheng
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyong Li
- the Department of Anesthesiology and Perioperative Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiang-Yang Lu
- the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Yun Tian
- the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Ye Yu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, .,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| |
Collapse
|
17
|
Conformational changes during human P2X7 receptor activation examined by structural modelling and cysteine-based cross-linking studies. Purinergic Signal 2016; 13:135-141. [PMID: 28025718 PMCID: PMC5334206 DOI: 10.1007/s11302-016-9553-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022] Open
Abstract
The P2X7 receptor (P2X7R) is important in mediating a range of physiological functions and pathologies associated with tissue damage and inflammation and represents an attractive therapeutic target. However, in terms of their structure-function relationships, the mammalian P2X7Rs remain poorly characterised compared to some of their other P2XR counterparts. In this study, combining cysteine-based cross-linking and whole-cell patch-clamp recording, we examined six pairs of residues (A44/I331, D48/I331, I58/F311, S60/L320, I75/P177 and K81/V304) located in different parts of the extracellular and transmembrane domains of the human P2X7R. These residues are predicted to undergo substantial movement during the transition of the receptor ion channel from the closed to the open state, predictions which are made based on structural homology models generated from the crystal structures of the zebrafish P2X4R. Our results provide evidence that among the six pairs of cysteine mutants, D48C/I133C and K81C/V304C formed disulphide bonds that impaired the channel gating to support the notion that such conformational changes, particularly those in the outer ends of the transmembrane domains, are critical for human P2X7R activation.
Collapse
|
18
|
Linsdell P. Metal bridges to probe membrane ion channel structure and function. Biomol Concepts 2016; 6:191-203. [PMID: 26103632 DOI: 10.1515/bmc-2015-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/29/2015] [Indexed: 11/15/2022] Open
Abstract
Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed.
Collapse
|
19
|
Stephan G, Kowalski-Jahn M, Zens C, Schmalzing G, Illes P, Hausmann R. Inter-subunit disulfide locking of the human P2X3 receptor elucidates ectodomain movements associated with channel gating. Purinergic Signal 2016; 12:221-33. [PMID: 26825305 DOI: 10.1007/s11302-016-9496-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/19/2016] [Indexed: 11/27/2022] Open
Abstract
P2X3 receptors (P2X3R) are trimeric ATP-gated cation channels involved in sensory neurotransmission and inflammatory pain. We used homology modeling and molecular dynamic simulations of the hP2X3R to identify inter-subunit interactions of residues that are instrumental to elucidate conformational changes associated with gating of the hPX3R. We identified an ionic interaction between E112 and R198 of the head domain and dorsal fin domain, respectively, and E57 and T263 of the lower body domains of adjacent subunits and detected a marked rearrangement of these domains during gating of the hP3X3R. Double-mutant cycle analysis of the inter-subunit residue pairs E112/R198 and E57/T263 revealed significant interaction-free energies. Disulfide locking of the hP2X3R E112C/R198C or the E57C/T263C double cysteine mutants markedly reduced the ATP-induced current responses. The decreased current amplitude following inter-subunit disulfide cross-linking indicates that disulfide locking of the head and dorsal fin domains or at the level of the lower body domains of the hP2X3R prevents the gating-induced conformational rearrangement of the subunits with respect to each other. The distinct reorganization of the subunit interfaces during gating of the hP2X3R is generally consistent with the gating mechanism of other P2XRs. Charge-reversal mutagenesis and methanethiosulfonate (MTS)-modification of substituted cysteines demonstrated that E112 and R198 interact electrostatically. Both disulfide locking and salt bridge breaking of the E112/R198 interaction reduced the hP2X3R function. We conclude that the inter-subunit salt bridge between E112 and R198 of the head and dorsal fin domains, respectively, serves to control the mobility of these domains during agonist-activation of the hP2X3R.
Collapse
Affiliation(s)
- Gabriele Stephan
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Maria Kowalski-Jahn
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Christopher Zens
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Günther Schmalzing
- Department of Molecular Pharmacology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Peter Illes
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | - Ralf Hausmann
- Department of Molecular Pharmacology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Habermacher C, Martz A, Calimet N, Lemoine D, Peverini L, Specht A, Cecchini M, Grutter T. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. eLife 2016; 5:e11050. [PMID: 26808983 PMCID: PMC4739762 DOI: 10.7554/elife.11050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
P2X receptors function by opening a transmembrane pore in response to extracellular ATP. Recent crystal structures solved in apo and ATP-bound states revealed molecular motions of the extracellular domain following agonist binding. However, the mechanism of pore opening still remains controversial. Here we use photo-switchable cross-linkers as ‘molecular tweezers’ to monitor a series of inter-residue distances in the transmembrane domain of the P2X2 receptor during activation. These experimentally based structural constraints combined with computational studies provide high-resolution models of the channel in the open and closed states. We show that the extent of the outer pore expansion is significantly reduced compared to the ATP-bound structure. Our data further reveal that the inner and outer ends of adjacent pore-lining helices come closer during opening, likely through a hinge-bending motion. These results provide new insight into the gating mechanism of P2X receptors and establish a versatile strategy applicable to other membrane proteins. DOI:http://dx.doi.org/10.7554/eLife.11050.001 Protein receptors in the cell membrane play an important role transmitting signals from outside to inside the cell. Members of the P2X family of receptors are ion channels that form pores through the membrane. When a molecule of ATP binds to the external region of the receptor, it activates it and causes the receptor to change from a closed to an open shape. Once opened, ions flow through the channel’s pore and trigger a response inside the cell. P2X receptors are found on most animal cells (including nerve cells) and are involved in both normal cellular activity and processes linked to disease, including inflammation and chronic pain. The P2X receptor has three parts or subunits, and each contributes to the channel’s pore. Recent research using a technique called X-ray crystallography has revealed how ATP binding causes shape changes in the external region of the receptor. But these three-dimensional structures did not reveal details of how the subunits move to open or close the channel’s pore. Habermacher et al. have now added light-sensitive linkers onto the P2X receptor in a way that meant that different colors of light could be used to force parts of the receptor to come closer together or move apart. This allowed the pore to be opened and closed in response to changes in light. Habermacher et al. then studied the behavior of these modified receptors within a natural membrane and found that the light stimulated movements were similar to those seen with ATP. When the behavior of the receptor and light-sensitive linkers was studied using computer simulations, it led to new models of the P2X pore in the open and closed state. In these models, the open channel was more tightly packed than in the previous structure and an unexpected hinge-bending movement was seen to accompany the opening of the channel. It is hoped that this new approach will also be useful for probing how other membrane proteins change their shape when activated. DOI:http://dx.doi.org/10.7554/eLife.11050.002
Collapse
Affiliation(s)
- Chloé Habermacher
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Adeline Martz
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Nicolas Calimet
- ISIS, Unité Mixte de Recherche 7006, Laboratoire d'Ingénierie des Fonctions Moléculaires, Strasbourg, France
| | - Damien Lemoine
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Laurie Peverini
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Alexandre Specht
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Marco Cecchini
- ISIS, Unité Mixte de Recherche 7006, Laboratoire d'Ingénierie des Fonctions Moléculaires, Strasbourg, France
| | - Thomas Grutter
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| |
Collapse
|
21
|
Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels. Cell Rep 2016; 14:932-944. [PMID: 26804916 DOI: 10.1016/j.celrep.2015.12.087] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/03/2015] [Accepted: 12/18/2015] [Indexed: 02/03/2023] Open
Abstract
P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.
Collapse
|
22
|
Insights into the channel gating of P2X receptors from structures, dynamics and small molecules. Acta Pharmacol Sin 2016; 37:44-55. [PMID: 26725734 DOI: 10.1038/aps.2015.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022]
Abstract
P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na(+), K(+) and Ca(2+). Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors.
Collapse
|
23
|
Hausmann R, Kless A, Schmalzing G. Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem 2015; 22:799-818. [PMID: 25439586 PMCID: PMC4460280 DOI: 10.2174/0929867322666141128163215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation
channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory
and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences
became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose
key sites of P2X receptor function and oligomerization. The publication of the 3-Å crystal structures of the zebrafish
P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has
ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional
models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years
have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated
ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure
eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the
pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors
are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures.
Collapse
Affiliation(s)
| | | | - Gunther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| |
Collapse
|
24
|
Habermacher C, Dunning K, Chataigneau T, Grutter T. Molecular structure and function of P2X receptors. Neuropharmacology 2015; 104:18-30. [PMID: 26231831 DOI: 10.1016/j.neuropharm.2015.07.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
ATP-gated P2X receptors are trimeric ion channels selective to cations. Recent progress in the molecular biophysics of these channels enables a better understanding of their function. In particular, data obtained from biochemical, electrophysiogical and molecular engineering in the light of recent X-ray structures now allow delineation of the principles of ligand binding, channel opening and allosteric modulation. However, although a picture emerges as to how ATP triggers channel opening, there are a number of intriguing questions that remain to be answered, in particular how the pore itself opens in response to ATP and how the intracellular domain, for which structural information is limited, moves during activation. In this review, we provide a summary of functional studies in the context of the post-structure era, aiming to clarify our understanding of the way in which P2X receptors function in response to ATP binding, as well as the mechanism by which allosteric modulators are able to regulate receptor function. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Chloé Habermacher
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Kate Dunning
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Thierry Chataigneau
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Thomas Grutter
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France.
| |
Collapse
|
25
|
Roles of the lateral fenestration residues of the P2X₄ receptor that contribute to the channel function and the deactivation effect of ivermectin. Purinergic Signal 2015; 11:229-38. [PMID: 25847072 DOI: 10.1007/s11302-015-9448-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/18/2015] [Indexed: 10/23/2022] Open
Abstract
P2X receptors are cation-permeable ion channels gated by extracellular adenosine triphosphate (ATP). Available crystallographic data suggest that ATP-binding ectodomain is connected to the transmembrane pore domain by three structurally conserved linker regions, which additionally frame the lateral fenestrations through which permeating ions enter the channel pore. The role of these linker regions in relaying the conformational change evoked by ATP binding of the ectodomain to the pore-forming transmembrane domain has not been investigated systematically. Using P2X4R as our model, we employed alanine and serine replacement mutagenesis to determine how the side chain structure of these linker regions influences gating. The mutants Y54A/S, F198A/S, and W259A/S all trafficked normally to the plasma membrane of transfected HEK293 cells but were poorly responsive to ATP. Nevertheless, the function of the F198A/S mutants could be recovered by pretreatment with the known positive allosteric modulator of P2X4R, ivermectin (IVM), although the IVM sensitivity of this mutant was significantly impaired relative to wild type. The functional mutants Y195A/S, F200A/S, and F330A/S exhibited ATP sensitivities identical to wild type, consistent with these side chains playing no role in ATP binding. However, Y195A/S, F200A/S, and F330A/S all displayed markedly changed sensitivity to the specific effects of IVM on current deactivation, suggesting that these positions influence allosteric modulation of gating. Taken together, our data indicate that conserved amino acids within the regions linking the ectodomain with the pore-forming transmembrane domain meaningfully contribute to signal transduction and channel gating in P2X receptors.
Collapse
|
26
|
Fryatt AG, Evans RJ. Kinetics of conformational changes revealed by voltage-clamp fluorometry give insight to desensitization at ATP-gated human P2X1 receptors. Mol Pharmacol 2014; 86:707-15. [PMID: 25296688 DOI: 10.1124/mol.114.095307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP acts as an extracellular signaling molecule at cell-surface P2X receptors, mediating a variety of important physiologic and pathophysiologic roles. Homomeric P2X1 receptors open on binding ATP and then transition to an ATP-bound closed, desensitized state that requires an agonist-free washout period to recover. Voltage-clamp fluorometry was used to record ion channel activity and conformational changes simultaneously at defined positions in the extracellular loop of the human P2X1 receptor during not only agonist binding and desensitization but also during recovery. ATP evoked distinct conformational changes adjacent to the agonist binding pocket in response to channel activation and desensitization. The speed of recovery of the conformational change on agonist washout was state-dependent, with a faster time constant from the open (5 seconds) compared with the desensitized (75 seconds) form of the channel. The ability of ATP to evoke channel activity on washout after desensitization was not dependent on the degree of conformational rearrangement in the extracellular loop, and desensitization was faster from the partially recovered state. An intracellular mutation in the carboxyl terminus that slowed recovery of P2X1 receptor currents (7-fold less recovery at 30 seconds) had no effect on the time course of the extracellular conformational rearrangements. This study highlights that the intracellular portion of the receptor can regulate recovery and shows for the first time that this is by a mechanism independent of changes in the extracellular domain, suggesting the existence of a distinct desensitization gate in this novel class of ligand gated ion channels.
Collapse
Affiliation(s)
- Alistair G Fryatt
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | - Richard J Evans
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
27
|
Farmer LK, Schmid R, Evans RJ. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP. J Biol Chem 2014; 290:1559-69. [PMID: 25425641 PMCID: PMC4340402 DOI: 10.1074/jbc.m114.592246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin.
Collapse
Affiliation(s)
- Louise K Farmer
- From the Departments of Cell Physiology and Pharmacology and
| | - Ralf Schmid
- Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Richard J Evans
- From the Departments of Cell Physiology and Pharmacology and
| |
Collapse
|
28
|
Postis V, Rawson S, Mitchell JK, Lee SC, Parslow RA, Dafforn TR, Baldwin SA, Muench SP. The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:496-501. [PMID: 25450810 PMCID: PMC4331651 DOI: 10.1016/j.bbamem.2014.10.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/06/2014] [Accepted: 10/15/2014] [Indexed: 12/17/2022]
Abstract
Despite the great progress recently made in resolving their structures, investigation of the structural biology of membrane proteins still presents major challenges. Even with new technical advances such as lipidic cubic phase crystallisation, obtaining well-ordered crystals remains a significant hurdle in membrane protein X-ray crystallographic studies. As an alternative, electron microscopy has been shown to be capable of resolving > 3.5 Å resolution detail in membrane proteins of modest (~ 300 kDa) size, without the need for crystals. However, the conventional use of detergents for either approach presents several issues, including the possible effects on structure of removing the proteins from their natural membrane environment. As an alternative, it has recently been demonstrated that membrane proteins can be effectively isolated, in the absence of detergents, using a styrene maleic acid co-polymer (SMA). This approach yields SMA lipid particles (SMALPs) in which the membrane proteins are surrounded by a small disk of lipid bilayer encircled by polymer. Here we use the Escherichia coli secondary transporter AcrB as a model membrane protein to demonstrate how a SMALP scaffold can be used to visualise membrane proteins, embedded in a near-native lipid environment, by negative stain electron microscopy, yielding structures at a modest resolution in a short (days) timeframe. Moreover, we show that AcrB within a SMALP scaffold is significantly more active than the equivalent DDM stabilised form. The advantages of SMALP scaffolds within electron microscopy are discussed and we conclude that they may prove to be an important tool in studying membrane protein structure and function. Maintaining membrane proteins in a native-like environment is difficult. SMALP scaffolds efficiently extract AcrB from the membrane. We show SMALP scaffolds to be a robust tool for rapid structural analysis by EM.
Collapse
Affiliation(s)
- Vincent Postis
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK; Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, LS1 3HE, UK
| | - Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Jennifer K Mitchell
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Sarah C Lee
- School of Biosciences, University of Birmingham, Birmingham, Edgbaston B15 2TT, UK
| | - Rosemary A Parslow
- School of Biosciences, University of Birmingham, Birmingham, Edgbaston B15 2TT, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Birmingham, Edgbaston B15 2TT, UK
| | - Stephen A Baldwin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
29
|
Kowalski M, Hausmann R, Dopychai A, Grohmann M, Franke H, Nieber K, Schmalzing G, Illes P, Riedel T. Conformational flexibility of the agonist binding jaw of the human P2X3 receptor is a prerequisite for channel opening. Br J Pharmacol 2014; 171:5093-112. [PMID: 24989924 DOI: 10.1111/bph.12830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE It is assumed that ATP induces closure of the binding jaw of ligand-gated P2X receptors, which eventually results in the opening of the membrane channel and the flux of cations. Immobilization by cysteine mutagenesis of the binding jaw inhibited ATP-induced current responses, but did not allow discrimination between disturbances of binding, gating, subunit assembly or trafficking to the plasma membrane. EXPERIMENTAL APPROACH A molecular model of the pain-relevant human (h)P2X3 receptor was used to identify amino acid pairs, which were located at the lips of the binding jaw and did not participate in agonist binding but strongly approached each other even in the absence of ATP. KEY RESULTS A series of cysteine double mutant hP2X3 receptors, expressed in HEK293 cells or Xenopus laevis oocytes, exhibited depressed current responses to α,β-methylene ATP (α,β-meATP) due to the formation of spontaneous inter-subunit disulfide bonds. Reducing these bonds with dithiothreitol reversed the blockade of the α,β-meATP transmembrane current. Amino-reactive fluorescence labelling of the His-tagged hP2X3 receptor and its mutants expressed in HEK293 or X. laevis oocytes demonstrated the formation of inter-subunit cross links in cysteine double mutants and, in addition, confirmed their correct trimeric assembly and cell surface expression. CONCLUSIONS AND IMPLICATIONS In conclusion, spontaneous tightening of the binding jaw of the hP2X3 receptor by inter-subunit cross-linking of cysteine residues substituted at positions not directly involved in agonist binding inhibited agonist-evoked currents without interfering with binding, subunit assembly or trafficking.
Collapse
Affiliation(s)
- M Kowalski
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Keceli B, Kubo Y. Voltage- and ATP-dependent structural rearrangements of the P2X2 receptor associated with the gating of the pore. J Physiol 2014; 592:4657-76. [PMID: 25172943 DOI: 10.1113/jphysiol.2014.278507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2X2 is an extracellular ATP-gated cation channel which has a voltage-dependent gating property even though it lacks a canonical voltage sensor. It is a trimer in which each subunit has two transmembrane helices and a large extracellular domain. The three inter-subunit ATP binding sites are linked to the pore forming transmembrane (TM) domains by β-strands. We analysed structural rearrangements of the linker strands between the ATP binding site and TM domains upon ligand binding and voltage change, electrophysiologically in Xenopus oocytes, using mutants carrying engineered thiol-modifiable cysteine residues. (1) We demonstrated that the double mutant D315C&I67C (at β-14 and β-1, respectively) shows a 2- to 4-fold increase in current amplitude after treatment with a reducing reagent, dithiothreitol (DTT). Application of the thiol-reactive metal Cd(2+) induced current decline due to bond formation between D315C and I67C. This effect was not observed in wild type (WT) or in single point mutants. (2) Cd(2+)-induced current decline was analysed in hyperpolarized and depolarized conditions with different pulse protocols, and also in the presence and absence of ATP. (3) Current decline induced by Cd(2+) could be clearly observed in the presence of ATP, but was not clear in the absence of ATP, showing a state-dependent modification. (4) In the presence of ATP, Cd(2+) modification was significantly faster in hyperpolarized than in depolarized conditions, showing voltage-dependent structural rearrangements of the linker strands. (5) Experiments using tandem trimeric constructs (TTCs) with controlled number and position of mutations in the trimer showed that the bridging by Cd(2+) between 315 and 67 was not intra- but inter-subunit. (6) Finally, we performed similar analyses of a pore mutant T339S, which makes the channel activation voltage insensitive. Cd(2+) modification rates of T339S were similar in hyperpolarized and depolarized conditions. Taking these results together, we demonstrated that structural rearrangements of the linker region of the P2X2 receptor channel are induced not only by ligand binding but also by membrane potential change.
Collapse
Affiliation(s)
- Batu Keceli
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), School of Life Science, Hayama, Kanagawa, 240-0155, Japan
| |
Collapse
|
31
|
Kota P, Buchner G, Chakraborty H, Dang YL, He H, Garcia GJM, Kubelka J, Gentzsch M, Stutts MJ, Dokholyan NV. The N-terminal domain allosterically regulates cleavage and activation of the epithelial sodium channel. J Biol Chem 2014; 289:23029-23042. [PMID: 24973914 DOI: 10.1074/jbc.m114.570952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr(370) in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.
Collapse
Affiliation(s)
- Pradeep Kota
- Departments of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599; Departments of Molecular and Cellular Biophysics, and University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ginka Buchner
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, and
| | - Hirak Chakraborty
- Departments of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yan L Dang
- Departments of Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hong He
- Departments of Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Guilherme J M Garcia
- Biotechnology & Bioengineering Center, Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jan Kubelka
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, and
| | - Martina Gentzsch
- Departments of Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599,; Departments of Cell Biology and Physiology and University of North Carolina, Chapel Hill, North Carolina 27599
| | - M Jackson Stutts
- Departments of Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- Departments of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599; Departments of Molecular and Cellular Biophysics, and University of North Carolina, Chapel Hill, North Carolina 27599; Departments of Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599,.
| |
Collapse
|
32
|
Zhao WS, Wang J, Ma XJ, Yang Y, Liu Y, Huang LD, Fan YZ, Cheng XY, Chen HZ, Wang R, Yu Y. Relative motions between left flipper and dorsal fin domains favour P2X4 receptor activation. Nat Commun 2014; 5:4189. [PMID: 24943126 DOI: 10.1038/ncomms5189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
Channel gating in response to extracellular ATP is a fundamental process for the physiological functions of P2X receptors. Here we identify coordinated allosteric changes in the left flipper (LF) and dorsal fin (DF) domains that couple ATP-binding to channel gating. Engineered disulphide crosslinking or zinc bridges between the LF and DF domains that constrain their relative motions significantly influence channel gating of P2X4 receptors, confirming the essential role of these allosteric changes. ATP-binding-induced alterations in interdomain hydrophobic interactions among I208, L217, V291 and the aliphatic chain of K193 correlate well with these coordinated relative movements. Mutations on those four residues lead to impaired or fully abolished channel activations of P2X4 receptors. Our data reveal that ATP-binding-induced altered interdomain hydrophobic interactions and the concomitant coordinated motions of LF and DF domains are allosteric events essential for the channel gating of P2X4 receptors.
Collapse
Affiliation(s)
- Wen-Shan Zhao
- 1] Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China [2] Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China [3]
| | - Jin Wang
- 1] Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China [2]
| | - Xiao-Juan Ma
- 1] Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China [2] Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China [3]
| | - Yang Yang
- Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Liu
- Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Dong Huang
- Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying-Zhe Fan
- Putuo District Center Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai 200062, China
| | - Xiao-Yang Cheng
- Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Zhuan Chen
- Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ye Yu
- 1] Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China [2] College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
33
|
Kellenberger S, Grutter T. Architectural and functional similarities between trimeric ATP-gated P2X receptors and acid-sensing ion channels. J Mol Biol 2014; 427:54-66. [PMID: 24937752 DOI: 10.1016/j.jmb.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/17/2022]
Abstract
ATP-gated P2X receptors and acid-sensing ion channels are two distinct ligand-gated ion channels that assemble into trimers. They are involved in many important physiological functions such as pain sensation and are recognized as important therapeutic targets. They have unrelated primary structures and respond to different ligands (ATP and protons) and are thus considered as two different ion channels. As a consequence, comparisons of the biophysical properties and underlying mechanisms have only been rarely made between these two channels. However, the recent determination of their molecular structures by X-ray crystallography has revealed unexpected parallels in the architecture of the two pores, providing a basis for possible functional analogies. In this review, we analyze the structural and functional similarities that are shared by these trimeric ion channels, and we outline key unanswered questions that, if addressed experimentally, may help us to elucidate how two unrelated ion channels have adopted a similar fold of the pore.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland.
| | - Thomas Grutter
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400 Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400 Illkirch, France.
| |
Collapse
|
34
|
Navarrete LC, Barrera NP, Huidobro-Toro JP. Vas deferens neuro-effector junction: from kymographic tracings to structural biology principles. Auton Neurosci 2014; 185:8-28. [PMID: 24956963 DOI: 10.1016/j.autneu.2014.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Abstract
The vas deferens is a simple bioassay widely used to study the physiology of sympathetic neurotransmission and the pharmacodynamics of adrenergic drugs. The role of ATP as a sympathetic co-transmitter has gained increasing attention and furthered our understanding of its role in sympathetic reflexes. In addition, new information has emerged on the mechanisms underlying the storage and release of ATP. Both noradrenaline and ATP concur to elicit the tissue smooth muscle contractions following sympathetic reflexes or electrical field stimulation of the sympathetic nerve terminals. ATP and adenosine (its metabolic byproduct) are powerful presynaptic regulators of co-transmitter actions. In addition, neuropeptide Y, the third member of the sympathetic triad, is an endogenous modulator. The peptide plus ATP and/or adenosine play a significant role as sympathetic modulators of transmitter's release. This review focuses on the physiological principles that govern sympathetic co-transmitter activity, with special interest in defining the motor role of ATP. In addition, we intended to review the recent structural biology findings related to the topology of the P2X1R based on the crystallized P2X4 receptor from Danio rerio, or the crystallized adenosine A2A receptor as a member of the G protein coupled family of receptors as prototype neuro modulators. This review also covers structural elements of ectonucleotidases, since some members are found in the vas deferens neuro-effector junction. The allosteric principles that apply to purinoceptors are also reviewed highlighting concepts derived from receptor theory at the light of the current available structural elements. Finally, we discuss clinical applications of these concepts.
Collapse
Affiliation(s)
- L Camilo Navarrete
- Laboratorio de Estructura de Proteínas de Membrana y Señalización, Núcleo Milenio de Biología Estructural, NuBEs, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Chile
| | - Nelson P Barrera
- Laboratorio de Estructura de Proteínas de Membrana y Señalización, Núcleo Milenio de Biología Estructural, NuBEs, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Chile
| | - J Pablo Huidobro-Toro
- Laboratorio de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
35
|
Alves LA, da Silva JHM, Ferreira DNM, Fidalgo-Neto AA, Teixeira PCN, de Souza CAM, Caffarena ER, de Freitas MS. Structural and molecular modeling features of P2X receptors. Int J Mol Sci 2014; 15:4531-49. [PMID: 24637936 PMCID: PMC3975412 DOI: 10.3390/ijms15034531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 01/05/2023] Open
Abstract
Currently, adenosine 5'-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.
Collapse
Affiliation(s)
- Luiz Anastacio Alves
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - João Herminio Martins da Silva
- Oswaldo Cruz Foundation (FIOCRUZ) Ceará Avenida Santos Dumont, 5753, Torre Saúde, Sala 1303, Papicu, Fortaleza-CE, CEP 60180-900, Brazil.
| | - Dinarte Neto Moreira Ferreira
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Antonio Augusto Fidalgo-Neto
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Pedro Celso Nogueira Teixeira
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Cristina Alves Magalhães de Souza
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Ernesto Raúl Caffarena
- Scientific Computation Program, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Mônica Santos de Freitas
- Jiri Jonas Nuclear Magnetic Resonance Center, Science and Technology Institute of Structural Biology and Bioimaging, Leopoldo de Meis Medical Biochemistry Institute, Rio de Janeiro Federal University (UFRJ), Carlos Chagas Filho ave, 373, Rio de Janeiro 21941-901, Brazil.
| |
Collapse
|
36
|
Stelmashenko O, Compan V, Browne LE, North RA. Ectodomain movements of an ATP-gated ion channel (P2X2 receptor) probed by disulfide locking. J Biol Chem 2014; 289:9909-17. [PMID: 24515105 PMCID: PMC3975035 DOI: 10.1074/jbc.m113.542811] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ectodomain of the P2X receptor is formed mainly from two- or three-stranded β-sheets provided symmetrically by each of the three subunits. These enclose a central cavity that is closed off furthest from the plasma membrane (the turret) and that joins with the transmembrane helices to form the ion permeation pathway. Comparison of closed and open crystal structures indicates that ATP binds in a pocket positioned between strands provided by different subunits and that this flexes the β-sheets of the lower body and enlarges the central cavity: this pulls apart the outer ends of the transmembrane helices and thereby opens an aperture, or gate, where they intersect within the membrane bilayer. In the present work, we examined this opening model by introducing pairs of cysteines into the rat P2X2 receptor that might form disulfide bonds within or between subunits. Receptors were expressed in human embryonic kidney cells, and disulfide formation was assessed by observing the effect of dithiothreitol on currents evoked by ATP. Substitutions in the turret (P90C, P89C/S97C), body wall (S65C/S190C, S65C/D315C) and the transmembrane domains (V48C/I328C, V51C/I328C, S54C/I328C) strongly inhibited ATP-evoked currents prior to reduction with dithiothreitol. Western blotting showed that these channels also formed predominately as dimers and/or trimers rather than monomers. The results strongly support the channel opening mechanism proposed on the basis of available crystal structures.
Collapse
|
37
|
Samways DSK, Li Z, Egan TM. Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 2014; 8:6. [PMID: 24550775 PMCID: PMC3914235 DOI: 10.3389/fncel.2014.00006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 12/25/2022] Open
Abstract
P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate.
Collapse
Affiliation(s)
| | - Zhiyuan Li
- Guangzhou Institute of Biomedicine and Health, University of Chinese Academy of Sciences Guangzhou, China
| | - Terrance M Egan
- Department of Pharmacological and Physiological Science, The Center for Excellence in Neuroscience, Saint Louis University School of Medicine St. Louis, MO, USA
| |
Collapse
|
38
|
Chataigneau T, Lemoine D, Grutter T. Exploring the ATP-binding site of P2X receptors. Front Cell Neurosci 2013; 7:273. [PMID: 24415999 PMCID: PMC3874471 DOI: 10.3389/fncel.2013.00273] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/07/2013] [Indexed: 02/05/2023] Open
Abstract
P2X receptors are ATP-gated non-selective cation channels involved in many different physiological processes, such as synaptic transmission, inflammation, and neuropathic pain. They form homo- or heterotrimeric complexes and contain three ATP-binding sites in their extracellular domain. The recent determination of X-ray structures of a P2X receptor solved in two states, a resting closed state and an ATP-bound, open-channel state, has provided unprecedented information not only regarding the three-dimensional shape of the receptor, but also on putative conformational changes that couple ATP binding to channel opening. These data provide a structural template for interpreting the huge amount of functional, mutagenesis, and biochemical data collected during more than fifteen years. In particular, the interfacial location of the ATP binding site and ATP orientation have been successfully confirmed by these structural studies. It appears that ATP binds to inter-subunit cavities shaped like open jaws, whose tightening induces the opening of the ion channel. These structural data thus represent a firm basis for understanding the activation mechanism of P2X receptors.
Collapse
Affiliation(s)
- Thierry Chataigneau
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| | - Damien Lemoine
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| | - Thomas Grutter
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| |
Collapse
|
39
|
Saul A, Hausmann R, Kless A, Nicke A. Heteromeric assembly of P2X subunits. Front Cell Neurosci 2013; 7:250. [PMID: 24391538 PMCID: PMC3866589 DOI: 10.3389/fncel.2013.00250] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022] Open
Abstract
Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.
Collapse
Affiliation(s)
- Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University Aachen, Germany
| | - Achim Kless
- Department of Discovery Informatics, Grünenthal GmbH, Global Drug Discovery Aachen, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| |
Collapse
|
40
|
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. Proc Natl Acad Sci U S A 2013; 110:E3455-63. [PMID: 23959888 DOI: 10.1073/pnas.1308088110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.
Collapse
|
41
|
Liang X, Xu H, Li C, Yin S, Xu T, Liu J, Li Z. Functional identification of close proximity amino acid side chains within the transmembrane-spanning helixes of the P2X2 receptor. PLoS One 2013; 8:e70629. [PMID: 23936459 PMCID: PMC3735612 DOI: 10.1371/journal.pone.0070629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/20/2013] [Indexed: 01/15/2023] Open
Abstract
The transition from the closed to open state greatly alters the intra- and inter-subunit interactions of the P2X receptor (P2XR). The interactions that occur in the transmembrane domain of the P2X2R remain unclear. We used substituted cysteine mutagenesis disulfide mapping to identify pairs of residues that are in close proximity within the transmembrane domain of rP2X2R and compared our results to the predicted positions of these amino acids obtained from a rat P2X2R homology model of the available open and closed zebrafish P2X4R structures. Alternations in channel function were measured as a change in the ATP-gated current before and after exposure to dithiothreitol. Thirty-six pairs of double mutants of rP2X2R expressed in HEK293 cells produced normal functioning channels. Thirty-five pairs of these mutants did not exhibit a functionally detectable disulfide bond. The double mutant H33C/S345C formed redox-dependent cross-links in the absence of ATP. Dithiothreitol ruptured the disulfide bond of H33C/S345C and induced a 2 to 3-fold increase in current. The EC50 for H33C/S345C before dithiothreitol treatment was ∼2-fold higher than that after dithiothreitol treatment. Dithiothreitol reduced the EC50 to wild-type levels. Furthermore, expression of trimeric concatamer receptors with Cys mutations at some but not all six positions showed that the more disulfide bond formation sites within the concatamer, the greater current potentiation after dithiothreitol incubation. Immunoblot analysis of H33C/S345C revealed one monomer band under nonreducing conditions strongly suggesting that disulfide bonds are formed within single subunits (intra-subunit) and not between two subunits (inter-subunit). Taken together, these data indicate that His33 and Ser345 are proximal to each other across an intra-subunit interface. The relative movement between the first transmembrane and the second transmembrane in the intra-subunit is likely important for transmitting the action of ATP binding to the opening of the channel.
Collapse
Affiliation(s)
- Xin Liang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Huijuan Xu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Caiyue Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shikui Yin
- The School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
42
|
Jiang LH, Baldwin JM, Roger S, Baldwin SA. Insights into the Molecular Mechanisms Underlying Mammalian P2X7 Receptor Functions and Contributions in Diseases, Revealed by Structural Modeling and Single Nucleotide Polymorphisms. Front Pharmacol 2013; 4:55. [PMID: 23675347 PMCID: PMC3646254 DOI: 10.3389/fphar.2013.00055] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022] Open
Abstract
The mammalian P2X7 receptors (P2X7Rs), a member of the ionotropic P2X receptor family with distinctive functional properties, play an important part in mediating extracellular ATP signaling in health and disease. A clear delineation of the molecular mechanisms underlying the key receptor properties, such as ATP-binding, ion permeation, and large pore formation of the mammalian P2X7Rs, is still lacking, but such knowledge is crucial for a better understanding of their physiological functions and contributions in diseases and for development of therapeutics. The recent breakthroughs in determining the atomic structures of the zebrafish P2X4.1R in the closed and ATP-bound open states have provided the long-awaited structural information. The human P2RX7 gene is abundant with non-synonymous single nucleotide polymorphisms (NS-SNPs), which generate a repertoire of human P2X7Rs with point mutations. Characterizations of the NS-SNPs identified in patients of various disease conditions and the resulting mutations have informed previously unknown molecular mechanisms determining the mammalian P2X7R functions and diseases. In this review, we will discuss the new insights into such mechanisms provided by structural modeling and recent functional and genetic linkage studies of NS-SNPs.
Collapse
Affiliation(s)
- Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | | | | | |
Collapse
|
43
|
Cysteine-based cross-linking approach to study inter-domain interactions in ion channels. Methods Mol Biol 2013. [PMID: 23529437 DOI: 10.1007/978-1-62703-351-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Cysteine contains a highly reactive thiol group and therefore under oxidizing conditions a disulfide bond can form between a pair of cysteines that are juxtaposed in the close vicinity, which can be only reversed by reducing agents. These attributes have been elegantly exploited to study the functional role of an interaction or contact between two adjacent domains that are present in ion channels or virtually in any proteins, by introducing double cysteine substitutions at the domain interface and measuring changes in the ion channel functions arising from cross-linking the two substituted cysteines via formation of a disulfide bond. Here I describe this cysteine-based cross-linking approach.
Collapse
|
44
|
Hausmann R, Günther J, Kless A, Kuhlmann D, Kassack MU, Bahrenberg G, Markwardt F, Schmalzing G. Salt bridge switching from Arg290/Glu167 to Arg290/ATP promotes the closed-to-open transition of the P2X2 receptor. Mol Pharmacol 2013; 83:73-84. [PMID: 23041661 DOI: 10.1124/mol.112.081489] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
P2X receptors are trimeric adenosine-5'-triphosphate (ATP)-gated cation channels involved in fast signal transduction in many cell types. In this study, we used homology modeling of the rat P2X2 receptor with the zebrafish P2X4 X-ray template to determine that the side chains of the Glu167 and Arg290 residues are in close spatial vicinity within the ATP-binding pocket when the rat P2X2 channel is closed. Through charge reversal mutation analysis and mutant cycle analysis, we obtained evidence that Glu167 and Arg290 form an electrostatic interaction. In addition, disulfide trapping indicated the close proximity of Glu167 and Arg290 when the channel is in the closed state, but not in the ATP-bound open state. Consistent with a gating-induced movement that disrupts the Glu167/Arg290 salt bridge, a comparison of the closed and open rat P2X2 receptor models revealed a significant rearrangement of the protein backbone and the side chains of the Glu167 and Arg290 residues during the closed-to-open transition. The associated release of the Glu167/Arg290 salt bridge during channel opening allows a strong ionic interaction between Arg290 and a γ-phosphate oxygen of ATP. We conclude from these results that the state-dependent salt bridge switching from Arg290/Glu167 to Arg290/ATP fulfills a dual role: to destabilize the closed state of the receptor and to promote the ionic coordination of ATP in the ATP-binding pocket.
Collapse
Affiliation(s)
- Ralf Hausmann
- Department of Molecular Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
P2X receptors are nonselective cation channels gated by extracellular ATP. They represent new therapeutic targets, and they form channels with a unique trimeric architecture. In 2009, the first crystal structure of a P2X receptor was reported, in which the receptor was in an ATP-free, closed channel state. However, our view recently changed when a second crystal structure was reported, in which a P2X receptor was bound to ATP and resolved in an open channel conformation. This remarkable structure not only confirms many key experimental data, including the recent mechanisms of ATP binding and ion permeation, but also reveals unanticipated mechanisms. Certainly, this new information will accelerate our understanding of P2X receptor function and pharmacology at the atomic level.
Collapse
|
46
|
Roberts JA, Bottrill AR, Mistry S, Evans RJ. Mass spectrometry analysis of human P2X1 receptors; insight into phosphorylation, modelling and conformational changes. J Neurochem 2012; 123:725-35. [PMID: 22971236 PMCID: PMC3532615 DOI: 10.1111/jnc.12012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 11/30/2022]
Abstract
Recombinant FlagHis6 tagged Human P2X1 receptors expressed in HEK293 cells were purified, digested with trypsin and analysed by mass spectroscopy (96% coverage following de-glycosylation and reduction). The receptor was basally phosphorylated at residues S387, S388 and T389 in the carboxyl terminus, a triple alanine mutant of these residues had a modest ∼ 25% increase in current amplitude and recovery from desensitization. Chemical modification showed that intracellular lysine residues close to the transmembrane domains and the membrane stabilization motif are accessible to the aqueous environment. The membrane-impermeant cross-linking reagent 3,3′-Dithiobis (sulfosuccinimidylpropionate) (DTSSP) reduced agonist binding and P2X1 receptor currents by > 90%, and modified lysine residues were identified by mass spectroscopy. Mutation to remove reactive lysine residues around the ATP-binding pocket had no effect on inhibtion of agonist evoked currents following DTSSP. However, agonist evoked currents were ∼ 10-fold higher than for wild type following DTSSP treatment for mutants K199R, K221R and K199R-K221R. These mutations remove reactive residues distant from the agonist binding pocket that are close enough to cross-link adjacent subunits. These results suggest that conformational change in the P2X1 receptor is required for co-ordination of ATP action.
Collapse
Affiliation(s)
- Jonathan A Roberts
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
47
|
Abstract
Extracellular adenosine 5' triphosphate (ATP) is a widespread cell-to-cell signaling molecule in the brain, where it activates cell surface P2X and P2Y receptors. P2X receptors define a protein family unlike other neurotransmitter-gated ion channels in terms of sequence, subunit topology, assembly, and architecture. Within milliseconds of binding ATP, they catalyze the opening of a cation-selective pore. However, recent data show that P2X receptors often underlie neuromodulatory responses on slower time scales of seconds or longer. Herein, we review these findings at molecular, cellular and systems levels. We propose that, while P2X receptors are fast ligand-gated cation channels, they are most adept at mediating slow neuromodulatory functions that are more widespread and more physiologically utilized than fast ATP synaptic transmission in the CNS.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
48
|
Jiang R, Taly A, Lemoine D, Martz A, Specht A, Grutter T. Intermediate closed channel state(s) precede(s) activation in the ATP-gated P2X2 receptor. Channels (Austin) 2012; 6:398-402. [PMID: 22992569 DOI: 10.4161/chan.21520] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular mechanism underlying channel opening in response to agonist binding remains a challenging issue in neuroscience. In this regard, many efforts have been recently undertaken in ATP-gated P2X receptors. Among those efforts, we have provided evidence in the P2X2 receptor that tightening of ATP sites upon agonist binding induces opening of the ion channel. Here we extend our analysis to show that the sulfhydryl-reactive ATP analog 8-thiocyano-ATP (NCS-ATP), a potent P2X2 agonist, when covalently labeled in the ATP-binding site at position Leu186 likely favors the tightening mechanism, but not the channel opening mechanism. Our data predict the existence of intermediate or preactivation state(s) trapped by NCS-ATP, in which tightening of the binding site is favored while the channel is still closed. We propose that this (these) intermediate ATP-bound state(s) prime(s) channel gating in the P2X2 receptor.
Collapse
Affiliation(s)
- Ruotian Jiang
- Laboratoire de Biophysicochimie des Récepteurs Canaux, Conception et Application de Molécules Bioactives, CNRS UMR 7199, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
49
|
Involvement of the cysteine-rich head domain in activation and desensitization of the P2X1 receptor. Proc Natl Acad Sci U S A 2012; 109:11396-401. [PMID: 22745172 DOI: 10.1073/pnas.1118759109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P2X receptors (P2XRs) are ligand-gated ion channels activated by extracellular ATP. Although the crystal structure of the zebrafish P2X4R has been solved, the exact mode of ATP binding and the conformational changes governing channel opening and desensitization remain unknown. Here, we used voltage clamp fluorometry to investigate movements in the cysteine-rich head domain of the rat P2X1R (A118-I125) that projects over the proposed ATP binding site. On substitution with cysteine residues, six of these residues (N120-I125) were specifically labeled by tetramethyl-rhodamine-maleimide and showed significant changes in the emission of the fluorescence probe on application of the agonists ATP and benzoyl-benzoyl-ATP. Mutants N120C and G123C showed fast fluorescence decreases with similar kinetics as the current increases. In contrast, mutants P121C and I125C showed slow fluorescence increases that seemed to correlate with the current decline during desensitization. Mutant E122C showed a slow fluorescence increase and fast decrease with ATP and benzoyl-benzoyl-ATP, respectively. Application of the competitive antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) resulted in large fluorescence changes with the N120C, E122C, and G123C mutants and minor or no changes with the other mutants. Likewise, TNP-ATP-induced changes in control mutants distant from the proposed ATP binding site were comparably small or absent. Combined with molecular modeling studies, our data confirm the proposed ATP binding site and provide evidence that ATP orients in its binding site with the ribose moiety facing the solution. We also conclude that P2XR activation and desensitization involve movements of the cysteine-rich head domain.
Collapse
|