1
|
Gattoni G, Keitley D, Sawle A, Benito-Gutiérrez E. An ancient apical patterning system sets the position of the forebrain in chordates. SCIENCE ADVANCES 2025; 11:eadq4731. [PMID: 39854450 PMCID: PMC11758999 DOI: 10.1126/sciadv.adq4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates. Using functional approaches, we show Wnt signaling regulating this co-expression module in amphioxus, like the aGRN in echinoderms, and that its overactivation suppresses forebrain identity. This suggests a previously undescribed role for Wnt signaling in amphioxus in determining the position of the forebrain. We propose this Wnt-regulated gene co-expression module as a possible mechanism by which the brain set antero-dorsally early in chordate evolution.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashley Sawle
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
2
|
Lancaster MA. Unraveling mechanisms of human brain evolution. Cell 2024; 187:5838-5857. [PMID: 39423803 PMCID: PMC7617105 DOI: 10.1016/j.cell.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
Evolutionary changes in human brain structure and function have enabled our specialized cognitive abilities. How these changes have come about genetically and functionally has remained an open question. However, new methods are providing a wealth of information about the genetic, epigenetic, and transcriptomic differences that set the human brain apart. Combined with in vitro models that allow access to developing brain tissue and the cells of our closest living relatives, the puzzle pieces are now coming together to yield a much more complete picture of what is actually unique about the human brain. The challenge now will be linking these observations and making the jump from correlation to causation. However, elegant genetic manipulations are now possible and, when combined with model systems such as organoids, will uncover a mechanistic understanding of how evolutionary changes at the genetic level have led to key differences in development and function that enable human cognition.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Menti GM, Bruzzone M, Zordan MA, Visentin P, Drago A, Dal Maschio M, Megighian A. Optokinetic response in D. melanogaster reveals the nature of common repellent odorants. Sci Rep 2024; 14:22277. [PMID: 39333197 PMCID: PMC11436819 DOI: 10.1038/s41598-024-73221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Animals' ability to orient and navigate relies on selecting an appropriate motor response based on the perception and integration of the environmental information. This is the case, for instance, of the optokinetic response (OKR) in Drosophila melanogaster, where optic flow visual stimulation modulates head movements. Despite a large body of literature on the OKR, there is still a limited understanding, in flies, of the impact on OKR of concomitant, and potentially conflicting, inputs. To evaluate the impact of this multimodal integration, we combined in D. melanogaster, while flying in a tethered condition, the optic flow stimulation leading to OKR with the simultaneous presentation of olfactory cues, based on repellent or masking compounds typically used against noxious insect species. First, this approach allowed us to directly quantify the effect of several substances and of their concentration on the dynamics of the flies' OKR in response to moving gratings by evaluating the number of saccades and the velocity of the slow phase. Subsequently, this analysis was capable of easily revealing the actual effect, i.e. masking vs. repellent, of the compound tested. In conclusion, we show that D. melanogaster, a cost-affordable species, represents a viable option for studying the effects of several compounds on the navigational abilities of insects.
Collapse
Affiliation(s)
- Giulio Maria Menti
- Padova Neuroscience Center, Università degli Studi di Padova, Veneto, Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Veneto, Padova, Italy
| | - Matteo Bruzzone
- Department of Neuroscience, Università degli Studi di Padova, Veneto, Padova, Italy
| | | | | | - Andrea Drago
- Entostudio S.r.l, Ponte San Nicolò (PD), Veneto, Italy
| | - Marco Dal Maschio
- Padova Neuroscience Center, Università degli Studi di Padova, Veneto, Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Veneto, Padova, Italy
| | - Aram Megighian
- Padova Neuroscience Center, Università degli Studi di Padova, Veneto, Padova, Italy.
- Department of Biomedical Sciences, Università degli Studi di Padova, Veneto, Padova, Italy.
| |
Collapse
|
4
|
Carrillo-Baltodano AM, Donnellan RD, Williams EA, Jékely G, Martín-Durán JM. The development of the adult nervous system in the annelid Owenia fusiformis. Neural Dev 2024; 19:3. [PMID: 38383501 PMCID: PMC10880339 DOI: 10.1186/s13064-024-00180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The evolutionary origins of animal nervous systems remain contentious because we still have a limited understanding of neural development in most major animal clades. Annelids - a species-rich group with centralised nervous systems - have played central roles in hypotheses about the origins of animal nervous systems. However, most studies have focused on adults of deeply nested species in the annelid tree. Recently, Owenia fusiformis has emerged as an informative species to reconstruct ancestral traits in Annelida, given its phylogenetic position within the sister clade to all remaining annelids. METHODS Combining immunohistochemistry of the conserved neuropeptides FVamide-lir, RYamide-lir, RGWamide-lir and MIP-lir with gene expression, we comprehensively characterise neural development from larva to adulthood in Owenia fusiformis. RESULTS The early larval nervous system comprises a neuropeptide-rich apical organ connected through peripheral nerves to a prototroch ring and the chaetal sac. There are seven sensory neurons in the prototroch. A bilobed brain forms below the apical organ and connects to the ventral nerve cord of the developing juvenile. During metamorphosis, the brain compresses, becoming ring-shaped, and the trunk nervous system develops several longitudinal cords and segmented lateral nerves. CONCLUSIONS Our findings reveal the formation and reorganisation of the nervous system during the life cycle of O. fusiformis, an early-branching annelid. Despite its apparent neuroanatomical simplicity, this species has a diverse peptidergic nervous system, exhibiting morphological similarities with other annelids, particularly at the larval stages. Our work supports the importance of neuropeptides in animal nervous systems and highlights how neuropeptides are differentially used throughout development.
Collapse
Affiliation(s)
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, UK
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Lacalli T. The Cambrian fossil Pikaia, and the origin of chordate somites. EvoDevo 2024; 15:1. [PMID: 38302988 PMCID: PMC10832150 DOI: 10.1186/s13227-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The Middle Cambrian fossil Pikaia has a regular series of vertical bands that, assuming chordate affinities, can be interpreted as septa positioned between serial myotomes. Whether Pikaia has a notochord and nerve cord is less certain, as the dorsal organ, which has no obvious counterpart in living chordates, is the only clearly defined axial structure extending the length of the body. Without a notochord to serve as a reference point, the location of the nerve cord is then conjectural, which begs the question of how a dorsal neural center devoted to somite innervation would first have arisen from a more diffuse ancestral plexus of intraepithelial nerves. This question is examined using hemichordates as a reference point, first for the information they provide on the organization of the ancestral deuterostome nervous system, and second, extending the analysis of E. E. Ruppert, to explain why neural infoldings like the enteropneust collar cord would first have evolved. Both implicate the medial surface of the anterior-most part of the metacoel as the likely site for the evolution of the first somites. The analysis highlights the importance of the somatobranchial condition in chordates, meaning the linkage between the anterior trunk, hox1 expression, and the beginning of the gill series and somites. This feature is arguably a valid criterion by which to assess extinct taxa from the Cambrian that resemble chordates (e.g., vetulicolians and yunnanozoans), but may be unrelated to them. In a more speculative vein, the nature of the dorsal organ is discussed, including the possibility that it is an expanded neural tube combining neural and support functions in one structure.
Collapse
Affiliation(s)
- Thurston Lacalli
- Biology Department, University of Victoria, Victoria, V8W-3N5, Canada.
| |
Collapse
|
6
|
Abstract
Giant brains have independently evolved twice on this planet, in vertebrates and in cephalopods (Figure 1A). Thus, the brains and nervous systems of cephalopods provide an important counterpoint to vertebrates in the search for generalities of brain organization and function. Their mere existence disproves various hypotheses proposed to explain the evolution of the mind and the human brain, such as cognition and large brains evolved only in long-lived animals with complex social systems and parental care, none of which is true of cephalopods. Therefore, it is worthwhile to review what is known about the evolution of cephalopod nervous systems to consider how it informs our understanding of general principles of brain evolution.
Collapse
Affiliation(s)
- Caroline B Albertin
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Paul S Katz
- Department of Biology, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Schuster HC, Hirth F. Phylogenetic tracing of midbrain-specific regulatory sequences suggests single origin of eubilaterian brains. SCIENCE ADVANCES 2023; 9:eade8259. [PMID: 37224241 PMCID: PMC10208574 DOI: 10.1126/sciadv.ade8259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Conserved cis-regulatory elements (CREs) control Engrailed-, Pax2-, and dachshund-related gene expression networks directing the formation and function of corresponding midbrain circuits in arthropods and vertebrates. Polarized outgroup analyses of 31 sequenced metazoan genomes representing all animal clades reveal the emergence of Pax2- and dachshund-related CRE-like sequences in anthozoan Cnidaria. The full complement, including Engrailed-related CRE-like sequences, is only detectable in spiralians, ecdysozoans, and chordates that have a brain; they exhibit comparable genomic locations and extensive nucleotide identities that reveal the presence of a conserved core domain, all of which are absent in non-neural genes and, together, distinguish them from randomly assembled sequences. Their presence concurs with a genetic boundary separating the rostral from caudal nervous systems, demonstrated for the metameric brains of annelids, arthropods, and chordates and the asegmental cycloneuralian and urochordate brain. These findings suggest that gene regulatory networks for midbrain circuit formation evolved within the lineage that led to the common ancestor of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Helen C. Schuster
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | |
Collapse
|
8
|
Exploration of the Core Pathways and Potential Targets of Luteolin Treatment on Late-Onset Depression Based on Cerebrospinal Fluid Proteomics. Int J Mol Sci 2023; 24:ijms24043485. [PMID: 36834894 PMCID: PMC9958965 DOI: 10.3390/ijms24043485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cognitive deficiency is one of the fundamental characteristics of late-onset depression (LOD). Luteolin (LUT) possesses antidepressant, anti-aging, and neuroprotective properties, which can dramatically enhance cognition. The altered composition of cerebrospinal fluid (CSF), which is involved in neuronal plasticity and neurogenesis, directly reflects the physio-pathological status of the central nervous system. It is not well known whether the effect of LUT on LOD is in association with a changed CSF composition. Therefore, this study first established a rat model of LOD and then tested the therapeutic effects of LUT using several behavioral approaches. A gene set enrichment analysis (GSEA) was used to evaluate the CSF proteomics data for KEGG pathway enrichment and Gene Ontology annotation. We combined network pharmacology and differentially expressed proteins to screen for key GSEA-KEGG pathways as well as potential targets for LUT therapy for LOD. Molecular docking was adopted to verify the affinity and binding activity of LUT to these potential targets. The outcomes demonstrated that LUT improved the cognitive and depression-like behaviors in LOD rats. LUT may exert therapeutic effects on LOD through the axon guidance pathway. Five axon guidance molecules-EFNA5, EPHB4, EPHA4, SEMA7A, and NTNG-as well as UNC5B, L1CAM, and DCC, may be candidates for the LUT treatment of LOD.
Collapse
|
9
|
Earl B. Humans, fish, spiders and bees inherited working memory and attention from their last common ancestor. Front Psychol 2023; 13:937712. [PMID: 36814887 PMCID: PMC9939904 DOI: 10.3389/fpsyg.2022.937712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 02/08/2023] Open
Abstract
All brain processes that generate behaviour, apart from reflexes, operate with information that is in an "activated" state. This activated information, which is known as working memory (WM), is generated by the effect of attentional processes on incoming information or information previously stored in short-term or long-term memory (STM or LTM). Information in WM tends to remain the focus of attention; and WM, attention and STM together enable information to be available to mental processes and the behaviours that follow on from them. WM and attention underpin all flexible mental processes, such as solving problems, making choices, preparing for opportunities or threats that could be nearby, or simply finding the way home. Neither WM nor attention are necessarily conscious, and both may have evolved long before consciousness. WM and attention, with similar properties, are possessed by humans, archerfish, and other vertebrates; jumping spiders, honey bees, and other arthropods; and members of other clades, whose last common ancestor (LCA) is believed to have lived more than 600 million years ago. It has been reported that very similar genes control the development of vertebrate and arthropod brains, and were likely inherited from their LCA. Genes that control brain development are conserved because brains generate adaptive behaviour. However, the neural processes that generate behaviour operate with the activated information in WM, so WM and attention must have existed prior to the evolution of brains. It is proposed that WM and attention are widespread amongst animal species because they are phylogenetically conserved mechanisms that are essential to all mental processing, and were inherited from the LCA of vertebrates, arthropods, and some other animal clades.
Collapse
|
10
|
Arndt SS, Goerlich VC, van der Staay FJ. A dynamic concept of animal welfare: The role of appetitive and adverse internal and external factors and the animal’s ability to adapt to them. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.908513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal welfare is a multifaceted issue that can be approached from different viewpoints, depending on human interests, ethical assumptions, and culture. To properly assess, safeguard and promote animal welfare, concepts are needed to serve as guidelines in any context the animal is kept in. Several different welfare concepts have been developed during the last half decade. The Five Freedoms concept has provided the basis for developing animal welfare assessment to date, and the Five Domains concept has guided those responsible for safeguarding animal welfare, while the Quality of Life concept focuses on how the individual perceives its own welfare state. This study proposes a modified and extended version of an earlier animal welfare concept - the Dynamic Animal Welfare Concept (DAWCon). Based on the adaptability of the animal, and taking the importance of positive emotional states and the dynamic nature of animal welfare into account, an individual animal is likely in a positive welfare state when it is mentally and physically capable and possesses the ability and opportunity to react adequately to sporadic or lasting appetitive and adverse internal and external stimuli, events, and conditions. Adequate reactions are elements of an animal’s normal behavior. They allow the animal to cope with and adapt to the demands of the (prevailing) environmental circumstances, enabling it to reach a state that it perceives as positive, i.e., that evokes positive emotions. This paper describes the role of internal as well as external factors in influencing welfare, each of which exerts their effects in a sporadic or lasting manner. Behavior is highlighted as a crucial read-out parameter. As most animals under human care are selected for certain traits that may affect their behavioral repertoire it is crucial to have thorough ethograms, i.e., a catalogue of specific behaviors of the species/strain/breed under study. DAWCon highlights aspects that need to be addressed when assessing welfare and may stimulate future research questions.
Collapse
|
11
|
Cisek P. Evolution of behavioural control from chordates to primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200522. [PMID: 34957850 PMCID: PMC8710891 DOI: 10.1098/rstb.2020.0522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates. This includes midbrain control of approach versus escape actions, telencephalic control of local versus long-range foraging, detection of affordances by the dorsal pallium, diversified control of nocturnal foraging in the mammalian neocortex and expansion of primate frontal, temporal and parietal cortex to support a wide variety of primate-specific behavioural strategies. The result is a proposed functional architecture consisting of parallel control systems, each dedicated to specifying the affordances for guiding particular species-typical actions, which compete against each other through a hierarchy of selection mechanisms. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montreal CP 6123 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
12
|
Temereva E, Rimskaya-Korsakova N, Dyachuk V. Detailed morphology of tentacular apparatus and central nervous system in Owenia borealis (Annelida, Oweniidae). ZOOLOGICAL LETTERS 2021; 7:15. [PMID: 34865650 PMCID: PMC8647411 DOI: 10.1186/s40851-021-00182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The Oweniidae are marine annelids with many unusual features of organ system, development, morphology, and ultrastructure. Together with magelonids, oweniids have been placed within the Palaeoannelida, a sister group to all remaining annelids. The study of this group may increase our understanding of the early evolution of annelids (including their radiation and diversification). In the current research, the morphology and ulta-anatomy of the head region of Owenia borealis is studied by scanning electron microscopy (SEM), 3D reconstructions, transmission electron microscopy (TEM), and whole-mount immunostaining with confocal laser scanning microscopy. According to SEM, the tentacle apparatus consists of 8-14 branched arms, which are covered by monociliary cells that form a ciliary groove extending along the oral side of the arm base. Each tentacle contains a coelomic cavity with a network of blood capillaries. Monociliary myoepithelial cells of the tentacle coelomic cavity form both the longitudinal and the transverse muscles. The structure of this myoepithelium is intermediate between a simple and pseudo-stratified myoepithelium. Overall, tentacles lack prominent zonality, i.e., co-localization of ciliary zones, neurite bundles, and muscles. This organization, which indicates a non-specialized tentacle crown in O. borealis and other oweniids with tentacles, may be ancestral for annelids. TEM, light, and confocal laser scanning microscopy revealed that the head region contains the anterior nerve center comprising of outer and inner (=circumoral) nerve rings. Both nerve rings are organized as concentrated nerve plexus, which contains perikarya and neurites extending between basal projections of epithelial cells (radial glia). The outer nerve ring gives rise to several thick neurite bundles, which branch and extend along aboral side of each tentacle. Accordingly to their immunoreactivity, both rings of the anterior nerve center could be homologized with the dorsal roots of circumesophageal connectives of the typical annelids. Accordingly to its ultrastructure, the outer nerve ring of O. borealis and so-called brain of other oweniids can not be regarded as a typical brain, i.e. the most anterior ganglion, because it lacks ganglionic structure.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Nadezhda Rimskaya-Korsakova
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Vyacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| |
Collapse
|
13
|
Medina L, Abellán A, Desfilis E. Evolving Views on the Pallium. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:181-199. [PMID: 34657034 DOI: 10.1159/000519260] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The pallium is the largest part of the telencephalon in amniotes, and comparison of its subdivisions across species has been extremely difficult and controversial due to its high divergence. Comparative embryonic genoarchitecture studies have greatly contributed to propose models of pallial fundamental divisions, which can be compared across species and be used to extract general organizing principles as well as to ask more focused and insightful research questions. The use of these models is crucial to discern between conservation, convergence or divergence in the neural populations and networks found in the pallium. Here we provide a critical review of the models proposed using this approach, including tetrapartite, hexapartite and double-ring models, and compare them to other models. While recognizing the power of these models for understanding brain architecture, development and evolution, we also highlight limitations and comment on aspects that require attention for improvement. We also discuss on the use of transcriptomic data for understanding pallial evolution and advise for better contextualization of these data by discerning between gene regulatory networks involved in the generation of specific units and cell populations versus genes expressed later, many of which are activity dependent and their expression is more likely subjected to convergent evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
14
|
Mallatt J, Feinberg TE. Multiple Routes to Animal Consciousness: Constrained Multiple Realizability Rather Than Modest Identity Theory. Front Psychol 2021; 12:732336. [PMID: 34630245 PMCID: PMC8497802 DOI: 10.3389/fpsyg.2021.732336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
The multiple realizability thesis (MRT) is an important philosophical and psychological concept. It says any mental state can be constructed by multiple realizability (MR), meaning in many distinct ways from different physical parts. The goal of our study is to find if the MRT applies to the mental state of consciousness among animals. Many things have been written about MRT but the ones most applicable to animal consciousness are by Shapiro in a 2004 book called The Mind Incarnate and by Polger and Shapiro in their 2016 work, The Multiple Realization Book. Standard, classical MRT has been around since 1967 and it says that a mental state can have very many different physical realizations, in a nearly unlimited manner. To the contrary, Shapiro's book reasoned that physical, physiological, and historical constraints force mental traits to evolve in just a few, limited directions, which is seen as convergent evolution of the associated neural traits in different animal lineages. This is his mental constraint thesis (MCT). We examined the evolution of consciousness in animals and found that it arose independently in just three animal clades-vertebrates, arthropods, and cephalopod mollusks-all of which share many consciousness-associated traits: elaborate sensory organs and brains, high capacity for memory, directed mobility, etc. These three constrained, convergently evolved routes to consciousness fit Shapiro's original MCT. More recently, Polger and Shapiro's book presented much the same thesis but changed its name from MCT to a "modest identity thesis." Furthermore, they argued against almost all the classically offered instances of MR in animal evolution, especially against the evidence of neural plasticity and the differently expanded cerebrums of mammals and birds. In contrast, we argue that some of these classical examples of MR are indeed valid and that Shapiro's original MCT correction of MRT is the better account of the evolution of consciousness in animal clades. And we still agree that constraints and convergence refute the standard, nearly unconstrained, MRT.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, United States
| | - Todd E Feinberg
- Department of Psychiatry and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Recovery-from-extinction effects in an anuran amphibian: renewal effect, but no reinstatement. Anim Cogn 2021; 25:359-368. [PMID: 34468877 DOI: 10.1007/s10071-021-01558-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Recovery-from-extinction effects in which a conditioned response returns after extinction have been shown in mammals, birds and fish. Thus, these effects appear to be conserved among vertebrates; however, they have yet to be investigated in amphibians. Using prey catching conditioning in the fire-bellied toad (Bombina orientalis), we tested if renewal and reinstatement occurred after extinction when subjects were respectively re-exposed to the context or reinforcer used during conditioning. For renewal, a different context was used during extinction and thus renewal tests assessed if external contextual cues associated during conditioning stimulated prey catching performance. For reinstatement, the reinforcer withheld during extinction was simply delivered again prior to a test assessing if internal cues associated with recent prey consumption stimulated prey catching performance. Conditioning followed a fixed ratio 5 schedule of reinforcement, where five attempts to capture a cricket stimulus displayed on a computer screen were reinforced by delivery of a single live cricket. Performance was measured as the time to reach five prey catching attempts. A significant improvement in prey catching performance during conditioning followed by deterioration with extinction was seen in the experiments. Upon return to the context used for conditioning after extinction, toads showed a renewal effect whereby they displayed faster performance during testing compared to the end of extinction. Conversely, toads showed no reinstatement effect because pre-feeding of a cricket did not influence performance during the test that followed extinction. Reinstatement could have been lost in amphibian phylogeny due to secondary simplification of the nervous system.
Collapse
|
16
|
Bennett MS. Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans. Front Neuroanat 2021; 15:693346. [PMID: 34489649 PMCID: PMC8418099 DOI: 10.3389/fnana.2021.693346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Retracing the evolutionary steps by which human brains evolved can offer insights into the underlying mechanisms of human brain function as well as the phylogenetic origin of various features of human behavior. To this end, this article presents a model for interpreting the physical and behavioral modifications throughout major milestones in human brain evolution. This model introduces the concept of a "breakthrough" as a useful tool for interpreting suites of brain modifications and the various adaptive behaviors these modifications enabled. This offers a unique view into the ordered steps by which human brains evolved and suggests several unique hypotheses on the mechanisms of human brain function.
Collapse
|
17
|
Mallatt J. A Traditional Scientific Perspective on the Integrated Information Theory of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2021; 23:650. [PMID: 34067413 PMCID: PMC8224652 DOI: 10.3390/e23060650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
This paper assesses two different theories for explaining consciousness, a phenomenon that is widely considered amenable to scientific investigation despite its puzzling subjective aspects. I focus on Integrated Information Theory (IIT), which says that consciousness is integrated information (as ϕMax) and says even simple systems with interacting parts possess some consciousness. First, I evaluate IIT on its own merits. Second, I compare it to a more traditionally derived theory called Neurobiological Naturalism (NN), which says consciousness is an evolved, emergent feature of complex brains. Comparing these theories is informative because it reveals strengths and weaknesses of each, thereby suggesting better ways to study consciousness in the future. IIT's strengths are the reasonable axioms at its core; its strong logic and mathematical formalism; its creative "experience-first" approach to studying consciousness; the way it avoids the mind-body ("hard") problem; its consistency with evolutionary theory; and its many scientifically testable predictions. The potential weakness of IIT is that it contains stretches of logic-based reasoning that were not checked against hard evidence when the theory was being constructed, whereas scientific arguments require such supporting evidence to keep the reasoning on course. This is less of a concern for the other theory, NN, because it incorporated evidence much earlier in its construction process. NN is a less mature theory than IIT, less formalized and quantitative, and less well tested. However, it has identified its own neural correlates of consciousness (NCC) and offers a roadmap through which these NNCs may answer the questions of consciousness using the hypothesize-test-hypothesize-test steps of the scientific method.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
18
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021; 258:459-476. [PMID: 33196907 PMCID: PMC8052213 DOI: 10.1007/s00709-020-01579-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 05/18/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844 USA
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - David G. Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
19
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021. [PMID: 33196907 DOI: 10.1007/s00709-026-01579-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, 83844, USA.
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
20
|
An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps? Brain Sci 2021; 11:brainsci11040437. [PMID: 33805330 PMCID: PMC8067216 DOI: 10.3390/brainsci11040437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/14/2023] Open
Abstract
Neuronal excitability is controlled primarily by γ-aminobutyric acid (GABA) in the central and peripheral nervous systems of vertebrate as well as invertebrate organisms. Besides its recognized neurotransmitter functions, GABA also plays a fundamental role in neurogenesis and synaptogenesis during embryonic development. In addition, GABAergic mechanisms are also involved in disorders of various peripheral tissues, ranging from diabetes to hypothyroidism to inflammatory responses. The discovery of the molecule and the history of its biosynthetic pathways in vertebrate and invertebrate phyla are summarized here. The occurrence and distribution of GABA, GABA-synthesizing enzymes, and receptors to GABA in the freshwater polyp Hydra vulgaris (Cnidaria: Hydrozoa), endowed with an early evolved nervous system, are discussed in relation to possible interactions with the microbiota, a stable component of Hydra polyps; their contribution to the evolution of nervous systems through microbe-neuronal interactions is proposed.
Collapse
|
21
|
Abstract
Many species from diverse and often distantly related animal groups (e.g. monkeys, crows, fish and bees) have a sense of number. This means that they can assess the number of items in a set - its 'numerosity'. The brains of these phylogenetically distant species are markedly diverse. This Review examines the fundamentally different types of brains and neural mechanisms that give rise to numerical competence across the animal tree of life. Neural correlates of the number sense so far exist only for specific vertebrate species: the richest data concerning explicit and abstract number representations have been collected from the cerebral cortex of mammals, most notably human and nonhuman primates, but also from the pallium of corvid songbirds, which evolved independently of the mammalian cortex. In contrast, the neural data relating to implicit and reflexive numerical representations in amphibians and fish is limited. The neural basis of a number sense has not been explored in any protostome so far. However, promising candidate regions in the brains of insects, spiders and cephalopods - all of which are known to have number skills - are identified in this Review. A comparative neuroscientific approach will be indispensable for identifying evolutionarily stable neuronal circuits and deciphering codes that give rise to a sense of number across phylogeny.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
23
|
Feinberg TE, Mallatt J. Phenomenal Consciousness and Emergence: Eliminating the Explanatory Gap. Front Psychol 2020; 11:1041. [PMID: 32595555 PMCID: PMC7304239 DOI: 10.3389/fpsyg.2020.01041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 01/13/2023] Open
Abstract
The role of emergence in the creation of consciousness has been debated for over a century, but it remains unresolved. In particular there is controversy over the claim that a "strong" or radical form of emergence is required to explain phenomenal consciousness. In this paper we use some ideas of complex system theory to trace the emergent features of life and then of complex brains through three progressive stages or levels: Level 1 (life), Level 2 (nervous systems), and Level 3 (special neurobiological features), each representing increasing biological and neurobiological complexity and ultimately leading to the emergence of phenomenal consciousness, all in physical systems. Along the way we show that consciousness fits the criteria of an emergent property-albeit one with extreme complexity. The formulation Life + Special neurobiological features → Phenomenal consciousness expresses these relationships. Then we consider the implications of our findings for some of the philosophical conundrums entailed by the apparent "explanatory gap" between the brain and phenomenal consciousness. We conclude that consciousness stems from the personal life of an organism with the addition of a complex nervous system that is ideally suited to maximize emergent neurobiological features and that it is an example of standard ("weak") emergence without a scientific explanatory gap. An "experiential" or epistemic gap remains, although this is ontologically untroubling.
Collapse
Affiliation(s)
- Todd E. Feinberg
- Icahn School of Medicine at Mount Sinai, Psychiatry and Neurology, New York, NY, United States
| | - Jon Mallatt
- The University of Washington, WWAMI Medical Education Program, The University of Idaho, Moscow, ID, United States
| |
Collapse
|
24
|
Martinez P, Sprecher SG. Of Circuits and Brains: The Origin and Diversification of Neural Architectures. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Abstract
One of the most important aspects of the scientific endeavour is the definition of specific concepts as precisely as possible. However, it is also important not to lose sight of two facts: (i) we divide the study of nature into manageable parts in order to better understand it owing to our limited cognitive capacities and (ii) definitions are inherently arbitrary and heavily influenced by cultural norms, language, the current political climate, and even personal preferences, among many other factors. As a consequence of these facts, clear-cut definitions, despite their evident importance, are oftentimes quite difficult to formulate. One of the most illustrative examples about the difficulty of articulating precise scientific definitions is trying to define the concept of a brain. Even though the current thinking about the brain is beginning to take into account a variety of organisms, a vertebrocentric bias still tends to dominate the scientific discourse about this concept. Here I will briefly explore the evolution of our 'thoughts about the brain', highlighting the difficulty of constructing a universally (or even a generally) accepted formal definition of it and using planarians as one of the earliest examples of organisms proposed to possess a 'traditional', vertebrate-style brain. I also suggest that the time is right to attempt to expand our view of what a brain is, going beyond exclusively structural and taxa-specific criteria. Thus, I propose a classification that could represent a starting point in an effort to expand our current definitions of the brain, hopefully to help initiate conversations leading to changes of perspective on how we think about this concept. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University , West Chester, PA 19383 , USA
| |
Collapse
|
26
|
Corbo CP, Fulop ZL. Regional differences in the ependyma of the optic tectal ventricle of adult zebrafish with structures referring to brain hydrodynamics. Microsc Res Tech 2020; 83:667-675. [PMID: 32048782 DOI: 10.1002/jemt.23457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/26/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Classical electron microscopic morphological studies provide detailed ultrastructural information, which may lend insights into cellular functions. As a follow-up to our morphological investigation of the adult zebrafish (Danio rerio) optic tectum, in this study, we have analyzed the ependymal structures lining the surfaces of the tectal ventricle: the torus, tegmental surface of the valvula cerebelli and the periventricular gray zone of the optic tectal cortex. We used toluidine blue stained plastic (semithin) sections for light microscopy and scanning electron microscopy. Our morphological findings of gated entrances and/or egresses indicate that, at least in the adult zebrafish brain, there may be a bidirectional direct flow communication between the ventricular cerebrospinal fluid and the parenchymal interstitial fluid.
Collapse
Affiliation(s)
- Christopher P Corbo
- Laboratory of Developmental Brain Research and Neuroplasticity, Department of Biological Sciences, Wagner College, Staten Island, New York
| | - Zoltan L Fulop
- Laboratory of Developmental Brain Research and Neuroplasticity, Department of Biological Sciences, Wagner College, Staten Island, New York
| |
Collapse
|
27
|
Fields C, Bischof J, Levin M. Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling. Physiology (Bethesda) 2020; 35:16-30. [DOI: 10.1152/physiol.00027.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are traditionally thought of as providing sensing and behavioral coordination functions at the level of the whole organism. What is the evolutionary origin of the mechanisms enabling the nervous systems’ information processing ability? Here, we review evidence from evolutionary, developmental, and regenerative biology suggesting a deeper, ancestral function of both pre-neural and neural cell-cell communication systems: the long-distance coordination of cell division and differentiation required to create and maintain body-axis symmetries. This conceptualization of the function of nervous system activity sheds new light on the evolutionary transition from the morphologically rudimentary, non-neural Porifera and Placazoa to the complex morphologies of Ctenophores, Cnidarians, and Bilaterians. It further allows a sharp formulation of the distinction between long-distance axis-symmetry coordination based on external coordinates, e.g., by whole-organism scale trophisms as employed by plants and sessile animals, and coordination based on body-centered coordinates as employed by motile animals. Thus we suggest that the systems that control animal behavior evolved from ancient mechanisms adapting preexisting ionic and neurotransmitter mechanisms to regulate individual cell behaviors during morphogenesis. An appreciation of the ancient, non-neural origins of bioelectrically mediated computation suggests new approaches to the study of embryological development, including embryological dysregulation, cancer, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, Caunes Minervois, France
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| |
Collapse
|
28
|
Sims DW, Humphries NE, Hu N, Medan V, Berni J. Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion. eLife 2019; 8:e50316. [PMID: 31674911 PMCID: PMC6879304 DOI: 10.7554/elife.50316] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
Efficient searching for resources such as food by animals is key to their survival. It has been proposed that diverse animals from insects to sharks and humans adopt searching patterns that resemble a simple Lévy random walk, which is theoretically optimal for 'blind foragers' to locate sparse, patchy resources. To test if such patterns are generated intrinsically, or arise via environmental interactions, we tracked free-moving Drosophila larvae with (and without) blocked synaptic activity in the brain, suboesophageal ganglion (SOG) and sensory neurons. In brain-blocked larvae, we found that extended substrate exploration emerges as multi-scale movement paths similar to truncated Lévy walks. Strikingly, power-law exponents of brain/SOG/sensory-blocked larvae averaged 1.96, close to a theoretical optimum (µ ≅ 2.0) for locating sparse resources. Thus, efficient spatial exploration can emerge from autonomous patterns in neural activity. Our results provide the strongest evidence so far for the intrinsic generation of Lévy-like movement patterns.
Collapse
Affiliation(s)
- David W Sims
- The Marine Biological Association of the United KingdomPlymouthUnited Kingdom
- Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUnited Kingdom
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Nicolas E Humphries
- The Marine Biological Association of the United KingdomPlymouthUnited Kingdom
| | - Nan Hu
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Violeta Medan
- Departamento de Fisiología, Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET)Buenos AiresArgentina
| | - Jimena Berni
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
29
|
Martín-Durán JM, Hejnol A. A developmental perspective on the evolution of the nervous system. Dev Biol 2019; 475:181-192. [PMID: 31610146 DOI: 10.1016/j.ydbio.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/02/2018] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
The evolution of nervous systems in animals has always fascinated biologists, and thus multiple evolutionary scenarios have been proposed to explain the appearance of neurons and complex neuronal centers. However, the absence of a robust phylogenetic framework for animal interrelationships, the lack of a mechanistic understanding of development, and a recapitulative view of animal ontogeny have traditionally limited these scenarios. Only recently, the integration of advanced molecular and morphological studies in a broad range of animals has allowed to trace the evolution of developmental and neuronal characters on a better-resolved animal phylogeny. This has falsified most traditional scenarios for nervous system evolution, paving the way for the emergence of new testable hypotheses. Here we summarize recent progress in studies of nervous system development in major animal lineages and formulate some of the arising questions. In particular, we focus on how lineage analyses of nervous system development and a comparative study of the expression of neural-related genes has influenced our understanding of the evolution of an elaborated central nervous system in Bilateria. We argue that a phylogeny-guided study of neural development combining thorough descriptive and functional analyses is key to establish more robust scenarios for the origin and evolution of animal nervous systems.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
30
|
Abstract
This article proposes that biologically plausible theories of behavior can be constructed by following a method of "phylogenetic refinement," whereby they are progressively elaborated from simple to complex according to phylogenetic data on the sequence of changes that occurred over the course of evolution. It is argued that sufficient data exist to make this approach possible, and that the result can more effectively delineate the true biological categories of neurophysiological mechanisms than do approaches based on definitions of putative functions inherited from psychological traditions. As an example, the approach is used to sketch a theoretical framework of how basic feedback control of interaction with the world was elaborated during vertebrate evolution, to give rise to the functional architecture of the mammalian brain. The results provide a conceptual taxonomy of mechanisms that naturally map to neurophysiological and neuroanatomical data and that offer a context for defining putative functions that, it is argued, are better grounded in biology than are some of the traditional concepts of cognitive science.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
31
|
Feinberg TE, Mallatt J. Subjectivity "Demystified": Neurobiology, Evolution, and the Explanatory Gap. Front Psychol 2019; 10:1686. [PMID: 31417451 PMCID: PMC6685416 DOI: 10.3389/fpsyg.2019.01686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/03/2019] [Indexed: 02/01/2023] Open
Abstract
While life in general can be explained by the mechanisms of physics, chemistry, and biology, to many scientists and philosophers, it appears that when it comes to explaining consciousness, there is what the philosopher Joseph Levine called an "explanatory gap" between the physical brain and subjective experiences. Here, we deduce the living and neural features behind primary consciousness within a naturalistic biological framework, identify which animal taxa have these features (the vertebrates, arthropods, and cephalopod molluscs), then reconstruct when consciousness first evolved and consider its adaptive value. We theorize that consciousness is based on all the complex system features of life, plus even more complex features of elaborate brains. We argue that the main reason why the explanatory gap between the brain and experience has been so refractory to scientific explanation is that it arises from both life and from varied and diverse brains and brain regions, so bridging the gap requires a complex, multifactorial account that includes the great diversity of consciousness, its personal nature that stems from embodied life, and the special neural features that make consciousness unique in nature.
Collapse
Affiliation(s)
- Todd E. Feinberg
- Icahn School of Medicine at Mount Sinai, Psychiatry and Neurology, New York, NY, United States
| | - Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, United States
| |
Collapse
|
32
|
Formery L, Schubert M, Croce JC. Ambulacrarians and the Ancestry of Deuterostome Nervous Systems. Results Probl Cell Differ 2019; 68:31-59. [PMID: 31598852 DOI: 10.1007/978-3-030-23459-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary origin and history of metazoan nervous systems has been at the heart of numerous scientific debates for well over a century. This has been a particularly difficult issue to resolve within the deuterostomes, chiefly due to the distinct neural architectures observed within this group of animals. Indeed, deuterosomes feature central nervous systems, apical organs, nerve cords, and basiepidermal nerve nets. Comparative analyses investigating the anatomy and molecular composition of deuterostome nervous systems have nonetheless succeeded in identifying a number of shared and derived features. These analyses have led to the elaboration of diverse theories about the origin and evolutionary history of deuterostome nervous systems. Here, we provide an overview of these distinct theories. Further, we argue that deciphering the adult nervous systems of representatives of all deuterostome phyla, including echinoderms, which have long been neglected in this type of surveys, will ultimately provide answers to the questions concerning the ancestry and evolution of deuterostome nervous systems.
Collapse
Affiliation(s)
- Laurent Formery
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France.
| |
Collapse
|
33
|
Wu JP, Li MH. The use of freshwater planarians in environmental toxicology studies: Advantages and potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:45-56. [PMID: 29859407 DOI: 10.1016/j.ecoenv.2018.05.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Regarding the humane use of animals in scientific research, invertebrates are often recommended in toxicological studies. "Freshwater planarians" refers to numerous free-living freshwater members of the Class "Turbellaria" of the phylum Platyhelminthes. This group of invertebrates has received extensive attention from biologists for many years because of their unique biological characteristics, such as the primitive form of the central nervous system and notable capability to regenerate tissues. Using freshwater planarians as test animals in chemical toxicity studies has grown in popularity since the 1960s. Results from various toxicological experiments have collectively suggested that freshwater planarians can serve as not only alternative models for chemical toxicity screenings in laboratories but also as potential bioindicators for the quality of freshwater environments. However, thus far, no standardized battery of tests for conducting toxicological studies that includes freshwater planarians has been proposed. This paper comprehensively reviews the toxicological information obtained from chemically exposed planarians and proposes practical factors for consideration in toxicity experiments with freshwater planarians as test organisms.
Collapse
Affiliation(s)
- Jui-Pin Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Mei-Hui Li
- Environmental Toxicology Lab, Department of Geography, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Ediacaran scavenging as a prelude to predation. Emerg Top Life Sci 2018; 2:213-222. [PMID: 32412628 DOI: 10.1042/etls20170166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022]
Abstract
Predation is one of the most fundamental ecological and evolutionary drivers in modern and ancient ecosystems. Here, we report the discovery of evidence of the oldest scavenging of shallowly buried bodies of iconic soft-bodied members of the Ediacara Biota by cryptic seafloor mat-burrowing animals that produced the furrow and levee trace fossil, Helminthoidichnites isp. These mat-burrowers were probably omnivorous, stem-group bilaterians that largely grazed on microbial mats but when following mats under thin sands, they actively scavenged buried Dickinsonia, Aspidella, Funisia and other elements of the Ediacara Biota. These traces of opportunistic scavengers of dead animals from the Ediacaran of South Australia represent a fundamental ecological innovation and a possible pathway to the evolution of macrophagous predation in the Cambrian. While the Ediacaran oceans may have had oxygen levels too low to support typical large predators, the Helminthoidichnites maker lived in and grazed on microbial mats, which may have provided a localized source of oxygen.
Collapse
|
35
|
Gonçalves A, Biro D. Comparative thanatology, an integrative approach: exploring sensory/cognitive aspects of death recognition in vertebrates and invertebrates. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170263. [PMID: 30012749 PMCID: PMC6053989 DOI: 10.1098/rstb.2017.0263] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
Evolutionary thanatology benefits from broad taxonomic comparisons of non-human animals' responses to death. Furthermore, exploring the sensory and cognitive bases of these responses promises to allow classification of the underlying mechanisms on a spectrum from phylogenetically ancient to more derived traits. We draw on studies of perception and cognition in invertebrate and vertebrate taxa (with a focus on arthropods, corvids, proboscids, cetaceans and primates) to explore the cues that these animals use to detect life and death in others, and discuss proximate and ultimate drivers behind their capacities to do so. Parallels in thanatological behaviour exhibited by the last four taxa suggest similar sensory-cognitive processing rules for dealing with corpses, the evolution of which may have been driven by complex social environments. Uniting these responses is a phenomenon we term 'animacy detection malfunction', whereupon the corpse, having both animate and inanimate attributes, creates states of fear/curiosity manifested as approach/avoidance behaviours in observers. We suggest that integrating diverse lines of evidence (including the 'uncanny valley' effect originating from the field of robotics) provides a promising way to advance the field, and conclude by proposing avenues for future research.This article is part of the theme issue 'Evolutionary thanatology: impacts of the dead on the living in humans and other animals'.
Collapse
Affiliation(s)
- André Gonçalves
- Language and Intelligence Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Dora Biro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
36
|
Smith FW, Cumming M, Goldstein B. Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains. EvoDevo 2018; 9:19. [PMID: 30069303 PMCID: PMC6065069 DOI: 10.1186/s13227-018-0106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both euarthropods and vertebrates have tripartite brains. Several orthologous genes are expressed in similar regionalized patterns during brain development in both vertebrates and euarthropods. These similarities have been used to support direct homology of the tripartite brains of vertebrates and euarthropods. If the tripartite brains of vertebrates and euarthropods are homologous, then one would expect other taxa to share this structure. More generally, examination of other taxa can help in tracing the evolutionary history of brain structures. Tardigrades are an interesting lineage on which to test this hypothesis because they are closely related to euarthropods, and whether they have a tripartite brain or unipartite brain has recently been a focus of debate. RESULTS We tested this hypothesis by analyzing the expression patterns of six3, orthodenticle, pax6, unplugged, and pax2/5/8 during brain development in the tardigrade Hypsibius exemplaris-formerly misidentified as Hypsibius dujardini. These genes were expressed in a staggered anteroposterior order in H. exemplaris, similar to what has been reported for mice and flies. However, only six3, orthodenticle, and pax6 were expressed in the developing brain. Unplugged was expressed broadly throughout the trunk and posterior head, before the appearance of the nervous system. Pax2/5/8 was expressed in the developing central and peripheral nervous system in the trunk. CONCLUSION Our results buttress the conclusion of our previous study of Hox genes-that the brain of tardigrades is only homologous to the protocerebrum of euarthropods. They support a model based on fossil evidence that the last common ancestor of tardigrades and euarthropods possessed a unipartite brain. Our results are inconsistent with the hypothesis that the tripartite brain of euarthropods is directly homologous to the tripartite brain of vertebrates.
Collapse
Affiliation(s)
- Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL USA
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mandy Cumming
- Biology Department, University of North Florida, Jacksonville, FL USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
37
|
Shigeno S, Andrews PLR, Ponte G, Fiorito G. Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison With Vertebrates. Front Physiol 2018; 9:952. [PMID: 30079030 PMCID: PMC6062618 DOI: 10.3389/fphys.2018.00952] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Cephalopod and vertebrate neural-systems are often highlighted as a traditional example of convergent evolution. Their large brains, relative to body size, and complexity of sensory-motor systems and behavioral repertoires offer opportunities for comparative analysis. Despite various attempts, questions on how cephalopod 'brains' evolved and to what extent it is possible to identify a vertebrate-equivalence, assuming it exists, remain unanswered. Here, we summarize recent molecular, anatomical and developmental data to explore certain features in the neural organization of cephalopods and vertebrates to investigate to what extent an evolutionary convergence is likely. Furthermore, and based on whole body and brain axes as defined in early-stage embryos using the expression patterns of homeodomain-containing transcription factors and axonal tractography, we describe a critical analysis of cephalopod neural systems showing similarities to the cerebral cortex, thalamus, basal ganglia, midbrain, cerebellum, hypothalamus, brain stem, and spinal cord of vertebrates. Our overall aim is to promote and facilitate further, hypothesis-driven, studies of cephalopod neural systems evolution.
Collapse
Affiliation(s)
- Shuichi Shigeno
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- Division of Biomedical Sciences, St. George’s University of London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
38
|
Perea-Atienza E, Sprecher SG, Martínez P. Characterization of the bHLH family of transcriptional regulators in the acoel S. roscoffensis and their putative role in neurogenesis. EvoDevo 2018; 9:8. [PMID: 29610658 PMCID: PMC5875013 DOI: 10.1186/s13227-018-0097-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022] Open
Abstract
Background The basic helix-loop-helix (bHLH) family of transcription factors is one of the largest superfamilies of regulatory transcription factors and is widely used in eukaryotic organisms. They play an essential role in a range of metabolic, physiological, and developmental processes, including the development of the nervous system (NS). These transcription factors have been studied in many metazoans, especially in vertebrates but also in early branching metazoan clades such as the cnidarians and sponges. However, currently very little is known about their expression in the most basally branching bilaterian group, the xenacoelomorphs. Recently, our laboratory has characterized the full complement of bHLH in the genome of two members of the Xenacoelomorpha, the xenoturbellid Xenoturbella bocki and the acoel Symsagittifera roscoffensis. Understanding the patterns of bHLH gene expression in members of this phylum (in space and time) provides critical new insights into the conserved roles of the bHLH and their putative specificities in this group. Our focus is on deciphering the specific roles that these genes have in the process of neurogenesis. Results Here, we analyze the developmental expression of the whole complement of bHLH genes identified in the acoel S. roscoffensis. Based on their expression patterns, several members of bHLH class A appear to have specific conserved roles in neurogenesis, while other class A genes (as well as members of other classes) have likely taken on more generalized functions. All gene expression patterns are described in embryos and early juveniles. Conclusion Our results suggest that the main roles of the bHLH genes of S. roscoffensis are evolutionarily conserved, with a specific subset dedicated to patterning the nervous system: SrAscA, SrAscB, SrHes/Hey, SrNscl, SrSrebp, SrE12/E47 and SrOlig. Electronic supplementary material The online version of this article (10.1186/s13227-018-0097-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Perea-Atienza
- 1Departament de Genètica, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - S G Sprecher
- 3Department of Biology, University of Fribourg, 10, ch. Du Musée, 1700 Fribourg, Switzerland
| | - P Martínez
- 1Departament de Genètica, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.,2Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
39
|
Niven JE, Frasnelli E. Insights into the evolution of lateralization from the insects. PROGRESS IN BRAIN RESEARCH 2018; 238:3-31. [DOI: 10.1016/bs.pbr.2018.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Abstract
In this Guest Editorial, Jeremy Niven and Lars Chittka introduce our special issue on the evolution of nervous systems.
Collapse
|
41
|
Abstract
All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis.
Collapse
Affiliation(s)
- Z Yan Wang
- 947 E 58th St., Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | - Clifton W Ragsdale
- 947 E 58th St., Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Martin C, Gross V, Hering L, Tepper B, Jahn H, de Sena Oliveira I, Stevenson PA, Mayer G. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:565-590. [DOI: 10.1007/s00359-017-1186-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
43
|
van Duijn M. Phylogenetic origins of biological cognition: convergent patterns in the early evolution of learning. Interface Focus 2017; 7:20160158. [PMID: 28479986 PMCID: PMC5413897 DOI: 10.1098/rsfs.2016.0158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Various forms of elementary learning have recently been discovered in organisms lacking a nervous system, such as protists, fungi and plants. This finding has fundamental implications for how we view the role of convergent evolution in biological cognition. In this article, I first review the evidence for basic forms of learning in aneural organisms, focusing particularly on habituation and classical conditioning and considering the plausibility for convergent evolution of these capacities. Next, I examine the possible role of convergent evolution regarding these basic learning abilities during the early evolution of nervous systems. The evolution of nervous systems set the stage for at least two major events relevant to convergent evolution that are central to biological cognition: (i) nervous systems evolved, perhaps more than once, because of strong selection pressures for sustaining sensorimotor strategies in increasingly larger multicellular organisms and (ii) associative learning was a subsequent adaptation that evolved multiple times within the neuralia. Although convergent evolution of basic forms of learning among distantly related organisms such as protists, plants and neuralia is highly plausible, more research is needed to verify whether these forms of learning within the neuralia arose through convergent or parallel evolution.
Collapse
Affiliation(s)
- Marc van Duijn
- Faculty of Arts, Culture and Cognition, Rijksuniversiteit Groningen, Oude Boteringestraat 34, Groningen, The Netherlands
| |
Collapse
|
44
|
Albuixech-Crespo B, López-Blanch L, Burguera D, Maeso I, Sánchez-Arrones L, Moreno-Bravo JA, Somorjai I, Pascual-Anaya J, Puelles E, Bovolenta P, Garcia-Fernàndez J, Puelles L, Irimia M, Ferran JL. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol 2017; 15:e2001573. [PMID: 28422959 PMCID: PMC5396861 DOI: 10.1371/journal.pbio.2001573] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.
Collapse
Affiliation(s)
- Beatriz Albuixech-Crespo
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
| | - Laura López-Blanch
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Demian Burguera
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Sevilla, Spain
| | - Luisa Sánchez-Arrones
- Centro de Biología Molecular Severo Ochoa CSIC-UAM and CIBERER, ISCIII, Madrid, Spain
| | | | - Ildiko Somorjai
- The Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
- Biomedical Sciences Research Complex, University of St Andrews, Fife, Scotland, United Kingdom
| | | | - Eduardo Puelles
- Instituto de Neurociencias, UMH-CSIC, Campus de San Juan, Sant Joan d'Alacant, Alicante, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa CSIC-UAM and CIBERER, ISCIII, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
45
|
Wolff GH, Strausfeld NJ. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150055. [PMID: 26598732 DOI: 10.1098/rstb.2015.0055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome-deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
46
|
Strausfeld NJ, Hirth F. Introduction to 'Homology and convergence in nervous system evolution'. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150034. [PMID: 26598720 DOI: 10.1098/rstb.2015.0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also to genes, developmental processes, as well as to behaviours. Comparative studies in phyla ranging from annelids and arthropods to mammals are providing evidence that corresponding developmental genetic mechanisms act not only in dorso-ventral and anterior-posterior axis specification but also in segmentation, neurogenesis, axogenesis and eye/photoreceptor cell formation that appear to be conserved throughout the animal kingdom. These data are supported by recent studies which identified Mid-Cambrian fossils with preserved soft body parts that present segmental arrangements in brains typical of modern arthropods, and similarly organized brain centres and circuits across phyla that may reflect genealogical correspondence and control similar behavioural manifestations. Moreover, congruence between genetic and geological fossil records support the notion that by the 'Cambrian explosion' arthropods and chordates shared similarities in brain and nervous system organization. However, these similarities are strikingly absent in several sister- and outgroups of arthropods and chordates which raises several questions, foremost among them: what kind of natural laws and mechanisms underlie the convergent evolution of such similarities? And, vice versa: what are the selection pressures and genetic mechanisms underlying the possible loss or reduction of brains and CNSs in multiple lineages during the course of evolution? These questions were addressed at a Royal Society meeting to discuss homology and convergence in nervous system evolution. By integrating knowledge ranging from evolutionary theory and palaeontology to comparative developmental genetics and phylogenomics, the meeting covered disparities in nervous system origins as well as correspondences of neural circuit organization and behaviours, all of which allow evidence-based debates for and against the proposition that the nervous systems and brains of animals might derive from a common ancestor.
Collapse
Affiliation(s)
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| |
Collapse
|
47
|
Gavilán B, Perea-Atienza E, Martínez P. Xenacoelomorpha: a case of independent nervous system centralization? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150039. [PMID: 26598722 DOI: 10.1098/rstb.2015.0039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather 'simple' NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains).
Collapse
Affiliation(s)
- Brenda Gavilán
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain
| | - Elena Perea-Atienza
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain
| | - Pedro Martínez
- Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal, 643, Barcelona 08028, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
48
|
Arnone MI, Andrikou C, Annunziata R. Echinoderm systems for gene regulatory studies in evolution and development. Curr Opin Genet Dev 2016; 39:129-137. [DOI: 10.1016/j.gde.2016.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/07/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
49
|
Katz PS. Phylogenetic plasticity in the evolution of molluscan neural circuits. Curr Opin Neurobiol 2016; 41:8-16. [PMID: 27455462 DOI: 10.1016/j.conb.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Recent research on molluscan nervous systems provides a unique perspective on the evolution of neural circuits. Molluscs evolved large, encephalized nervous systems independently from other phyla. Homologous body-patterning genes were re-specified in molluscs to create a plethora of body plans and nervous system organizations. Octopuses, having the largest brains of any invertebrate, independently evolved a learning circuit similar in organization and function to the mushroom body of insects and the hippocampus of mammals. In gastropods, homologous neurons have been re-specified for different functions. Even species exhibiting similar, possibly homologous behavior have fundamental differences in the connectivity of the neurons underlying that behavior. Thus, molluscan nervous systems provide clear examples of re-purposing of homologous genes and neurons for neural circuits.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302-5030, USA.
| |
Collapse
|
50
|
Abstract
Although modern evolutionary biology has abandoned the use of 'lower' or 'higher' for animals, the quote of G.H. Parker captures quite well the current understanding of the nerve net as the evolutionarily oldest organization of the nervous system, the major organ system responsible for processing information and coordinating animal behaviour. The degree of complexity of a nervous system - in particular its organization into substructures such as brains and nerve cords - shows fascinating variations between animals. Even within an individual, the nervous system can show parallel existing types of organizations that are only partially connected, illustrated by the well-known central and peripheral nervous system. In general, the architecture of the nervous system is adapted to the specific needs and lifestyle of the individual species. How these diverse and complex nervous systems evolved is an ongoing debate among zoologists and evolutionary biologists.
Collapse
|