1
|
Chen XY, Wang K, Jia J, Kong XT, Li HQ, Tian S. P2Y 12R antagonists in antithrombotic therapy: a patent and literature review (2019-present). Expert Opin Ther Pat 2025; 35:515-532. [PMID: 39953647 DOI: 10.1080/13543776.2025.2467683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/24/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION P2Y12 receptor (P2Y12R) is a G protein-coupled receptor that plays a crucial role in regulating platelet activation and aggregation. P2Y12R is involved in various processes such as renal fibrosis, cancer, ischemic disease, and related complications, making it an appealing target for therapeutic interventions. Over the past decade, the discovery and development of P2Y12R antagonists have significantly advanced, offering novel treatment options that improve clinical outcomes. AREAS COVERED This review covers P2Y12R antagonists reported in patents issued in the online databases of the World Intellectual Property Organization and the European Patent Office from 2019 to 2024. This review introduces the development of existing antagonists and evaluates the therapeutic potential of these compounds. EXPERT OPINION Reversible P2Y12R antagonists offer a potentially safer alternative to the currently dominant irreversible antagonists on the market, as they allow for more controlled platelet inhibition and can reduce the toxicity and adverse effects associated with conventional drugs. Importantly, the integration of computational drug design and molecular docking studies in the discovery and optimization of P2Y12R antagonists represents a significant advancement in precision medicine. This not only provides valuable structural scaffolds but also stimulates novel ideas for developing promising drugs that are both safe and efficacious.
Collapse
Affiliation(s)
- Xin-Yu Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiao-Tian Kong
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Huan-Qiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Sogabe K, Nakamura S, Higa Y, Miki H, Oda A, Maruhashi T, Sumitani R, Oura M, Takahashi M, Nakamura M, Maeda Y, Hara T, Yamagami H, Fujii S, Kagawa K, Ozaki S, Kurahashi K, Endo I, Aihara KI, Nakaue E, Hiasa M, Teramachi J, Harada T, Abe M. Acute accumulation of PIM2 and NRF2 and recovery of β5 subunit activity mitigate multiple myeloma cell susceptibility to proteasome inhibitors. Int J Hematol 2024; 119:303-315. [PMID: 38245883 DOI: 10.1007/s12185-023-03705-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Resistance to proteasome inhibitors (PIs) has emerged as an important clinical issue. We investigated the mechanisms underlying multiple myeloma (MM) cell resistance to PIs. To mimic their pharmacokinetic/pharmacodynamic (PK/PD) profiles, MM cells were treated with bortezomib and carfilzomib for 1 h at concentrations up to 400 and 1,000 nM, respectively. Susceptibility to these PIs markedly varied among MM cell lines. Pulsatile treatments with PIs suppressed translation, as demonstrated by incorporation of puromycin at 24 h in PI-susceptible MM.1S cells, but not PI-resistant KMS-11 cells. Inhibition of β5 subunit activity decreased at 24 h in KMS-11 cells, even with the irreversible PI carfilzomib, but not under suppression of protein synthesis with cycloheximide. Furthermore, the proteasome-degradable pro-survival factors PIM2 and NRF2 acutely accumulated in MM cells subjected to pulsatile PI treatments. Accumulated NRF2 was trans-localized into the nucleus to induce the expression of its target gene, HMOX1, in MM cells. PIM and Akt inhibition restored the anti-MM effects of PIs, even against PI-resistant KMS-11 cells. Collectively, these results suggest that increased synthesis of β5 proteasome subunit and acute accumulation of PIM2 and NRF2 reduce the anti-MM effects of PIs.
Collapse
Affiliation(s)
- Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| | - Yoshiki Higa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mamiko Takahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masafumi Nakamura
- Department of Internal Medicine, Tokushima Prefecture Naruto Hospital, Tokushima, Japan
| | - Yusaku Maeda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroki Yamagami
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Tokushima Prefectural Central Hospital, Tokushima, Japan
| | - Shuji Ozaki
- Department of Hematology, Tokushima Prefectural Central Hospital, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Community Medicine for Respirology, Hematology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Emiko Nakaue
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
- Department of Hematology, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, 770-0011, Japan.
| |
Collapse
|
3
|
Liang EY, Huang MH, Chen YT, Zhang PW, Shen Y, Tu XX, Chen WY, Wang Y, Yan J, Wang HY, Ke PF, Huang XZ. Tanshinone IIA modulates cancer cell morphology and movement via Rho GTPases-mediated actin cytoskeleton remodeling. Toxicol Appl Pharmacol 2024; 483:116839. [PMID: 38290667 DOI: 10.1016/j.taap.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- En-Yu Liang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng-He Huang
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Nanhai, China
| | - Ying-Ting Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng-Wei Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Shen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Xin Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Ye Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Yu Wang
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Jacko D, Schaaf K, Masur L, Windoffer H, Aussieker T, Schiffer T, Zacher J, Bloch W, Gehlert S. Repeated and Interrupted Resistance Exercise Induces the Desensitization and Re-Sensitization of mTOR-Related Signaling in Human Skeletal Muscle Fibers. Int J Mol Sci 2022; 23:ijms23105431. [PMID: 35628242 PMCID: PMC9141560 DOI: 10.3390/ijms23105431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
The acute resistance exercise (RE)-induced phosphorylation of mTOR-related signaling proteins in skeletal muscle can be blunted after repeated RE. The time frame in which the phosphorylation (p) of mTORS2448, p70S6kT421/S424, and rpS6S235/236 will be reduced during an RE training period in humans and whether progressive (PR) loading can counteract such a decline has not been described. (1) To enclose the time frame in which pmTORS2448, prpS6S235/236, and pp70S6kT421/S424 are acutely reduced after RE occurs during repeated RE. (2) To test whether PR will prevent that reduction compared to constant loading (CO) and (3) whether 10 days without RE may re-increase blunted signaling. Fourteen healthy males (24 ± 2.8 yrs.; 1.83 ± 0.1 cm; 79.3 ± 8.5 kg) were subjected to RE with either PR (n = 8) or CO (n = 6) loading. Subjects performed RE thrice per week, conducting three sets with 10−12 repetitions on a leg press and leg extension machine. Muscle biopsies were collected at rest (T0), 45 min after the first (T1), seventh (T7), 13th (T13), and 14th (X-T14) RE session. No differences were found between PR and CO for any parameter. Thus, the groups were combined, and the results show the merged values. prpS6S235/236 and pp70s6kT421/S424 were increased at T1, but were already reduced at T7 and up to T13 compared to T1. Ten days without RE re-increased prpS6S235/236 and pp70S6kT421/S424 at X-T14 to a level comparable to that of T1. pmTORS2448 was increased from T1 to X-T14 and did not decline over the training period. Single-fiber immunohistochemistry revealed a reduction in prpS6S235/236 in type I fibers from T1 to T13 and a re-increase at X-T14, which was more augmented in type II fibers at T13 (p < 0.05). The entity of myofibers revealed a high heterogeneity in the level of prpS6S235/236, possibly reflecting individual contraction-induced stress during RE. The type I and II myofiber diameter increased from T0 and T1 to T13 and X-T14 (p < 0.05) prpS6S235/236 and pp70s6kT421/S424 reflect RE-induced states of desensitization and re-sensitization in dependency on frequent loading by RE, but also by its cessation.
Collapse
Affiliation(s)
- Daniel Jacko
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
- Olympic Base Center NRW/Rhineland, 50933 Cologne, Germany
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
| | - Lukas Masur
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
| | - Hannes Windoffer
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
| | - Thorben Aussieker
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
| | - Thorsten Schiffer
- Outpatient Clinic for Sports Traumatology and Public Health Consultation, German Sport University Cologne, 50933 Cologne, Germany;
| | - Jonas Zacher
- Department ofPreventative and Rehabilitative Sports and Performance Medicine, Institute of Cardiology and Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany;
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
- German Research Centre of Elite Sport (Momentum), German Sport University Cologne, 50933 Cologne, Germany
| | - Sebastian Gehlert
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
- Institute of Sport Science, Biosciences of Sports, University of Hildesheim, 31141 Hildesheim, Germany
- Correspondence: ; Tel.: +49-(0)-5121-883-580; Fax: +49-(0)-5121-883-591
| |
Collapse
|
5
|
Abou Sawan S, Mazzulla M, Moore DR, Hodson N. More than just a garbage can: emerging roles of the lysosome as an anabolic organelle in skeletal muscle. Am J Physiol Cell Physiol 2020; 319:C561-C568. [PMID: 32726158 DOI: 10.1152/ajpcell.00241.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is a highly plastic tissue capable of remodeling in response to a range of physiological stimuli, including nutrients and exercise. Historically, the lysosome has been considered an essentially catabolic organelle contributing to autophagy, phagocytosis, and exo-/endocytosis in skeletal muscle. However, recent evidence has emerged of several anabolic roles for the lysosome, including the requirement for autophagy in skeletal muscle mass maintenance, the discovery of the lysosome as an intracellular signaling hub for mechanistic target of rapamycin complex 1 (mTORC1) activation, and the importance of transcription factor EB/lysosomal biogenesis-related signaling in the regulation of mTORC1-mediated protein synthesis. We, therefore, propose that the lysosome is an understudied organelle with the potential to underpin the skeletal muscle adaptive response to anabolic stimuli. Within this review, we describe the molecular regulation of lysosome biogenesis and detail the emerging anabolic roles of the lysosome in skeletal muscle with particular emphasis on how these roles may mediate adaptations to chronic resistance exercise. Furthermore, given the well-established role of amino acids to support muscle protein remodeling, we describe how dietary proteins "labeled" with stable isotopes could provide a complementary research tool to better understand how lysosomal biogenesis, autophagy regulation, and/or mTORC1-lysosomal repositioning can mediate the intracellular usage of dietary amino acids in response to anabolic stimuli. Finally, we provide avenues for future research with the aim of elucidating how the regulation of this important organelle could mediate skeletal muscle anabolism.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Michael Mazzulla
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel R Moore
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
UBAP2L Forms Distinct Cores that Act in Nucleating Stress Granules Upstream of G3BP1. Curr Biol 2020; 30:698-707.e6. [PMID: 31956030 DOI: 10.1016/j.cub.2019.12.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Stress granules (SGs) are membraneless organelles that form in eukaryotic cells after stress exposure [1] (reviewed in [2-4]). Following translation inhibition, polysome disassembly releases 48S preinitiation complexes (PICs). mRNA, PICs, and other proteins coalesce in SG cores [1, 5-7]. SG cores recruit a dynamic shell, whose properties are dominated by weak interactions between proteins and RNAs [8-10]. The structure and assembly of SGs and how different components contribute to their formation are not fully understood. Using super-resolution and expansion microscopy, we find that the SG component UBAP2L [11, 12] and the core protein G3BP1 [5, 11-13] occupy different domains inside SGs. UBAP2L displays typical properties of a core protein, indicating that cores of different compositions coexist inside the same granule. Consistent with a role as a core protein, UBAP2L is required for SG assembly in several stress conditions. Our reverse genetic and cell biology experiments suggest that UBAP2L forms granules independent of G3BP1 and 2 but does not interfere with stress-induced translational inhibition. We propose a model in which UBAP2L is an essential SG nucleator that acts upstream of G3BP1 and 2 and facilitates G3BP1 core formation and SG assembly and growth.
Collapse
|
7
|
Kand D, Pizarro L, Angel I, Avni A, Friedmann‐Morvinski D, Weinstain R. Organelle-Targeted BODIPY Photocages: Visible-Light-Mediated Subcellular Photorelease. Angew Chem Int Ed Engl 2019; 58:4659-4663. [PMID: 30731033 PMCID: PMC6519146 DOI: 10.1002/anie.201900850] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Photocaging facilitates non-invasive and precise spatio-temporal control over the release of biologically relevant small- and macro-molecules using light. However, sub-cellular organelles are dispersed in cells in a manner that renders selective light-irradiation of a complete organelle impractical. Organelle-specific photocages could provide a powerful method for releasing bioactive molecules in sub-cellular locations. Herein, we report a general post-synthetic method for the chemical functionalization and further conjugation of meso-methyl BODIPY photocages and the synthesis of endoplasmic reticulum (ER)-, lysosome-, and mitochondria-targeted derivatives. We also demonstrate that 2,4-dinitrophenol, a mitochondrial uncoupler, and puromycin, a protein biosynthesis inhibitor, can be selectively photoreleased in mitochondria and ER, respectively, in live cells by using visible light. Additionally, photocaging is shown to lead to higher efficacy of the released molecules, probably owing to a localized and abrupt release.
Collapse
Affiliation(s)
- Dnyaneshwar Kand
- School of Plant Sciences and Food SecurityLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Lorena Pizarro
- School of Plant Sciences and Food SecurityLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Inbar Angel
- School of Neurobiology, Biochemistry and BiophysicsLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Adi Avni
- School of Plant Sciences and Food SecurityLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Dinorah Friedmann‐Morvinski
- School of Neurobiology, Biochemistry and BiophysicsLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| | - Roy Weinstain
- School of Plant Sciences and Food SecurityLife Sciences FacultyTel-Aviv UniversityTel-Aviv6997801Israel
| |
Collapse
|
8
|
Kand D, Pizarro L, Angel I, Avni A, Friedmann‐Morvinski D, Weinstain R. Organelle‐Targeted BODIPY Photocages: Visible‐Light‐Mediated Subcellular Photorelease. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dnyaneshwar Kand
- School of Plant Sciences and Food Security Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Lorena Pizarro
- School of Plant Sciences and Food Security Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Inbar Angel
- School of Neurobiology, Biochemistry and Biophysics Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Adi Avni
- School of Plant Sciences and Food Security Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Dinorah Friedmann‐Morvinski
- School of Neurobiology, Biochemistry and Biophysics Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security Life Sciences Faculty Tel-Aviv University Tel-Aviv 6997801 Israel
| |
Collapse
|
9
|
Abou Sawan S, van Vliet S, Parel JT, Beals JW, Mazzulla M, West DWD, Philp A, Li Z, Paluska SA, Burd NA, Moore DR. Translocation and protein complex co-localization of mTOR is associated with postprandial myofibrillar protein synthesis at rest and after endurance exercise. Physiol Rep 2019; 6. [PMID: 29512299 PMCID: PMC5840389 DOI: 10.14814/phy2.13628] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 01/27/2023] Open
Abstract
Translocation and colocalization of mechanistic target of rapamycin complex 1 (mTORC1) with regulatory proteins represents a critical step in translation initiation of protein synthesis in vitro. However, mechanistic insight into the control of postprandial skeletal muscle protein synthesis rates at rest and after an acute bout of endurance exercise in humans is lacking. In crossover trials, eight endurance‐trained men received primed‐continuous infusions of L‐[ring‐2H5]phenylalanine and consumed a mixed‐macronutrient meal (18 g protein, 60 g carbohydrates, 17 g fat) at rest (REST) and after 60 min of treadmill running at 70% VO2peak (EX). Skeletal muscle biopsies were collected to measure changes in phosphorylation and colocalization in the mTORC1‐pathway, in addition to rates of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis. MyoPS increased (P < 0.05) above fasted in REST (~2.1‐fold) and EX (~twofold) during the 300 min postprandial period, with no corresponding changes in MitoPS (P > 0.05). TSC2/Rheb colocalization decreased below fasted at 60 and 300 min after feeding in REST and EX (P < 0.01). mTOR colocalization with Rheb increased above fasted at 60 and 300 min after feeding in REST and EX (P < 0.01), which was consistent with an increased phosphorylation 4E‐BP1Thr37/46 and rpS6ser240/244 at 60 min. Our data suggest that MyoPS, but not MitoPS, is primarily nutrient responsive in trained young men at rest and after endurance exercise. The postprandial increase in MyoPS is associated with an increase in mTOR/Rheb colocalization and a reciprocal decrease in TSC2/Rheb colocalization and thus likely represent important regulatory events for in vivo skeletal muscle myofibrillar mRNA translation in humans.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois
| | - Justin T Parel
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois
| | - Joseph W Beals
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois, Urbana, Illinois
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois.,Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario
| |
Collapse
|
10
|
Scarnati MS, Kataria R, Biswas M, Paradiso KG. Active presynaptic ribosomes in the mammalian brain, and altered transmitter release after protein synthesis inhibition. eLife 2018; 7:e36697. [PMID: 30375975 PMCID: PMC6231766 DOI: 10.7554/elife.36697] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022] Open
Abstract
Presynaptic neuronal activity requires the localization of thousands of proteins that are typically synthesized in the soma and transported to nerve terminals. Local translation for some dendritic proteins occurs, but local translation in mammalian presynaptic nerve terminals is difficult to demonstrate. Here, we show an essential ribosomal component, 5.8S rRNA, at a glutamatergic nerve terminal in the mammalian brain. We also show active translation in nerve terminals, in situ, in brain slices demonstrating ongoing presynaptic protein synthesis in the mammalian brain. Shortly after inhibiting translation, the presynaptic terminal exhibits increased spontaneous release, an increased paired pulse ratio, an increased vesicle replenishment rate during stimulation trains, and a reduced initial probability of release. The rise and decay rates of postsynaptic responses were not affected. We conclude that ongoing protein synthesis can limit excessive vesicle release which reduces the vesicle replenishment rate, thus conserving the energy required for maintaining synaptic transmission.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Rahul Kataria
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Mohana Biswas
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Kenneth G Paradiso
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| |
Collapse
|
11
|
Argüello RJ, Reverendo M, Mendes A, Camosseto V, Torres AG, Ribas de Pouplana L, van de Pavert SA, Gatti E, Pierre P. SunRiSE - measuring translation elongation at single-cell resolution by means of flow cytometry. J Cell Sci 2018; 131:jcs.214346. [PMID: 29700204 DOI: 10.1242/jcs.214346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
The rate at which ribosomes translate mRNAs regulates protein expression by controlling co-translational protein folding and mRNA stability. Many factors regulate translation elongation, including tRNA levels, codon usage and phosphorylation of eukaryotic elongation factor 2 (eEF2). Current methods to measure translation elongation lack single-cell resolution, require expression of multiple transgenes and have never been successfully applied ex vivo Here, we show, by using a combination of puromycilation detection and flow cytometry (a method we call 'SunRiSE'), that translation elongation can be measured accurately in primary cells in pure or heterogenous populations isolated from blood or tissues. This method allows for the simultaneous monitoring of multiple parameters, such as mTOR or S6K1/2 signaling activity, the cell cycle stage and phosphorylation of translation factors in single cells, without elaborated, costly and lengthy purification procedures. We took advantage of SunRiSE to demonstrate that, in mouse embryonic fibroblasts, eEF2 phosphorylation by eEF2 kinase (eEF2K) mostly affects translation engagement, but has a surprisingly small effect on elongation, except after proteotoxic stress induction.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rafael J Argüello
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Marisa Reverendo
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Andreia Mendes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Voahirana Camosseto
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Adrian G Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), P/Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France.,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France .,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Estell C, Stamatidou E, El-Messeiry S, Hamilton A. In situ imaging of mitochondrial translation shows weak correlation with nucleoid DNA intensity and no suppression during mitosis. J Cell Sci 2017; 130:4193-4199. [PMID: 29122981 DOI: 10.1242/jcs.206714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022] Open
Abstract
Although mitochondrial translation produces only 13 proteins, we show here how this process can be visualised and detected in situ by fluorescence microscopy with a simple, rapid and inexpensive procedure using non-canonical amino acid labelling and click chemistry. This allows visualisation of the translational output in different mitochondria within a cell, their position within that cell and a comparison of mitochondrial translation between cells. The most highly translationally active mitochondria were closest to the nucleus but were also found at the distal end of long cellular projections. There were substantial differences in translation between adjacent mitochondria and this did not readily correlate with apparent mitochondrial genome content. Mitochondrial translation was unchanged during mitosis when cytoplasmic translation was suppressed. This method will serve both fundamental cell biology and clinically orientated studies, in which mitochondrial function is a key parameter.
Collapse
Affiliation(s)
| | | | - Sarah El-Messeiry
- School of Medicine, Dentistry and Nursing, Glasgow University, Glasgow G12 8QQ, UK.,Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Andrew Hamilton
- School of Medicine, Dentistry and Nursing, Glasgow University, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis. J Neurosci 2017; 36:7325-39. [PMID: 27383604 DOI: 10.1523/jneurosci.4282-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/28/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo.
Collapse
|
14
|
Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle. Sci Rep 2017; 7:5028. [PMID: 28694500 PMCID: PMC5504043 DOI: 10.1038/s41598-017-05483-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a central mediator of protein synthesis in skeletal muscle. We utilized immunofluorescence approaches to study mTOR cellular distribution and protein-protein co-localisation in human skeletal muscle in the basal state as well as immediately, 1 and 3 h after an acute bout of resistance exercise in a fed (FED; 20 g Protein/40 g carbohydrate/1 g fat) or energy-free control (CON) state. mTOR and the lysosomal protein LAMP2 were highly co-localised in basal samples. Resistance exercise resulted in rapid translocation of mTOR/LAMP2 towards the cell membrane. Concurrently, resistance exercise led to the dissociation of TSC2 from Rheb and increased in the co-localisation of mTOR and Rheb post exercise in both FED and CON. In addition, mTOR co-localised with Eukaryotic translation initiation factor 3 subunit F (eIF3F) at the cell membrane post-exercise in both groups, with the response significantly greater at 1 h of recovery in the FED compared to CON. Collectively our data demonstrate that cellular trafficking of mTOR occurs in human muscle in response to an anabolic stimulus, events that appear to be primarily influenced by muscle contraction. The translocation and association of mTOR with positive regulators (i.e. Rheb and eIF3F) is consistent with an enhanced mRNA translational capacity after resistance exercise.
Collapse
|
15
|
Das S, Das B. eIF4G—an integrator of mRNA metabolism? FEMS Yeast Res 2016; 16:fow087. [DOI: 10.1093/femsyr/fow087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/14/2022] Open
|
16
|
Pederson T. The persistent plausibility of protein synthesis in the nucleus: process, palimpsest or pitfall? Curr Opin Cell Biol 2013; 25:520-1. [PMID: 23870283 DOI: 10.1016/j.ceb.2013.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Thoru Pederson
- University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
Dadehbeigi N, Dickson AJ. Application of a nonradioactive method of measuring protein synthesis in industrially relevant Chinese hamster ovary cells. Biotechnol Prog 2013; 29:1043-9. [PMID: 23749410 DOI: 10.1002/btpr.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/11/2013] [Indexed: 01/08/2023]
Abstract
Due to the high medical and commercial value of recombinant proteins for clinical and diagnostic purposes, the protein synthesis machinery of mammalian host cells is the subject of extensive research by the biopharmaceutical industry. RNA translation and protein synthesis are steps that may determine the extent of growth and productivity of host cells. To address the problems of utilization of current radioisotope methods with proprietary media, we have focused on the application of an alternative method of measuring protein synthesis in recombinant Chinese hamster ovary (CHO) cells. This method employs puromycin as a nonradioactive label which incorporates into nascent polypeptide chains and is detectable by western blotting. This method, which is referred to as SUnSET, successfully demonstrated the expected changes in protein synthesis in conditions that inhibit and restore translation activity and was reproducibly quantifiable. The study of the effects of feed and sodium butyrate addition on protein synthesis by SUnSET revealed an increase following 1 h feed supplementation while a high concentration of sodium butyrate was able to decrease translation during the same treatment period. Finally, SUnSET was used to compare protein synthesis activity during batch culture of the CHO cell line in relation to growth. The results indicate that as the cells approached the end of batch culture, the global rate of protein synthesis declined in parallel with the decreasing growth rate. In conclusion, this method can be used as a "snapshot" to directly monitor the effects of different culture conditions and treatments on translation in recombinant host cells.
Collapse
Affiliation(s)
- Nazanin Dadehbeigi
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK, M13 9PT.
| | | |
Collapse
|
18
|
Chiniquy D, Varanasi P, Oh T, Harholt J, Katnelson J, Singh S, Auer M, Simmons B, Adams PD, Scheller HV, Ronald PC. Three Novel Rice Genes Closely Related to the Arabidopsis IRX9, IRX9L, and IRX14 Genes and Their Roles in Xylan Biosynthesis. FRONTIERS IN PLANT SCIENCE 2013; 4:83. [PMID: 23596448 PMCID: PMC3622038 DOI: 10.3389/fpls.2013.00083] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/21/2013] [Indexed: 05/02/2023]
Abstract
Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx) mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9), Os01g48440 (OsIRX9L), and Os06g47340 (OsIRX14), from glycosyltransferase family 43 as putative orthologs to the putative β-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the over-expression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx) mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase (XylT) activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in XylT activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength.
Collapse
Affiliation(s)
- Dawn Chiniquy
- Department of Plant Pathology, The Genome Center, University of CaliforniaDavis, CA, USA
- Joint BioEnergy InstituteEmeryville, CA, USA
| | - Patanjali Varanasi
- Joint BioEnergy InstituteEmeryville, CA, USA
- Sandia National LabsLivermore, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Taeyun Oh
- Department of Plant Pathology, The Genome Center, University of CaliforniaDavis, CA, USA
| | - Jesper Harholt
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, VKR Research Centre Pro-Active Plants, University of CopenhagenFrederiksberg C, Denmark
| | | | - Seema Singh
- Joint BioEnergy InstituteEmeryville, CA, USA
- Sandia National LabsLivermore, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Manfred Auer
- Joint BioEnergy InstituteEmeryville, CA, USA
- Life Sciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Blake Simmons
- Joint BioEnergy InstituteEmeryville, CA, USA
- Sandia National LabsLivermore, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | | | - Henrik V. Scheller
- Joint BioEnergy InstituteEmeryville, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Plant and Microbial Biology, University of CaliforniaBerkeley, CA, USA
| | - Pamela C. Ronald
- Department of Plant Pathology, The Genome Center, University of CaliforniaDavis, CA, USA
- Joint BioEnergy InstituteEmeryville, CA, USA
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee UniversityYongin, Korea
| |
Collapse
|
19
|
Goodman CA, Hornberger TA. Measuring protein synthesis with SUnSET: a valid alternative to traditional techniques? Exerc Sport Sci Rev 2013; 41:107-15. [PMID: 23089927 PMCID: PMC3951011 DOI: 10.1097/jes.0b013e3182798a95] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein synthesis rates commonly are measured using isotopic tracers to quantify the incorporation of a labeled amino acid into muscle proteins. Here we provide evidence supporting our hypothesis that the nonisotopic SUnSET technique is a valid and accurate method for the measurement of in vivo changes in protein synthesis at the whole-muscle and single-muscle fiber levels.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
20
|
Abstract
It is widely accepted that protein synthesis occurs in the cytoplasms of eukaryotic cells, but some investigators believe that it also occurs in the nucleus. In spite of experiments performed in several labs over many years, the issue of nuclear translation remains unresolved. Advocates assert that it would serve as an economical and convenient way to explain how cells monitor the quality of newly made mRNAs or ribosomes. Skeptics argue that regardless of its esthetic appeal, compelling evidence for nuclear translation has been absent. The key question--also central to the debate more than 30 years ago--is whether alleged nuclear translation can be proven to represent "genuine polypeptide synthesis that is a function of the nuclear compartment".
Collapse
Affiliation(s)
- James Dahlberg
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | | |
Collapse
|
21
|
Reply to Goodman et al.: Imaging protein synthesis with puromycin and the subcellular localization of puromycin-polypeptide conjugates. Proc Natl Acad Sci U S A 2012. [DOI: 10.1073/pnas.1202322109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|