1
|
Liu N, Qiang W, Jordan PW, Marko JF, Qiao H. Cell cycle and age-related modulations of mouse chromosome stiffness. eLife 2025; 13:RP97403. [PMID: 40226924 PMCID: PMC11996174 DOI: 10.7554/elife.97403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a tenfold increase in stiffness (Young's modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.
Collapse
Affiliation(s)
- Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Wenan Qiang
- The Chemistry of Life Processes Institute, Northwestern UniversityEvanstonUnited States
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Philip W Jordan
- Biochemistry and Molecular Biology Departments, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
- Biochemistry and Molecular Biology Department, School of Medicine, Uniformed Services University of the Health SciencesBethesdaUnited States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Department of Physics and Astronomy, Northwestern UniversityEvanstonUnited States
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
2
|
Liu N, Qiang W, Jordan P, Marko JF, Qiao H. Cell cycle and Age-Related Modulations of Mouse Chromosome Stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.06.583771. [PMID: 38559262 PMCID: PMC10979861 DOI: 10.1101/2024.03.06.583771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a ten-fold increase in stiffness (Young's modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle, and by age-related factors.
Collapse
Affiliation(s)
- Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenan Qiang
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Philip Jordan
- Biochemistry and Molecular Biology Departments, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA 60208
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
4
|
Sun F, Ali NN, Londoño-Vásquez D, Simintiras CA, Qiao H, Ortega MS, Agca Y, Takahashi M, Rivera RM, Kelleher AM, Sutovsky P, Patterson AL, Balboula AZ. Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation. Nat Commun 2024; 15:9463. [PMID: 39487138 PMCID: PMC11530536 DOI: 10.1038/s41467-024-53559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Unlike mild DNA damage exposure, DNA damage repair (DDR) is reported to be ineffective in full-grown mammalian oocytes exposed to moderate or severe DNA damage. The underlying mechanisms of this weakened DDR are unknown. Here, we show that moderate DNA damage in full-grown oocytes leads to aneuploidy. Our data reveal that DNA-damaged oocytes have an altered, closed, chromatin state, and suggest that the failure to repair damaged DNA could be due to the inability of DDR proteins to access damaged loci. Our data also demonstrate that, unlike somatic cells, mouse and porcine oocytes fail to activate autophagy in response to DNA double-strand break-inducing treatment, which we suggest may be the cause of the altered chromatin conformation and inefficient DDR. Importantly, autophagy activity is further reduced in maternally aged oocytes (which harbor severe DNA damage), and its induction is correlated with reduced DNA damage in maternally aged oocytes. Our findings provide evidence that reduced autophagy activation contributes to weakened DDR in oocytes, especially in those from aged females, offering new possibilities to improve assisted reproductive therapy in women with compromised oocyte quality.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nourhan Nashat Ali
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Homer HA. Understanding oocyte ageing. Minerva Obstet Gynecol 2024; 76:284-292. [PMID: 38536027 DOI: 10.23736/s2724-606x.24.05343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Females are born with a finite and non-renewable reservoir of oocytes, which therefore decline both in number and quality with advancing age. A striking characteristic of oocyte quality is that "ageing" effects manifest whilst women are in their thirties and are therefore still chronologically and physically young. Furthermore, this decline is unrelenting and not modifiable to any great extent by lifestyle or diet. Since oocyte quality is rate-limiting for pregnancy success, as the proportion of good-quality oocytes progressively deteriorate, the chance of successful pregnancy during each 6-12-month period also decreases, becoming exponential after 37 years. Unlike oocyte quality, age-related attrition in the size of the ovarian reservoir is less impactful for natural fertility since only one mature oocyte is typically ovulated per menstrual cycle. In contrast, oocyte numbers are pivotal for in-vitro fertilization success, since larger numbers enable better-quality oocytes to be found and is important for buffering the inefficiencies of the IVF process. The ageing trajectory is accelerated in ~10% of women, so-called premature ovarian ageing, with ~1% of women at the extreme end of this spectrum with loss of ovarian function occurring before 40 years of age, termed premature ovarian insufficiency. The aim of this review was to analyze how ageing impacts the size and quality of the oocyte pool along with emerging interventions for combating low oocyte numbers and improving quality.
Collapse
Affiliation(s)
- Hayden A Homer
- Queensland Fertility Group, Christopher Chen Oocyte Biology Research Laboratory, UQ Center for Clinical Research, The University of Queensland, Brisbane, Australia -
| |
Collapse
|
6
|
Fu W, Cui Q, Bu Z, Shi H, Yang Q, Hu L. Elevated sperm DNA fragmentation is correlated with an increased chromosomal aneuploidy rate of miscarried conceptus in women of advanced age undergoing fresh embryo transfer cycle. Front Endocrinol (Lausanne) 2024; 15:1289763. [PMID: 38650716 PMCID: PMC11033384 DOI: 10.3389/fendo.2024.1289763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024] Open
Abstract
Background Male sperm DNA fragmentation (SDF) may be associated with assisted reproductive technology (ART) outcomes, but the impact of SDF on the occurrence of aneuploid-related miscarriage remains controversial. Methods Genome-wide single-nucleotide polymorphism-based chromosomal microarray analysis was performed on 495 miscarried chorionic villus samples undergone IVF/ICSI treatment from the Reproductive Medicine Center of the First Affiliated Hospital of Zhengzhou University. SDF was assessed using sperm chromatin structure assay. Patients were divided into four groups according to embryo transfer cycle type and maternal age, and the correlation between SDF and chromosome aberration was analyzed. A receiver operating characteristic (ROC) curve was utilized to find the optimal threshold. Results Total chromosomal aneuploidy rate was 54.95%, and trisomy was the most common abnormality (71.32%). The chromosomally abnormal group had higher SDF than the normal group (11.42% [6.82%, 16.54%] vs. 12.95% [9.61%, 20.58%], P = 0.032). After grouping, elevated SDF was significantly correlated with an increasing chromosome aneuploidy rate only in women of advanced age who underwent fresh embryo transfer (adjusted odds ratio:1.14 [1.00-1.29], adjusted-P = 0.045). The receiver operating characteristic curve showed that SDF can predict the occurrence of chromosomal abnormality of miscarried conceptus in this group ((area under the curve = 0.76 [0.60-0.91], P = 0.005), and 8.5% was the optimum threshold. When SDF was ≥ 8.5%, the risk of such patients increased by 5.76 times (adjusted odds ratio: 6.76 [1.20-37.99], adjusted-P = 0.030). Conclusion For women of advanced maternal age undergoing fresh embryo transfer, older oocytes fertilized using sperm with high SDF in IVF/ICSI treatment might increase the risk of chromosomal abnormality in miscarried conceptus.
Collapse
Affiliation(s)
- Wanting Fu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuying Cui
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiqin Bu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linli Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
8
|
Pollard CL. Can Nicotinamide Adenine Dinucleotide (NAD +) and Sirtuins Be Harnessed to Improve Mare Fertility? Animals (Basel) 2024; 14:193. [PMID: 38254361 PMCID: PMC10812544 DOI: 10.3390/ani14020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Years of sire and dam selection based on their pedigree and athletic performance has resulted in a reduction in the reproductive capability of horses. Mare age is considered a major barrier to equine reproduction largely due to an increase in the age at which mares are typically bred following the end of their racing career. Nicotinamide adenine dinucleotide (NAD+) and its involvement in the activation of Sirtuins in fertility are an emerging field of study, with the role of NAD+ in oocyte maturation and embryo development becoming increasingly apparent. While assisted reproductive technologies in equine breeding programs are in their infancy compared to other livestock species such as cattle, there is much more to be learnt, from oocyte maturation to early embryo development and beyond in the mare, which are difficult to study given the complexities associated with mare fertility research. This review examines what is already known about the role of NAD+ and Sirtuins in fertility and discusses how NAD+-elevating agents may be used to activate Sirtuin proteins to improve equine breeding and embryo production programs both in vivo and in vitro.
Collapse
Affiliation(s)
- Charley-Lea Pollard
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
9
|
Robinson LG, Kalmbach K, Sumerfield O, Nomani W, Wang F, Liu L, Keefe DL. Telomere dynamics and reproduction. Fertil Steril 2024; 121:4-11. [PMID: 37993053 DOI: 10.1016/j.fertnstert.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
The oocyte, a long-lived, postmitotic cell, is the locus of reproductive aging in women. Female germ cells replicate only during fetal life and age throughout reproductive life. Mechanisms of oocyte aging include the accumulation of oxidative damage, mitochondrial dysfunction, and disruption of proteins, including cohesion. Nobel Laureate Bob Edwards also discovered a "production line" during oogonial replication in the mouse, wherein the last oocytes to ovulate in the adult-derived from the last oogonia to exit mitotic replication in the fetus. On the basis of this, we proposed a two-hit "telomere theory of reproductive aging" to integrate the myriad features of oocyte aging. The first hit was that oocytes remaining in older women traversed more cell cycles during fetal oogenesis. The second hit was that oocytes accumulated more environmental and endogenous oxidative damage throughout the life of the woman. Telomeres (Ts) could mediate both of these aspects of oocyte aging. Telomeres provide a "mitotic clock," with T attrition an inevitable consequence of cell division because of the end replication problem. Telomere's guanine-rich sequence renders them especially sensitive to oxidative damage, even in postmitotic cells. Telomerase, the reverse transcriptase that restores Ts, is better at maintaining than elongating T. Moreover, telomerase remains inactive during much of oogenesis and early development. Oocytes are left with short Ts, on the brink of viability. In support of this theory, mice with induced T attrition and women with naturally occurring telomeropathy suffer diminished ovarian reserve, abnormal embryo development, and infertility. In contrast, sperm are produced throughout the life of the male by a telomerase-active progenitor, spermatogonia, resulting in the longest Ts in the body. In mice, cleavage-stage embryos elongate Ts via "alternative lengthening of telomeres," a recombination-based mechanism rarely encountered outside of telomerase-deficient cancers. Many questions about Ts and reproduction are raised by these findings: does the "normal" T attrition observed in human oocytes contribute to their extraordinarily high rate of meiotic nondisjunction? Does recombination-based T elongation render embryos susceptible to mitotic nondisjunction (and mosaicism)? Can some features of Ts serve as markers of oocyte quality?
Collapse
Affiliation(s)
- LeRoy G Robinson
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York; Department of Biology, San Francisco State University, San Francisco, California
| | - Keri Kalmbach
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Olivia Sumerfield
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Wafa Nomani
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York.
| |
Collapse
|
10
|
Mihajlović AI, Byers C, Reinholdt L, FitzHarris G. Spindle assembly checkpoint insensitivity allows meiosis-II despite chromosomal defects in aged eggs. EMBO Rep 2023; 24:e57227. [PMID: 37795949 PMCID: PMC10626445 DOI: 10.15252/embr.202357227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Chromosome segregation errors in mammalian oocyte meiosis lead to developmentally compromised aneuploid embryos and become more common with advancing maternal age. Known contributors include age-related chromosome cohesion loss and spindle assembly checkpoint (SAC) fallibility in meiosis-I. But how effective the SAC is in meiosis-II and how this might contribute to age-related aneuploidy is unknown. Here, we developed genetic and pharmacological approaches to directly address the function of the SAC in meiosis-II. We show that the SAC is insensitive in meiosis-II oocytes and that as a result misaligned chromosomes are randomly segregated. Whilst SAC ineffectiveness in meiosis-II is not age-related, it becomes most prejudicial in oocytes from older females because chromosomes that prematurely separate by age-related cohesion loss become misaligned in meiosis-II. We show that in the absence of a robust SAC in meiosis-II these age-related misaligned chromatids are missegregated and lead to aneuploidy. Our data demonstrate that the SAC fails to prevent cell division in the presence of misaligned chromosomes in oocyte meiosis-II, which explains how age-related cohesion loss can give rise to aneuploid embryos.
Collapse
Affiliation(s)
| | - Candice Byers
- The Institute for Experiential AI, Roux InstituteNortheastern UniversityPortlandMEUSA
| | | | | |
Collapse
|
11
|
MacKenzie A, Vicory V, Lacefield S. Meiotic cells escape prolonged spindle checkpoint activity through kinetochore silencing and slippage. PLoS Genet 2023; 19:e1010707. [PMID: 37018287 PMCID: PMC10109492 DOI: 10.1371/journal.pgen.1010707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
To prevent chromosome mis-segregation, a surveillance mechanism known as the spindle checkpoint delays the cell cycle if kinetochores are not attached to spindle microtubules, allowing the cell additional time to correct improper attachments. During spindle checkpoint activation, checkpoint proteins bind the unattached kinetochore and send a diffusible signal to inhibit the anaphase promoting complex/cyclosome (APC/C). Previous work has shown that mitotic cells with depolymerized microtubules can escape prolonged spindle checkpoint activation in a process called mitotic slippage. During slippage, spindle checkpoint proteins bind unattached kinetochores, but the cells cannot maintain the checkpoint arrest. We asked if meiotic cells had as robust of a spindle checkpoint response as mitotic cells and whether they also undergo slippage after prolonged spindle checkpoint activity. We performed a direct comparison between mitotic and meiotic budding yeast cells that signal the spindle checkpoint through two different assays. We find that the spindle checkpoint delay is shorter in meiosis I or meiosis II compared to mitosis, overcoming a checkpoint arrest approximately 150 minutes earlier in meiosis than in mitosis. In addition, cells in meiosis I escape spindle checkpoint signaling using two mechanisms, silencing the checkpoint at the kinetochore and through slippage. We propose that meiotic cells undertake developmentally-regulated mechanisms to prevent persistent spindle checkpoint activity to ensure the production of gametes.
Collapse
Affiliation(s)
- Anne MacKenzie
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Victoria Vicory
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
12
|
KYOGOKU H, KITAJIMA TS. The large cytoplasmic volume of oocyte. J Reprod Dev 2023; 69:1-9. [PMID: 36436912 PMCID: PMC9939283 DOI: 10.1262/jrd.2022-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The study of the size of cells and organelles has a long history, dating back to the 1600s when cells were defined. In particular, various methods have elucidated the size of the nucleus and the mitotic spindle in several species. However, little research has been conducted on oocyte size and organelles in mammals, and many questions remain to be answered. The appropriate size is essential to cell function properly. Oocytes have a very large cytoplasm, which is more than 100 times larger than that of general somatic cells in mammals. In this review, we discuss how oocytes acquire an enormous cytoplasmic size and the adverse effects of a large cytoplasmic size on cellular functions.
Collapse
Affiliation(s)
- Hirohisa KYOGOKU
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan,Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tomoya S KITAJIMA
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
13
|
Bypassing Mendel's First Law: Transmission Ratio Distortion in Mammals. Int J Mol Sci 2023; 24:ijms24021600. [PMID: 36675116 PMCID: PMC9863905 DOI: 10.3390/ijms24021600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mendel's law of segregation states that the two alleles at a diploid locus should be transmitted equally to the progeny. A genetic segregation distortion, also referred to as transmission ratio distortion (TRD), is a statistically significant deviation from this rule. TRD has been observed in several mammal species and may be due to different biological mechanisms occurring at diverse time points ranging from gamete formation to lethality at post-natal stages. In this review, we describe examples of TRD and their possible mechanisms in mammals based on current knowledge. We first focus on the differences between TRD in male and female gametogenesis in the house mouse, in which some of the most well studied TRD systems have been characterized. We then describe known TRD in other mammals, with a special focus on the farmed species and in the peculiar common shrew species. Finally, we discuss TRD in human diseases. Thus far, to our knowledge, this is the first time that such description is proposed. This review will help better comprehend the processes involved in TRD. A better understanding of these molecular mechanisms will imply a better comprehension of their impact on fertility and on genome evolution. In turn, this should allow for better genetic counseling and lead to better care for human families.
Collapse
|
14
|
MacKenzie A, Vicory V, Lacefield S. Meiotic Cells Escape Prolonged Spindle Checkpoint Activity Through Premature Silencing and Slippage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522494. [PMID: 36711621 PMCID: PMC9881877 DOI: 10.1101/2023.01.02.522494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To prevent chromosome mis-segregation, a surveillance mechanism known as the spindle checkpoint delays the cell cycle if kinetochores are not attached to spindle microtubules, allowing the cell additional time to correct improper attachments. During spindle checkpoint activation, checkpoint proteins bind the unattached kinetochore and send a diffusible signal to inhibit the anaphase promoting complex/cyclosome (APC/C). Previous work has shown that mitotic cells with depolymerized microtubules can escape prolonged spindle checkpoint activation in a process called mitotic slippage. During slippage, spindle checkpoint proteins bind unattached kinetochores, but the cells cannot maintain the checkpoint arrest. We asked if meiotic cells had as robust of a spindle checkpoint response as mitotic cells and whether they also undergo slippage after prolonged spindle checkpoint activity. We performed a direct comparison between mitotic and meiotic budding yeast cells that signal the spindle checkpoint due to a lack of either kinetochore-microtubule attachments or due to a loss of tension-bearing attachments. We find that the spindle checkpoint is not as robust in meiosis I or meiosis II compared to mitosis, overcoming a checkpoint arrest approximately 150 minutes earlier in meiosis. In addition, cells in meiosis I escape spindle checkpoint signaling using two mechanisms, silencing the checkpoint at the kinetochore and through slippage. We propose that meiotic cells undertake developmentally-regulated mechanisms to prevent persistent spindle checkpoint activity to ensure the production of gametes. AUTHOR SUMMARY Mitosis and meiosis are the two major types of cell divisions. Mitosis gives rise to genetically identical daughter cells, while meiosis is a reductional division that gives rise to gametes. Cell cycle checkpoints are highly regulated surveillance mechanisms that prevent cell cycle progression when circumstances are unfavorable. The spindle checkpoint promotes faithful chromosome segregation to safeguard against aneuploidy, in which cells have too many or too few chromosomes. The spindle checkpoint is activated at the kinetochore and then diffuses to inhibit cell cycle progression. Although the checkpoint is active in both mitosis and meiosis, most studies involving checkpoint regulation have been performed in mitosis. By activating the spindle checkpoint in both mitosis and meiosis in budding yeast, we show that cells in meiosis elicit a less persistent checkpoint signal compared to cells in mitosis. Further, we show that cells use distinct mechanisms to escape the checkpoint in mitosis and meiosis I. While cells in mitosis and meiosis II undergo anaphase onset while retaining checkpoint proteins at the kinetochore, cells in meiosis I prematurely lose checkpoint protein localization at the kinetochore. If the mechanism to remove the checkpoint components from the kinetochore is disrupted, meiosis I cells can still escape checkpoint activity. Together, these results highlight that cell cycle checkpoints are differentially regulated during meiosis to avoid long delays and to allow gametogenesis.
Collapse
Affiliation(s)
- Anne MacKenzie
- Department of Biology, Indiana University, Bloomington, IN USA
| | - Victoria Vicory
- Department of Biology, Indiana University, Bloomington, IN USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN USA,Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH USA,To whom correspondence should be addressed to Soni Lacefield:
| |
Collapse
|
15
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
16
|
Zhang Y, Fan B, Li X, Tang Y, Shao J, Liu L, Ren Y, Yang Y, Xu B. Phosphorylation of adducin-1 by TPX2 promotes interpolar microtubule homeostasis and precise chromosome segregation in mouse oocytes. Cell Biosci 2022; 12:205. [PMID: 36539904 PMCID: PMC9769001 DOI: 10.1186/s13578-022-00943-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND ADD1 (adducin-1) and TPX2 (targeting protein for Xklp2) are centrosomal proteins and regulate mitotic spindle assembly. Mammalian oocytes that segregate homologous chromosomes in Meiosis I and sister chromatids in Meiosis II with a spindle lacking centrosomes are more prone to chromosome segregation errors than in mitosis. However, the regulatory mechanisms of oocyte spindle assembly and the functions of ADD1 and TPX2 in this process remain elusive. RESULT We found that the expression levels and localization of ADD1, S726 phosphorylated ADD1 (p-ADD1), and TPX2 proteins exhibited spindle assembly-dependent dynamic changes during mouse oocyte meiosis. Taxol treatment, which stabilizes the microtubule polymer and protects it from disassembly, made the signals of ADD1, p-ADD1, and TPX2 present in the microtubule organizing centers of small asters and spindles. Knockdown of approximately 60% of ADD1 protein levels destabilized interpolar microtubules in the meiotic spindle, resulting in aberrant chromosome alignment, reduced first polar body extrusion, and increased aneuploidy in metaphase II oocytes, but did not affect K-fiber homeostasis and the expression and localization of TPX2. Strikingly, TPX2 deficiency caused increased protein content of ADD1, but decreased expression and detachment of p-ADD1 from the spindle, thereby arresting mouse oocytes at the metaphase I stage with collapsed spindles. CONCLUSION Phosphorylation of ADD1 at S726 by TPX2 mediates acentriolar spindle assembly and precise chromosome segregation in mouse oocytes.
Collapse
Affiliation(s)
- Ying Zhang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Bingfeng Fan
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Xiaoxia Li
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China ,College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yu Tang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Jing Shao
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Lixiang Liu
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Yuhe Ren
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China
| | - Yifeng Yang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Baozeng Xu
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| |
Collapse
|
17
|
Klaasen SJ, Kops GJPL. Chromosome Inequality: Causes and Consequences of Non-Random Segregation Errors in Mitosis and Meiosis. Cells 2022; 11:3564. [PMID: 36428993 PMCID: PMC9688425 DOI: 10.3390/cells11223564] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy is a hallmark of cancer and a major cause of miscarriages in humans. It is caused by chromosome segregation errors during cell divisions. Evidence is mounting that the probability of specific chromosomes undergoing a segregation error is non-random. In other words, some chromosomes have a higher chance of contributing to aneuploid karyotypes than others. This could have important implications for the origins of recurrent aneuploidy patterns in cancer and developing embryos. Here, we review recent progress in understanding the prevalence and causes of non-random chromosome segregation errors in mammalian mitosis and meiosis. We evaluate its potential impact on cancer and human reproduction and discuss possible research avenues.
Collapse
Affiliation(s)
- Sjoerd J. Klaasen
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Geert J. P. L. Kops
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
18
|
Meng TG, Lei WL, Lu X, Liu XY, Ma XS, Nie XQ, Zhao ZH, Li QN, Huang L, Hou Y, Ouyang YC, Li L, Tang TS, Schatten H, Xie W, Gao SR, Ou XH, Wang ZB, Sun QY. Maternal EHMT2 is essential for homologous chromosome segregation by regulating Cyclin B3 transcription in oocyte meiosis. Int J Biol Sci 2022; 18:4513-4531. [PMID: 35864958 PMCID: PMC9295060 DOI: 10.7150/ijbs.75298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
During oocyte growth, various epigenetic modifications are gradually established, accompanied by accumulation of large amounts of mRNAs and proteins. However, little is known about the relationship between epigenetic modifications and meiotic progression. Here, by using Gdf9-Cre to achieve oocyte-specific ablation of Ehmt2 (Euchromatic-Histone-Lysine-Methyltransferase 2) from the primordial follicle stage, we found that female mutant mice were infertile. Oocyte-specific knockout of Ehmt2 caused failure of homologous chromosome separation independent of persistently activated SAC during the first meiosis. Further studies revealed that lacking maternal Ehmt2 affected the transcriptional level of Ccnb3, while microinjection of exogenous Ccnb3 mRNA could partly rescue the failure of homologous chromosome segregation. Of particular importance was that EHMT2 regulated ccnb3 transcriptions by regulating CTCF binding near ccnb3 gene body in genome in oocytes. In addition, the mRNA level of Ccnb3 significantly decreased in the follicles microinjected with Ctcf siRNA. Therefore, our findings highlight the novel function of maternal EHMT2 on the metaphase I-to-anaphase I transition in mouse oocytes: regulating the transcription of Ccnb3.
Collapse
Affiliation(s)
- Tie-Gang Meng
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.,Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Yu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xue-Shan Ma
- The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, Shandong, 271000, China
| | - Xiao-Qing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Nan Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Center for Clinical Medicine Research, The Affiliated Hospital of Southwest Medical University, Luzhou 6460000, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Wei Xie
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.,Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shao-Rong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Chen F, Wu J, Iwanski MK, Jurriens D, Sandron A, Pasolli M, Puma G, Kromhout JZ, Yang C, Nijenhuis W, Kapitein LC, Berger F, Akhmanova A. Self-assembly of pericentriolar material in interphase cells lacking centrioles. eLife 2022; 11:77892. [PMID: 35787744 PMCID: PMC9307276 DOI: 10.7554/elife.77892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole-independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152, or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus-end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.
Collapse
Affiliation(s)
- Fangrui Chen
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Jingchao Wu
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Daphne Jurriens
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Arianna Sandron
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Milena Pasolli
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Gianmarco Puma
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Chao Yang
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Wilco Nijenhuis
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Florian Berger
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Department of Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Yue W, Wang Y, Meng T, Zhang H, Zhang X, Ouyang Y, Hou Y, Schatten H, Wang Z, Sun Q. Kinetochore scaffold 1 regulates SAC function during mouse oocyte meiotic maturation. FASEB J 2022; 36:e22210. [DOI: 10.1096/fj.202101586rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yue Wang
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Tie‐Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Hong‐Yong Zhang
- Department of Reproductive Medicine Peking University Shenzhen Hospital, Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center Shenzhen China
| | - Xin‐Ran Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Ying‐Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Heide Schatten
- Department of Veterinary Pathobiology University of Missouri Columbia Missouri USA
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Qing‐Yuan Sun
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproduction Joint Laboratory Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| |
Collapse
|
21
|
So C, Menelaou K, Uraji J, Harasimov K, Steyer AM, Seres KB, Bucevičius J, Lukinavičius G, Möbius W, Sibold C, Tandler-Schneider A, Eckel H, Moltrecht R, Blayney M, Elder K, Schuh M. Mechanism of spindle pole organization and instability in human oocytes. Science 2022; 375:eabj3944. [PMID: 35143306 DOI: 10.1126/science.abj3944] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katerina Menelaou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Julia Uraji
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | | | | - Heike Eckel
- Kinderwunschzentrum Göttingen, Göttingen, Germany
| | | | | | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Li L, Xia Y, Yang Y, Zhang W, Yan H, Yin P, Li K, Chen Y, Lu L, Tong G. CDC26 is a key factor in human oocyte aging. Hum Reprod 2021; 36:3095-3107. [PMID: 34590680 DOI: 10.1093/humrep/deab217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/01/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Is CDC26 a key factor in human oocyte aging? SUMMARY ANSWER The lack of CDC26 disrupts the oocytes maturation process, leading to oocyte aging, but these defects could be partially rescued by overexpression of the CDC26 protein. WHAT IS KNOWN ALREADY Age-related oocyte aging is the main cause of female fertility decline. In mammalian oocytes, aberrant meiosis can cause chromosomal abnormalities that might lead to infertility and developmental disorders. CDC26 participates in the meiosis process. STUDY DESIGN, SIZE, DURATION Differential gene expression in young and old women oocytes were screened by single-cell RNA-seq technology, and the functions of differentially genes were verified on mouse oocytes. Finally, transfection technology was used to evaluate the effect of a differentially expressed gene in rescuing human oocyte from aging. PARTICIPANTS/MATERIALS, SETTING, METHODS Discarded human oocytes were collected for single-cell RNA-seq, q-PCR and immunocytochemical analyses to screen for and identify differential gene expression. Female KM mice oocytes were collected for IVM of oocytes, q-PCR and immunocytochemical analyses to delineate the relationships between oocyte aging and differential gene expression. Additionally, recombinant lentiviral vectors encoding CDC26 were transfected into the germinal vesicle oocytes of older women, to investigate the effects of the CDC26 gene expression on oocyte development. MAIN RESULTS AND THE ROLE OF CHANCE Many genes were found to be differentially expressed in the oocytes of young versus old patients via RNA-seq technology. CDC26 mRNA and protein levels in aged oocytes were severely decreased, when compared with the levels observed in young oocytes. Moreover, aged oocytes lacking CDC26 were more prone to aneuploidy. These defects in aged oocytes could be partially rescued by overexpression of the CDC26 protein. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Our study delineated key steps in the oocyte aging process by identifying the key role of CDC26 in the progression of oocyte maturation. Future studies are required to address whether other signaling pathways play a role in regulating oocyte maturation via CDC26 and which genes are the direct molecular targets of CDC26. WIDER IMPLICATIONS OF THE FINDINGS Our results using in vitro systems for both mouse and human oocyte maturation provide a proof of principle that CDC26 may represent a novel therapeutic approach against maternal aging-related spindle and chromosomal abnormalities. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the National Natural Science Foundation of China (81571442 and 81170571), the outstanding Talent Project of Shanghai Municipal Commission of Health (XBR2011067) and Clinical Research and Cultivation Project in Shanghai Municipal Hospitals (SHDC12019X32). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Xia
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoqing Tong
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Blengini CS, Schindler K. Acentriolar spindle assembly in mammalian female meiosis and the consequences of its perturbations on human reproduction. Biol Reprod 2021; 106:253-263. [PMID: 34791041 DOI: 10.1093/biolre/ioab210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of meiosis is to generate developmentally competent, haploid gametes with the correct number of chromosomes. For reasons not completely understood, female meiosis is more prone to chromosome segregation errors than meiosis in males, leading to an abnormal number of chromosomes, or aneuploidy, in gametes. Meiotic spindles are the cellular machinery essential for the proper segregation of chromosomes. One unique feature of spindle structures in female meiosis is spindles poles that lack centrioles. The process of building a meiotic spindle without centrioles is complex and requires precise coordination of different structural components, assembly factors, motor proteins, and signaling molecules at specific times and locations to regulate each step. In this review, we discuss the basics of spindle formation during oocyte meiotic maturation focusing on mouse and human studies. Finally, we review different factors that could alter the process of spindle formation and its stability. We conclude with a discussion of how different assisted reproductive technologies (ART) could affect spindles and the consequences these perturbations may have for subsequent embryo development.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| | - Karen Schindler
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
24
|
Blengini CS, Nguyen AL, Aboelenain M, Schindler K. Age-dependent integrity of the meiotic spindle assembly checkpoint in females requires Aurora kinase B. Aging Cell 2021; 20:e13489. [PMID: 34704342 PMCID: PMC8590096 DOI: 10.1111/acel.13489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
A hallmark of advanced maternal age is a significant increase in meiotic chromosome segregation errors, resulting in early miscarriages and congenital disorders. These errors most frequently occur during meiosis I (MI). The spindle assembly checkpoint (SAC) prevents chromosome segregation errors by arresting the cell cycle until proper chromosome alignment is achieved. Unlike in mitosis, the SAC in oocytes is desensitized, allowing chromosome segregation in the presence of improperly aligned chromosomes. Whether SAC integrity further deteriorates with advancing maternal age, and if this decline contributes to increased segregation errors remains a fundamental question. In somatic cells, activation of the SAC depends upon Aurora kinase B (AURKB), which functions to monitor kinetochore–microtubule attachments and recruit SAC regulator proteins. In mice, oocyte‐specific deletion of AURKB (Aurkb cKO) results in an increased production of aneuploid metaphase II‐arrested eggs and premature age‐related infertility. Here, we aimed to understand the cause of the short reproductive lifespan and hypothesized that SAC integrity was compromised. In comparing oocytes from young and sexually mature Aurkb cKO females, we found that SAC integrity becomes compromised rapidly with maternal age. We show that the increased desensitization of the SAC is driven by reduced expression of MAD2, ZW10 and Securin proteins, key contributors to the SAC response pathway. The reduced expression of these proteins is the result of altered protein homeostasis, likely caused by the accumulation of reactive oxygen species. Taken together, our results demonstrate a novel function for AURKB in preserving the female reproductive lifespan possibly by protecting oocytes from oxidative stress.
Collapse
Affiliation(s)
- Cecilia S. Blengini
- Department of Genetics; Rutgers The State University of New Jersey Piscataway NJ USA
- Human Genetics Institute of New Jersey Piscataway NJ USA
| | - Alexandra L. Nguyen
- Department of Genetics; Rutgers The State University of New Jersey Piscataway NJ USA
- Human Genetics Institute of New Jersey Piscataway NJ USA
| | - Mansour Aboelenain
- Department of Genetics; Rutgers The State University of New Jersey Piscataway NJ USA
- Human Genetics Institute of New Jersey Piscataway NJ USA
- Department of Theriogenology Faculty of Veterinary Medicine Mansoura University Mansoura Egypt
| | - Karen Schindler
- Department of Genetics; Rutgers The State University of New Jersey Piscataway NJ USA
- Human Genetics Institute of New Jersey Piscataway NJ USA
| |
Collapse
|
25
|
Delimitreva SM, Boneva GV, Chakarova IV, Hadzhinesheva VP, Zhivkova RS, Markova MD, Nikolova VP, Kolarov AI, Mladenov NJ, Bradyanova SL, Tchorbanov AI. Defective oogenesis in mice with pristane-induced model of systemic lupus. J Reprod Immunol 2021; 148:103370. [PMID: 34492566 DOI: 10.1016/j.jri.2021.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by generation of autoantibodies and severe damage of various organs. The hormonal changes associated with pregnancy and especially estrogen might lead to damage of reproductive function and ovarian quality. We employed a pristane-induced lupus model of Balb/c mice which resembles human lupus in an attempt to follow oogenesis disruption during the disease progression. The integrity of cytoskeletal and chromatin structures was estimated in oocytes derived by hormonally stimulated ovulation in lupus mice and the results were compared with those from healthy mice. Chromatin, tubulin and actin structures in oocytes were detected by Hoechst 33258, anti-alpha-tubulin antibody and rhodamine-labeled phalloidin, respectively. All available meiotic spindles were analyzed - in immature (metaphase I) and mature oocytes (metaphase II). The total number of mature oocytes obtained from lupus mice was lower compared to healthy controls. The maturation rate was 9.8 % for lupus mice, 12.7 % for 7-month old controls, and 14.3 % for the young control mice (4 weeks old). Another major difference between the studied groups was the higher percentage of defective metaphase I spindles registered in oocytes derived from lupus mice (60 % normal spindles), while for the young and older controls this proportion was 86 % and 81 %, respectively. No such difference was registered for metaphase II spindles. For both metaphase I and metaphase II oocytes, the proportions of normal actin cap and chromosomal condensation were similar between the experimental groups.
Collapse
Affiliation(s)
| | - Gabriela V Boneva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Irina V Chakarova
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | | | - Ralitsa S Zhivkova
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Maya D Markova
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Venera P Nikolova
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Anton I Kolarov
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Nikola J Mladenov
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Silviya L Bradyanova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria; National Institute of Immunology, 1517, Sofia, Bulgaria.
| |
Collapse
|
26
|
Distinct classes of lagging chromosome underpin age-related oocyte aneuploidy in mouse. Dev Cell 2021; 56:2273-2283.e3. [PMID: 34428397 DOI: 10.1016/j.devcel.2021.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
Chromosome segregation errors that cause oocyte aneuploidy increase in frequency with maternal age and are considered a major contributing factor of age-related fertility decline in females. Lagging anaphase chromosomes are a common age-associated phenomenon in oocytes, but whether anaphase laggards actually missegregate and cause aneuploidy is unclear. Here, we show that lagging chromosomes in mouse oocytes comprise two mechanistically distinct classes of chromosome motion that we refer to as "class-I" and "class-II" laggards. We use imaging approaches and mechanistic interventions to dissociate the two classes and find that whereas class-II laggards are largely benign, class-I laggards frequently directly lead to aneuploidy. Most notably, a controlled prolongation of meiosis I specifically lessens class-I lagging to prevent aneuploidy. Our data thus reveal lagging chromosomes to be a cause of age-related aneuploidy in mouse oocytes and suggest that manipulating the cell cycle could increase the yield of useful oocytes in some contexts.
Collapse
|
27
|
Pineda-Santaella A, Fernández-Castillo N, Jiménez-Martín A, Macías-Cabeza MDC, Sánchez-Gómez Á, Fernández-Álvarez A. Loss of kinesin-8 improves the robustness of the self-assembled spindle in Schizosaccharomyces pombe. J Cell Sci 2021; 134:271184. [PMID: 34346498 PMCID: PMC8435293 DOI: 10.1242/jcs.253799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Chromosome segregation in female meiosis in many metazoans is mediated by acentrosomal spindles, the existence of which implies that microtubule spindles self-assemble without the participation of the centrosomes. Although it is thought that acentrosomal meiosis is not conserved in fungi, we recently reported the formation of self-assembled microtubule arrays, which were able to segregate chromosomes, in fission yeast mutants, in which the contribution of the spindle pole body (SPB; the centrosome equivalent in yeast) was specifically blocked during meiosis. Here, we demonstrate that this unexpected microtubule formation represents a bona fide type of acentrosomal spindle. Moreover, a comparative analysis of these self-assembled spindles and the canonical SPB-dependent spindle reveals similarities and differences; for example, both spindles have a similar polarity, but the location of the γ-tubulin complex differs. We also show that the robustness of self-assembled spindles can be reinforced by eliminating kinesin-8 family members, whereas kinesin-8 mutants have an adverse impact on SPB-dependent spindles. Hence, we consider that reinforced self-assembled spindles in yeast will help to clarify the molecular mechanisms behind acentrosomal meiosis, a crucial step towards better understanding gametogenesis. Summary: We report a comparative analysis of self-assembled spindles and canonical centrosomal spindles in fission yeast, which could clarify the mechanisms underlying acentrosomal meiosis.
Collapse
Affiliation(s)
- Alberto Pineda-Santaella
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Nazaret Fernández-Castillo
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Alberto Jiménez-Martín
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - María Del Carmen Macías-Cabeza
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Ángela Sánchez-Gómez
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Alfonso Fernández-Álvarez
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| |
Collapse
|
28
|
Thomas C, Wetherall B, Levasseur MD, Harris RJ, Kerridge ST, Higgins JMG, Davies OR, Madgwick S. A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nat Commun 2021; 12:4322. [PMID: 34262048 PMCID: PMC8280194 DOI: 10.1038/s41467-021-24554-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Successful cell division relies on the timely removal of key cell cycle proteins such as securin. Securin inhibits separase, which cleaves the cohesin rings holding chromosomes together. Securin must be depleted before anaphase to ensure chromosome segregation occurs with anaphase. Here we find that in meiosis I, mouse oocytes contain an excess of securin over separase. We reveal a mechanism that promotes excess securin destruction in prometaphase I. Importantly, this mechanism relies on two phenylalanine residues within the separase-interacting segment (SIS) of securin that are only exposed when securin is not bound to separase. We suggest that these residues facilitate the removal of non-separase-bound securin ahead of metaphase, as inhibiting this period of destruction by mutating both residues causes the majority of oocytes to arrest in meiosis I. We further propose that cellular securin levels exceed the amount an oocyte is capable of removing in metaphase alone, such that the prometaphase destruction mechanism identified here is essential for correct meiotic progression in mouse oocytes.
Collapse
Affiliation(s)
- Christopher Thomas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. .,Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.
| | - Benjamin Wetherall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark D Levasseur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Scott T Kerridge
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Suzanne Madgwick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
29
|
Oocyte ability to repair sperm DNA fragmentation: the impact of maternal age on intracytoplasmic sperm injection outcomes. Fertil Steril 2021; 116:123-129. [DOI: 10.1016/j.fertnstert.2020.10.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
30
|
Yin H, Zhang T, Wang H, Hu X, Hou X, Fang X, Yin Y, Li H, Shi L, Su YQ. Echinoderm Microtubule Associated Protein Like 1 Is Indispensable for Oocyte Spindle Assembly and Meiotic Progression in Mice. Front Cell Dev Biol 2021; 9:687522. [PMID: 34124073 PMCID: PMC8194061 DOI: 10.3389/fcell.2021.687522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Completion of the first meiosis is an essential prerequisite for producing a functionally normal egg for fertilization and embryogenesis, but the precise mechanisms governing oocyte meiotic progression remains largely unclear. Here, we report that echinoderm microtubule associated protein (EMAP) like 1 (EML1), a member of the conserved EMAP family proteins, plays a crucial role in the control of oocyte meiotic progression in the mouse. Female mice carrying an ENU-induced nonsense mutation (c.1956T > A; p.Tyr652∗) of Eml1 are infertile, and the majority of their ovulated oocytes contain abnormal spindles and misaligned chromosomes. In accordance with the mutant oocyte phenotype, we find that EML1 is colocalized with spindle microtubules during the process of normal oocyte meiotic maturation, and knockdown (KD) of EML1 by specific morpholinos in the fully grown oocytes (FGOs) disrupts the integrity of spindles, and delays meiotic progression. Moreover, EML1-KD oocytes fail to progress to metaphase II (MII) stage after extrusion of the first polar body, but enter into interphase and form a pronucleus containing decondensed chromatins. Further analysis shows that EML1-KD impairs the recruitment of γ-tubulin and pericentrin to the spindle poles, as well as the attachment of kinetochores to microtubules and the proper inactivation of spindle assembly checkpoint at metaphase I (MI). The loss of EML1 also compromises the activation of maturation promoting factor around the time of oocyte resumption and completion of the first meiosis, which, when corrected by WEE1/2 inhibitor PD166285, efficiently rescues the phenotype of oocyte delay of meiotic resumption and inability of reaching MII. Through IP- mass spectrometry analysis, we identified that EML1 interacts with nuclear distribution gene C (NUDC), a critical mitotic regulator in somatic cells, and EML1-KD disrupts the specific localization of NUDC at oocyte spindles. Taken together, these data suggest that EML1 regulates acentrosomal spindle formation and the progression of meiosis to MII in mammalian oocytes, which is likely mediated by distinct mechanisms.
Collapse
Affiliation(s)
- Hong Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuan Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xianbao Fang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lanying Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Bose A, Modi K, Dey S, Dalvi S, Nadkarni P, Sudarshan M, Kundu TK, Venkatraman P, Dalal SN. 14-3-3γ prevents centrosome duplication by inhibiting NPM1 function. Genes Cells 2021; 26:426-446. [PMID: 33813791 DOI: 10.1111/gtc.12848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
14-3-3 proteins bind to ligands via phospho-serine containing consensus motifs. However, the molecular mechanisms underlying complex formation and dissociation between 14-3-3 proteins and their ligands remain unclear. We identified two conserved acidic residues in the 14-3-3 peptide-binding pocket (D129 and E136) that potentially regulate complex formation and dissociation. Altering these residues to alanine led to opposing effects on centrosome duplication. D129A inhibited centrosome duplication, whereas E136A stimulated centrosome amplification. These results were due to the differing abilities of these mutant proteins to form a complex with NPM1. Inhibiting complex formation between NPM1 and 14-3-3γ led to an increase in centrosome duplication and over-rode the ability of D129A to inhibit centrosome duplication. We identify a novel role of 14-3-3γ in regulating centrosome licensing and a novel mechanism underlying the formation and dissociation of 14-3-3 ligand complexes dictated by conserved residues in the 14-3-3 family.
Collapse
Affiliation(s)
- Arunabha Bose
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Kruti Modi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Suchismita Dey
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Somavally Dalvi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Prafful Nadkarni
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Mukund Sudarshan
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Prasanna Venkatraman
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sorab N Dalal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
32
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
33
|
Wartosch L, Schindler K, Schuh M, Gruhn JR, Hoffmann ER, McCoy RC, Xing J. Origins and mechanisms leading to aneuploidy in human eggs. Prenat Diagn 2021; 41:620-630. [PMID: 33860956 PMCID: PMC8237340 DOI: 10.1002/pd.5927] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022]
Abstract
The gain or loss of a chromosome-or aneuploidy-acts as one of the major triggers for infertility and pregnancy loss in humans. These chromosomal abnormalities affect more than 40% of eggs in women at both ends of the age spectrum, that is, young girls as well as women of advancing maternal age. Recent studies in human oocytes and embryos using genomics, cytogenetics, and in silico modeling all provide new insight into the rates and potential genetic and cellular factors associated with aneuploidy at varying stages of development. Here, we review recent studies that are shedding light on potential molecular mechanisms of chromosome missegregation in oocytes and embryos across the entire female reproductive life span.
Collapse
Affiliation(s)
- Lena Wartosch
- Department of MeiosisMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Karen Schindler
- Department of GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Human Genetics Institute of New JerseyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Melina Schuh
- Department of MeiosisMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Jennifer R. Gruhn
- DNRF Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Eva R. Hoffmann
- DNRF Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Rajiv C. McCoy
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jinchuan Xing
- Department of GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Human Genetics Institute of New JerseyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
34
|
Kiyomitsu T, Boerner S. The Nuclear Mitotic Apparatus (NuMA) Protein: A Key Player for Nuclear Formation, Spindle Assembly, and Spindle Positioning. Front Cell Dev Biol 2021; 9:653801. [PMID: 33869212 PMCID: PMC8047419 DOI: 10.3389/fcell.2021.653801] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and dynamically changes its subcellular localization from the interphase nucleus to the mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA acts as a key structural hub in nuclear formation, spindle assembly, and mitotic spindle positioning, respectively. To achieve its variable functions, NuMA interacts with multiple factors, including DNA, microtubules, the plasma membrane, importins, and cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives spindle pole focusing and spindle positioning, while multiple interactions through its C-terminal region define its subcellular localizations and functions. In addition, NuMA can self-assemble into high-ordered structures which likely contribute to spindle positioning and nuclear formation. In this review, we summarize recent advances in NuMA’s domains, functions and regulations, with a focus on human NuMA, to understand how and why vertebrate NuMA participates in these functions in comparison with invertebrate NuMA-related proteins.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Susan Boerner
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| |
Collapse
|
35
|
Courtois A, Yoshida S, Takenouchi O, Asai K, Kitajima TS. Stable kinetochore-microtubule attachments restrict MTOC position and spindle elongation in oocytes. EMBO Rep 2021; 22:e51400. [PMID: 33655692 PMCID: PMC8024892 DOI: 10.15252/embr.202051400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 01/13/2023] Open
Abstract
In mouse oocytes, acentriolar MTOCs functionally replace centrosomes and act as microtubule nucleation sites. Microtubules nucleated from MTOCs initially assemble into an unorganized ball‐like structure, which then transforms into a bipolar spindle carrying MTOCs at its poles, a process called spindle bipolarization. In mouse oocytes, spindle bipolarization is promoted by kinetochores but the mechanism by which kinetochore–microtubule attachments contribute to spindle bipolarity remains unclear. This study demonstrates that the stability of kinetochore–microtubule attachment is essential for confining MTOC positions at the spindle poles and for limiting spindle elongation. MTOC sorting is gradual and continues even in the metaphase spindle. When stable kinetochore–microtubule attachments are disrupted, the spindle is unable to restrict MTOCs at its poles and fails to terminate its elongation. Stable kinetochore fibers are directly connected to MTOCs and to the spindle poles. These findings suggest a role for stable kinetochore–microtubule attachments in fine‐tuning acentrosomal spindle bipolarity.
Collapse
Affiliation(s)
- Aurélien Courtois
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Kohei Asai
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Makhijani R, Grow DR. Donor egg is the best second choice for many infertile couples: real progress in overcoming age-related fertility is not here yet. J Assist Reprod Genet 2020; 37:1589-1591. [PMID: 32654104 DOI: 10.1007/s10815-020-01880-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Reeva Makhijani
- Center for Advanced Reproductive Services, Department of Ob/Gyn, University of Connecticut, Farmington, CT, 06032, USA
| | - Daniel R Grow
- Center for Advanced Reproductive Services, Department of Ob/Gyn, University of Connecticut, Farmington, CT, 06032, USA.
| |
Collapse
|
37
|
Gao L, Hou Y, Zeng S, Li J, Zhu S, Fu X. The Error-Prone Kinetochore-Microtubule Attachments During Meiosis I in Vitrified Oocytes. Front Cell Dev Biol 2020; 8:621. [PMID: 32733898 PMCID: PMC7363986 DOI: 10.3389/fcell.2020.00621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Oocytes vitrification is frequently applied in assisted reproductive technologies. However, chromosomes segregation was error-prone during meiosis maturation of vitrified oocytes. The fidelity of chromosomes segregation depends on the correct kinetochore-microtubule attachments (KT-MTs). In meiosis I, the Aurora B/C would not spatially separate from the attachment sites upon bivalents stretched. Oocytes lack a mechanism for coordinating bivalent stretching and Aurora B/C inhibition in meiosis I. Thus, the KT-MTs are unstable in oocytes. In this study, we firstly found the incorrect KT-MTs were markedly increased in vitrified oocytes. The Aurora B/C activity in vitrified oocytes was significantly increased when the bivalents were stretched. This Aurora B/C activity could not induce a SAC response, as the SAC protein Mad2 was significantly decreased during MI stage in vitrified oocytes. Thus, the KT-MTs in vitrified oocytes were error-prone. This study, for the first time, revealed the mechanism of the incorrect KT-MTs occurred in vitrified oocytes and provided a theoretical basis for further improvement of oocytes vitrification.
Collapse
Affiliation(s)
- Lei Gao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Shien Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108320. [PMID: 32800274 DOI: 10.1016/j.mrrev.2020.108320] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022]
Abstract
It is well established that maternal age is associated with a rapid decline in the production of healthy and high-quality oocytes resulting in reduced fertility in women older than 35 years of age. In particular, chromosome segregation errors during meiotic divisions are increasingly common and lead to the production of oocytes with an incorrect number of chromosomes, a condition known as aneuploidy. When an aneuploid oocyte is fertilized by a sperm it gives rise to an aneuploid embryo that, except in rare situations, will result in a spontaneous abortion. As females advance in age, they are at higher risk of infertility, miscarriage, or having a pregnancy affected by congenital birth defects such as Down syndrome (trisomy 21), Edwards syndrome (trisomy 18), and Turner syndrome (monosomy X). Here, we review the potential molecular mechanisms associated with increased chromosome segregation errors during meiosis as a function of maternal age. Our review shows that multiple exogenous and endogenous factors contribute to the age-related increase in oocyte aneuploidy. Specifically, the weight of evidence indicates that recombination failure, cohesin deterioration, spindle assembly checkpoint (SAC) disregulation, abnormalities in post-translational modification of histones and tubulin, and mitochondrial dysfunction are the leading causes of oocyte aneuploidy associated with maternal aging. There is also growing evidence that dietary and other bioactive interventions may mitigate the effect of maternal aging on oocyte quality and oocyte aneuploidy, thereby improving fertility outcomes. Maternal age is a major concern for aneuploidy and genetic disorders in the offspring in the context of an increasing proportion of mothers having children at increasingly older ages. A better understanding of the mechanisms associated with maternal aging leading to aneuploidy and of intervention strategies that may mitigate these detrimental effects and reduce its occurrence are essential for preventing abnormal reproductive outcomes in the human population.
Collapse
Affiliation(s)
- Myy Mikwar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Amanda J MacFarlane
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Mechanistic Studies Division, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
39
|
Chronic cadmium exposure causes oocyte meiotic arrest by disrupting spindle assembly checkpoint and maturation promoting factor. Reprod Toxicol 2020; 96:141-149. [PMID: 32574675 DOI: 10.1016/j.reprotox.2020.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022]
Abstract
Cadmium (Cd) is a bioaccumulative heavy metal element with potential toxicity on the female reproductive system, but the exact molecular mechanisms have not yet been clearly defined. In this study, female mice were exposed to 0.5 mg/kg/day of CdCl2 for 60 consecutive days. We found that chronic Cd exposure significantly decreased the fecundity of female mice by affecting oocyte meiotic progression as indicated by disrupted spindle assembly, chromosome alignment and kinetochore-microtubule attachments, consequently resulting in aneuploid oocytes. Further studies showed that the periodic fluctuations of MPF activity and cyclin B1 expression were disturbed in Cd-exposed oocytes probably by affecting the spindle assembly checkpoint protein Bub3. In addition, Cd exposure induced oxidative stress as indicated by an increased level of reactive oxygen species and apoptosis in oocytes, leading to oocyte quality deterioration. Taken together, these data suggest that Cd exposure causes disrupted molecular events of meiotic progression and deterioration of oocyte quality via oxidative stress, leading to decrease of female fertility.
Collapse
|
40
|
Prc1-rich kinetochores are required for error-free acentrosomal spindle bipolarization during meiosis I in mouse oocytes. Nat Commun 2020; 11:2652. [PMID: 32461611 PMCID: PMC7253481 DOI: 10.1038/s41467-020-16488-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Acentrosomal meiosis in oocytes represents a gametogenic challenge, requiring spindle bipolarization without predefined bipolar cues. While much is known about the structures that promote acentrosomal microtubule nucleation, less is known about the structures that mediate spindle bipolarization in mammalian oocytes. Here, we show that in mouse oocytes, kinetochores are required for spindle bipolarization in meiosis I. This process is promoted by oocyte-specific, microtubule-independent enrichment of the antiparallel microtubule crosslinker Prc1 at kinetochores via the Ndc80 complex. In contrast, in meiosis II, cytoplasm that contains upregulated factors including Prc1 supports kinetochore-independent pathways for spindle bipolarization. The kinetochore-dependent mode of spindle bipolarization is required for meiosis I to prevent chromosome segregation errors. Human oocytes, where spindle bipolarization is reportedly error prone, exhibit no detectable kinetochore enrichment of Prc1. This study reveals an oocyte-specific function of kinetochores in acentrosomal spindle bipolarization in mice, and provides insights into the error-prone nature of human oocytes. Oocyte meiosis must achieve spindle bipolarization without predefined spatial cues. Yoshida et al. demonstrate that spindle bipolarization during meiosis I in mouse oocytes requires kinetochores to prevent chromosome segregation errors, a phenomenon that does not occur in error-prone human oocytes.
Collapse
|
41
|
Rémillard-Labrosse G, Dean NL, Allais A, Mihajlović AI, Jin SG, Son WY, Chung JT, Pansera M, Henderson S, Mahfoudh A, Steiner N, Agapitou K, Marangos P, Buckett W, Ligeti-Ruiter J, FitzHarris G. Human oocytes harboring damaged DNA can complete meiosis I. Fertil Steril 2020; 113:1080-1089.e2. [PMID: 32276763 DOI: 10.1016/j.fertnstert.2019.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine whether human oocytes possess a checkpoint to prevent completion of meiosis I when DNA is damaged. DESIGN DNA damage is considered a major threat to the establishment of healthy eggs and embryos. Recent studies found that mouse oocytes with damaged DNA can resume meiosis and undergo germinal vesicle breakdown (GVBD), but then arrest in metaphase of meiosis I in a process involving spindle assembly checkpoint (SAC) signaling. Such a mechanism could help prevent the generation of metaphase II (MII) eggs with damaged DNA. Here, we compared the impact of DNA-damaging agents with nondamaged control samples in mouse and human oocytes. SETTING University-affiliated clinic and research center. PATIENT(S) Patients undergoing ICSI cycles donated GV-stage oocytes after informed consent; 149 human oocytes were collected over 2 years (from 50 patients aged 27-44 years). INTERVENTIONS(S) Mice and human oocytes were treated with DNA-damaging drugs. MAIN OUTCOME MEASURE(S) Oocytes were monitored to evaluate GVBD and polar body extrusion (PBE), in addition to DNA damage assessment with the use of γH2AX antibodies and confocal microscopy. RESULT(S) Whereas DNA damage in mouse oocytes delays or prevents oocyte maturation, most human oocytes harboring experimentally induced DNA damage progress through meiosis I and subsequently form an MII egg, revealing the absence of a DNA damage-induced SAC response. Analysis of the resulting MII eggs revealed damaged DNA and chaotic spindle apparatus, despite the oocyte appearing morphologically normal. CONCLUSION(S) Our data indicate that experimentally induced DNA damage does not prevent PBE in human oocytes and can persist in morphologically normal looking MII eggs.
Collapse
Affiliation(s)
| | - Nicola L Dean
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Adélaïde Allais
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Aleksandar I Mihajlović
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Département d'Obstétrique-Gynécologie, Université de Montréal, Montreal, Quebec, Canada
| | - Shao Guang Jin
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Weon-Young Son
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jin-Tae Chung
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Melissa Pansera
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Henderson
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alina Mahfoudh
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Naama Steiner
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kristy Agapitou
- Department of Applications and Technology, University of Ioannina, Ioannina, Greece; Institute of Life Fertility Unit, IASO Maternity Hospital, Athens, Greece
| | - Petros Marangos
- Department of Applications and Technology, University of Ioannina, Ioannina, Greece; Department of Biomedical Research, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, Ioannina, Greece
| | - William Buckett
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacob Ligeti-Ruiter
- Reproductive Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Département d'Obstétrique-Gynécologie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Chinen T, Yamamoto S, Takeda Y, Watanabe K, Kuroki K, Hashimoto K, Takao D, Kitagawa D. NuMA assemblies organize microtubule asters to establish spindle bipolarity in acentrosomal human cells. EMBO J 2020; 39:e102378. [PMID: 31782546 PMCID: PMC6960446 DOI: 10.15252/embj.2019102378] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
In most animal cells, mitotic spindle formation is mediated by coordination of centrosomal and acentrosomal pathways. At the onset of mitosis, centrosomes promote spindle bipolarization. However, the mechanism through which the acentrosomal pathways facilitate the establishment of spindle bipolarity in early mitosis is not completely understood. In this study, we show the critical roles of nuclear mitotic apparatus protein (NuMA) in the generation of spindle bipolarity in acentrosomal human cells. In acentrosomal human cells, we found that small microtubule asters containing NuMA formed at the time of nuclear envelope breakdown. In addition, these asters were assembled by dynein and the clustering activity of NuMA. Subsequently, NuMA organized the radial array of microtubules, which incorporates Eg5, and thus facilitated spindle bipolarization. Importantly, in cells with centrosomes, we also found that NuMA promoted the initial step of spindle bipolarization in early mitosis. Overall, these data suggest that canonical centrosomal and NuMA-mediated acentrosomal pathways redundantly promote spindle bipolarity in human cells.
Collapse
Affiliation(s)
- Takumi Chinen
- Division of Centrosome BiologyDepartment of Molecular GeneticsNational Institute of GeneticsMishimaShizuokaJapan
- Department of Physiological ChemistryGraduate School of Pharmaceutical ScienceThe University of TokyoBunkyoTokyoJapan
| | - Shohei Yamamoto
- Division of Centrosome BiologyDepartment of Molecular GeneticsNational Institute of GeneticsMishimaShizuokaJapan
- Department of Physiological ChemistryGraduate School of Pharmaceutical ScienceThe University of TokyoBunkyoTokyoJapan
- Graduate Program in BioscienceGraduate School of ScienceUniversity of TokyoHongoTokyoJapan
| | - Yutaka Takeda
- Department of Physiological ChemistryGraduate School of Pharmaceutical ScienceThe University of TokyoBunkyoTokyoJapan
| | - Koki Watanabe
- Division of Centrosome BiologyDepartment of Molecular GeneticsNational Institute of GeneticsMishimaShizuokaJapan
- Department of Physiological ChemistryGraduate School of Pharmaceutical ScienceThe University of TokyoBunkyoTokyoJapan
- Department of GeneticsSchool of Life ScienceThe Graduate University for Advanced Studies (SOKENDAI)HayamaKanagawaJapan
| | - Kanako Kuroki
- Department of Physiological ChemistryGraduate School of Pharmaceutical ScienceThe University of TokyoBunkyoTokyoJapan
| | - Kaho Hashimoto
- Department of Physiological ChemistryGraduate School of Pharmaceutical ScienceThe University of TokyoBunkyoTokyoJapan
| | - Daisuke Takao
- Division of Centrosome BiologyDepartment of Molecular GeneticsNational Institute of GeneticsMishimaShizuokaJapan
- Department of Physiological ChemistryGraduate School of Pharmaceutical ScienceThe University of TokyoBunkyoTokyoJapan
| | - Daiju Kitagawa
- Division of Centrosome BiologyDepartment of Molecular GeneticsNational Institute of GeneticsMishimaShizuokaJapan
- Department of Physiological ChemistryGraduate School of Pharmaceutical ScienceThe University of TokyoBunkyoTokyoJapan
- Department of GeneticsSchool of Life ScienceThe Graduate University for Advanced Studies (SOKENDAI)HayamaKanagawaJapan
| |
Collapse
|
43
|
Abstract
Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.
Collapse
|
44
|
Hunt PA. WOMEN IN REPRODUCTIVE SCIENCE: Errors and insight: intentional and accidental studies of human chromosome abnormalities. Reproduction 2019; 158:F91-F99. [PMID: 30913534 PMCID: PMC9383270 DOI: 10.1530/rep-19-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 11/08/2022]
Abstract
Perhaps every career makes sense in retrospect. I have spent mine facing a series of accidental environmental exposures that derailed our studies but provided new insight. Although at times I have felt more catalyst than scientist, the journey has been extraordinary, and the problem I have spent my career studying - human aneuploidy - has taken on new significance with growing evidence of the sensitivity of the germline to the environment.
Collapse
Affiliation(s)
- Patricia A Hunt
- Meyer Distinguished Professor, School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
45
|
Abstract
Chromosome segregation errors in human oocytes lead to aneuploid embryos that cause infertility and birth defects. Here we provide an overview of the chromosome-segregation process in the mammalian oocyte, highlighting mechanistic differences between oocytes and somatic cells that render oocytes so prone to segregation error. These differences include the extremely large size of the oocyte cytoplasm, the unique geometry of meiosis-I chromosomes, idiosyncratic function of the spindle assembly checkpoint, and dramatically altered oocyte cell-cycle control and spindle assembly, as compared to typical somatic cells. We summarise recent work suggesting that aging leads to a further deterioration in fidelity of chromosome segregation by impacting multiple components of the chromosome-segregation machinery. In addition, we compare and contrast recent results from mouse and human oocytes, which exhibit overlapping defects to differing extents. We conclude that the striking propensity of the oocyte to mis-segregate chromosomes reflects the unique challenges faced by the spindle in a highly unusual cellular environment.
Collapse
Affiliation(s)
- Aleksandar I Mihajlović
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
46
|
Zhou C, Hancock JL, Khanna KK, Homer HA. First meiotic anaphase requires Cep55-dependent inhibitory cyclin-dependent kinase 1 phosphorylation. J Cell Sci 2019; 132:jcs.233379. [PMID: 31427428 DOI: 10.1242/jcs.233379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
During mitosis, anaphase is triggered by anaphase-promoting complex (APC)-mediated destruction of securin and cyclin B1, which leads to inactivation of cyclin-dependent kinase 1 (Cdk1). By regulating APC activity, the mitotic spindle assembly checkpoint (SAC) therefore has robust control over anaphase timing to prevent chromosome mis-segregation. Mammalian oocytes are prone to aneuploidy, the reasons for which remain obscure. In mitosis, Cep55 is required post-anaphase for the final steps of cytokinesis. We found that Cep55-depleted mouse oocytes progress normally through early meiosis I, but that anaphase I fails as a result of persistent Cdk1 activity. Unexpectedly, Cdk1 inactivation was compromised following Cep55 depletion, despite on-time SAC silencing and intact APC-mediated proteolysis. We found that impaired Cdk1 inactivation was caused by inadequate inhibitory Cdk1 phosphorylation consequent upon failure to suppress Cdc25 phosphatase, identifying a proteolysis-independent step necessary for anaphase I. Thus, the SAC in oocytes does not exert exclusive control over anaphase I initiation, providing new insight into vulnerability to error.
Collapse
Affiliation(s)
- Chenxi Zhou
- The Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston 4029, QLD, Australia
| | - Janelle L Hancock
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston 4029, QLD, Australia
| |
Collapse
|
47
|
Radonova L, Svobodova T, Skultety M, Mrkva O, Libichova L, Stein P, Anger M. ProTAME Arrest in Mammalian Oocytes and Embryos Does Not Require Spindle Assembly Checkpoint Activity. Int J Mol Sci 2019; 20:E4537. [PMID: 31540287 PMCID: PMC6770151 DOI: 10.3390/ijms20184537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
In both mitosis and meiosis, metaphase to anaphase transition requires the activity of a ubiquitin ligase known as anaphase promoting complex/cyclosome (APC/C). The activation of APC/C in metaphase is under the control of the checkpoint mechanism, called the spindle assembly checkpoint (SAC), which monitors the correct attachment of all kinetochores to the spindle. It has been shown previously in somatic cells that exposure to a small molecule inhibitor, prodrug tosyl-l-arginine methyl ester (proTAME), resulted in cell cycle arrest in metaphase, with low APC/C activity. Interestingly, some reports have also suggested that the activity of SAC is required for this arrest. We focused on the characterization of proTAME inhibition of cell cycle progression in mammalian oocytes and embryos. Our results show that mammalian oocytes and early cleavage embryos show dose-dependent metaphase arrest after exposure to proTAME. However, in comparison to the somatic cells, we show here that the proTAME-induced arrest in these cells does not require SAC activity. Our results revealed important differences between mammalian oocytes and early embryos and somatic cells in their requirements of SAC for APC/C inhibition. In comparison to the somatic cells, oocytes and embryos show much higher frequency of aneuploidy. Our results are therefore important for understanding chromosome segregation control mechanisms, which might contribute to the premature termination of development or severe developmental and mental disorders of newborns.
Collapse
Affiliation(s)
- Lenka Radonova
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic.
| | - Tereza Svobodova
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic.
| | - Michal Skultety
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic.
- Cellular Imaging Core Facility, Central European Institute CEITEC Masaryk University, 624 00 Brno, Czech Republic.
| | - Ondrej Mrkva
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic.
| | - Lenka Libichova
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic.
| | - Paula Stein
- National Institute of Environmental Health Sciences, NIH, Durham, NC 27709, USA.
| | - Martin Anger
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic.
| |
Collapse
|
48
|
Namgoong S, Kim NH. Meiotic spindle formation in mammalian oocytes: implications for human infertility. Biol Reprod 2019; 98:153-161. [PMID: 29342242 DOI: 10.1093/biolre/iox145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
In the final stage of oogenesis, mammalian oocytes generate a meiotic spindle and undergo chromosome segregation to yield an egg that is ready for fertilization. Herein, we describe the recent advances in understanding the mechanisms controlling formation of the meiotic spindle in metaphase I (MI) and metaphase II (MII) in mammalian oocytes, and focus on the differences between mouse and human oocytes. Unlike mitotic cells, mammalian oocytes lack typical centrosomes that consist of two centrioles and the surrounding pericentriolar matrix proteins, which serve as microtubule-organizing centers (MTOCs) in most somatic cells. Instead, oocytes rely on different mechanisms for the formation of microtubules in MI spindles. Two different mechanisms have been described for MI spindle formation in mammalian oocytes. Chromosome-mediated microtubule formation, including RAN-mediated spindle formation and chromosomal passenger complex-mediated spindle elongation, controls the growth of microtubules from chromatin, while acentriolar MTOC-mediated microtubule formation contributes to spindle formation. Mouse oocytes utilize both chromatin- and MTOC-mediated pathways for microtubule formation. The existence of both pathways may provide a fail-safe mechanism to ensure high fidelity of chromosome segregation during meiosis. Unlike mouse oocytes, human oocytes considered unsuitable for clinical in vitro fertilization procedures, lack MTOCs; this may explain why meiosis in human oocytes is often error-prone. Understanding the mechanisms of MI/MII spindle formation, spindle assembly checkpoint, and chromosome segregation, in mammalian oocytes, will provide valuable insights into the molecular mechanisms of human infertility.
Collapse
Affiliation(s)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheong-Ju, Chungbuk, Republic of Korea
| |
Collapse
|
49
|
Letort G, Bennabi I, Dmitrieff S, Nedelec F, Verlhac MH, Terret ME. A computational model of the early stages of acentriolar meiotic spindle assembly. Mol Biol Cell 2019; 30:863-875. [PMID: 30650011 PMCID: PMC6589792 DOI: 10.1091/mbc.e18-10-0644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 11/11/2022] Open
Abstract
The mitotic spindle is an ensemble of microtubules responsible for the repartition of the chromosomal content between the two daughter cells during division. In metazoans, spindle assembly is a gradual process involving dynamic microtubules and recruitment of numerous associated proteins and motors. During mitosis, centrosomes organize and nucleate the majority of spindle microtubules. In contrast, oocytes lack canonical centrosomes but are still able to form bipolar spindles, starting from an initial ball that self-organizes in several hours. Interfering with early steps of meiotic spindle assembly can lead to erroneous chromosome segregation. Although not fully elucidated, this process is known to rely on antagonistic activities of plus end- and minus end-directed motors. We developed a model of early meiotic spindle assembly in mouse oocytes, including key factors such as microtubule dynamics and chromosome movement. We explored how the balance between plus end- and minus end-directed motors, as well as the influence of microtubule nucleation, impacts spindle morphology. In a refined model, we added spatial regulation of microtubule stability and minus-end clustering. We could reproduce the features of early stages of spindle assembly from 12 different experimental perturbations and predict eight additional perturbations. With its ability to characterize and predict chromosome individualization, this model can help deepen our understanding of spindle assembly.
Collapse
Affiliation(s)
- Gaelle Letort
- CIRB, Collège de France, UMR7241/U1050, F-75005 Paris, France
| | - Isma Bennabi
- CIRB, Collège de France, UMR7241/U1050, F-75005 Paris, France
| | - Serge Dmitrieff
- Institut Jacques Monod, UMR7592 and Université Paris-Diderot, F-75205 Paris, France
| | - François Nedelec
- Centre de Recherche Interdisciplinaire, F-75004 Paris, France
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
50
|
Pacchierotti F, Masumura K, Eastmond DA, Elhajouji A, Froetschl R, Kirsch-Volders M, Lynch A, Schuler M, Tweats D, Marchetti F. Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:403023. [PMID: 31708072 DOI: 10.1016/j.mrgentox.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.
Collapse
Affiliation(s)
- Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - David A Eastmond
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, USA
| | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bio-Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|