1
|
Weckel-Dahman H, Carlsen R, Swanson JMJ. Multiscale Responsive Kinetic Modeling: Quantifying Biomolecular Reaction Flux under Varying Electrochemical Conditions. J Chem Theory Comput 2025; 21:374-389. [PMID: 39536322 DOI: 10.1021/acs.jctc.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Attaining a complete thermodynamic and kinetic characterization for processes involving multiple interconnected rare-event transitions remains a central challenge in molecular biophysics. This challenge is amplified when the process must be understood under a range of reaction conditions. Herein, we present a novel condition-responsive kinetic modeling framework that can combine the strengths of bottom-up rate quantification from multiscale simulations with top-down solution refinement using both equilibrium and nonequilibrium experimental data. Although this framework can be applied to any process, we demonstrate its use for electrochemically driven transport through channels and transporters via the development of electrochemically responsive rates. Using the Cl-/H+ antiporter ClC-ec1 as a model system, we show how optimal and predictive kinetic solutions can be obtained when the solution space is grounded by thermodynamic constraints, seeded through multiscale rate quantification, and further refined with experimental data, such as electrophysiology assays. Turning to the Shaker K+ channel, we demonstrate that optimal solutions and biophysical insights can also be obtained with sufficient experimental data. This multi-pathway method also proves capable of identifying single-pathway dominant channel mechanisms but reveals that competing and off-pathway flux is still essential to replicate experimental findings and to describe concentration-dependent channel rectification.
Collapse
Affiliation(s)
- Hannah Weckel-Dahman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan Carlsen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Weckel-Dahman H, Carlsen R, Swanson JM. Multiscale Responsive Kinetic Modeling: Quantifying Biomolecular Reaction Flux under Varying Electrochemical Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606205. [PMID: 39131358 PMCID: PMC11312519 DOI: 10.1101/2024.08.01.606205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Attaining a complete thermodynamic and kinetic characterization for processes involving multiple interconnected rare-event transitions remains a central challenge in molecular biophysics. This challenge is amplified when the process must be understood under a range of reaction conditions. Herein, we present a condition-responsive kinetic modeling framework that can combine the strengths of bottom-up rate quantification from multiscale simulations with top-down solution refinement using experimental data. Although this framework can be applied to any process, we demonstrate its use for electrochemically driven transport through channels and transporters. Using the Cl- /H+ antiporter ClC-ec1 as a model system, we show how robust and predictive kinetic solutions can be obtained when the solution space is grounded by thermodynamic constraints, seeded through multiscale rate quantification, and further refined with experimental data, such as electrophysiology assays. Turning to the Shaker K+ channel, we demonstrate that robust solutions and biophysical insights can also be obtained with sufficient experimental data. This multi-pathway method proves capable of identifying single-pathway dominant mechanisms but also highlights that competing and off-pathway flux is still essential to replicate experimental findings and to describe concentration-dependent channel rectification.
Collapse
Affiliation(s)
- Hannah Weckel-Dahman
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 – United States of America
| | - Ryan Carlsen
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 – United States of America
| | - Jessica M.J. Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 – United States of America
| |
Collapse
|
3
|
Fortea E, Lee S, Chadda R, Argyros Y, Sandal P, Mahoney-Kruszka R, Ciftci HD, Falzone ME, Huysmans G, Robertson JL, Boudker O, Accardi A. Structural basis of pH-dependent activation in a CLC transporter. Nat Struct Mol Biol 2024; 31:644-656. [PMID: 38279055 PMCID: PMC11262703 DOI: 10.1038/s41594-023-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
CLCs are dimeric chloride channels and anion/proton exchangers that regulate processes such as muscle contraction and endo-lysosome acidification. Common gating controls their activity; its closure simultaneously silences both protomers, and its opening allows them to independently transport ions. Mutations affecting common gating in human CLCs cause dominant genetic disorders. The structural rearrangements underlying common gating are unknown. Here, using single-particle cryo-electron microscopy, we show that the prototypical Escherichia coli CLC-ec1 undergoes large-scale rearrangements in activating conditions. The slow, pH-dependent remodeling of the dimer interface leads to the concerted opening of the intracellular H+ pathways and is required for transport. The more frequent formation of short water wires in the open H+ pathway enables Cl- pore openings. Mutations at disease-causing sites favor CLC-ec1 activation and accelerate common gate opening in the human CLC-7 exchanger. We suggest that the pH activation mechanism of CLC-ec1 is related to the common gating of CLC-7.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiorgos Argyros
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Priyanka Sandal
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Robyn Mahoney-Kruszka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hatice Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, New York, NY, USA
| | - Maria E Falzone
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Gerard Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Erasmus University, Jette, Belgium
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA.
| |
Collapse
|
4
|
Levring J, Chen J. Structural identification of a selectivity filter in CFTR. Proc Natl Acad Sci U S A 2024; 121:e2316673121. [PMID: 38381791 PMCID: PMC10907310 DOI: 10.1073/pnas.2316673121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that regulates transepithelial salt and fluid homeostasis. CFTR dysfunction leads to reduced chloride secretion into the mucosal lining of epithelial tissues, thereby causing the inherited disease cystic fibrosis. Although several structures of CFTR are available, our understanding of the ion-conduction pathway is incomplete. In particular, the route that connects the cytosolic vestibule with the extracellular space has not been clearly defined, and the structure of the open pore remains elusive. Furthermore, although many residues have been implicated in altering the selectivity of CFTR, the structure of the "selectivity filter" has yet to be determined. In this study, we identify a chloride-binding site at the extracellular ends of transmembrane helices 1, 6, and 8, where a dehydrated chloride is coordinated by residues G103, R334, F337, T338, and Y914. Alterations to this site, consistent with its function as a selectivity filter, affect ion selectivity, conductance, and open channel block. This selectivity filter is accessible from the cytosol through a large inner vestibule and opens to the extracellular solvent through a narrow portal. The identification of a chloride-binding site at the intra- and extracellular bridging point leads us to propose a complete conductance path that permits dehydrated chloride ions to traverse the lipid bilayer.
Collapse
Affiliation(s)
- Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY10065
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
5
|
Xu M, Neelands T, Powers AS, Liu Y, Miller SD, Pintilie GD, Bois JD, Dror RO, Chiu W, Maduke M. CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-and-chain gating mechanism. eLife 2024; 12:RP90648. [PMID: 38345841 PMCID: PMC10942593 DOI: 10.7554/elife.90648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct conformations involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway. This peptide is highly conserved among species variants of CLC-2 but is not present in other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Torben Neelands
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Alexander S Powers
- Department of Chemistry, Stanford UniversityStanfordUnited States
- Department of Computer Science, Stanford UniversityStanfordUnited States
- Department of Structural Biology, Stanford UniversityStanfordUnited States
- Institute for Computational and Mathematical Engineering, Stanford UniversityStanfordUnited States
| | - Yan Liu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford UniversityStanfordUnited States
| | - Steven D Miller
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Grigore D Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - J Du Bois
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Department of Computer Science, Stanford UniversityStanfordUnited States
- Department of Structural Biology, Stanford UniversityStanfordUnited States
- Institute for Computational and Mathematical Engineering, Stanford UniversityStanfordUnited States
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford UniversityStanfordUnited States
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| |
Collapse
|
6
|
Kwon HC, Fairclough RH, Chen TY. Biophysical and Pharmacological Insights to CLC Chloride Channels. Handb Exp Pharmacol 2024; 283:1-34. [PMID: 35768555 DOI: 10.1007/164_2022_594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CLC family encompasses two functional categories of transmembrane proteins: chloride conducting channels and proton-chloride antiporters. All members in this chloride channel/transporter family consist of two identical protein subunits, and each subunit forms an independent ion-transport pathway, a structural architecture known as "double barrel." These CLC proteins serve biological functions ranging from membrane excitability and cell volume regulation to acidification of endosomes. Despite their ubiquitous expression, physiological significance, and resolved molecular structures of some of the family members, the mechanisms governing these molecules' biophysical functions are still not completely settled. However, a series of functional and structural studies have brought insights into interesting questions related to these proteins. This chapter explores the functional peculiarities underlying CLC channels aided by information observed from the chloride-proton antiporters in the CLC family. The overall structural features of these CLC proteins will be presented, and the biophysical functions will be addressed. Finally, the mechanism of pharmacological agents that interact with CLC channels will also be discussed.
Collapse
Affiliation(s)
- Hwoi Chan Kwon
- Center for Neuroscience and Biophysics Graduate Group, University of California, Davis, CA, USA
| | - Robert H Fairclough
- Department of Neurology and the Biophysics Graduate Group, University of California, Davis, CA, USA
| | - Tsung-Yu Chen
- Center for Neuroscience, Department of Neurology, and Biophysics Graduate Group, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Xu M, Neelands T, Powers AS, Liu Y, Miller SD, Pintilie G, Bois JD, Dror RO, Chiu W, Maduke M. CryoEM structures of the human CLC-2 voltage gated chloride channel reveal a ball and chain gating mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553136. [PMID: 37645939 PMCID: PMC10462068 DOI: 10.1101/2023.08.13.553136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different mammalian tissues and cell types. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating mechanisms among closely related CLC homologs has been a long-standing mystery, in part because few CLC channel structures are available, and those that exist exhibit high conformational similarity. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the potent and selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct apo conformations of CLC-2 involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway from the intracellular side. This peptide is highly conserved among species variants of CLC-2 but is not present in any other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we show that loss of this short sequence increases the magnitude and decreases the rectification of CLC-2 currents expressed in mammalian cells. Furthermore, we show that with repetitive hyperpolarization WT CLC-2 currents increase in resemblance to the hairpin-deleted CLC-2 currents. These functional results combined with our structural data support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Torben Neelands
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Alexander S. Powers
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305
| | - Yan Liu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park 94025
| | - Steven D. Miller
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Grigore Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford University, Stanford, 94305
| | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Ron O. Dror
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park 94025
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford University, Stanford, 94305
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
8
|
Picollo A. Vesicular CLC chloride/proton exchangers in health and diseases. Front Pharmacol 2023; 14:1295068. [PMID: 38027030 PMCID: PMC10662042 DOI: 10.3389/fphar.2023.1295068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Chloride is one of the most abundant anions in the human body; it is implicated in several physiological processes such as the transmission of action potentials, transepithelial salt transport, maintenance of cellular homeostasis, regulation of osmotic pressure and intracellular pH, and synaptic transmission. The balance between the extracellular and intracellular chloride concentrations is controlled by the interplay of ion channels and transporters embedded in the cellular membranes. Vesicular members of the CLC chloride protein family (vCLCs) are chloride/proton exchangers expressed in the membrane of the intracellular organelles, where they control vesicular acidification and luminal chloride concentration. It is well known that mutations in CLCs cause bone, kidney, and lysosomal genetic diseases. However, the role of CLC exchangers in neurological disorders is only now emerging with the identification of pathogenic CLCN gene variants in patients with severe neuronal and intellectual dysfunctions. This review will provide an overview of the recent advances in understanding the role of the vesicular CLC chloride/proton exchangers in human pathophysiology.
Collapse
Affiliation(s)
- Alessandra Picollo
- Institute of Biophysics, National Research Council, Genova, Italy
- RAISE Ecosystem, Genova, Italy
| |
Collapse
|
9
|
Medeiros-Silva J, Dregni AJ, Somberg NH, Duan P, Hong M. Atomic structure of the open SARS-CoV-2 E viroporin. SCIENCE ADVANCES 2023; 9:eadi9007. [PMID: 37831764 PMCID: PMC10575589 DOI: 10.1126/sciadv.adi9007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.
Collapse
Affiliation(s)
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
10
|
Zhang B, Zhang S, Polovitskaya MM, Yi J, Ye B, Li R, Huang X, Yin J, Neuens S, Balfroid T, Soblet J, Vens D, Aeby A, Li X, Cai J, Song Y, Li Y, Tartaglia M, Li Y, Jentsch TJ, Yang M, Liu Z. Molecular basis of ClC-6 function and its impairment in human disease. SCIENCE ADVANCES 2023; 9:eadg4479. [PMID: 37831762 PMCID: PMC10575590 DOI: 10.1126/sciadv.adg4479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
ClC-6 is a late endosomal voltage-gated chloride-proton exchanger that is predominantly expressed in the nervous system. Mutated forms of ClC-6 are associated with severe neurological disease. However, the mechanistic role of ClC-6 in normal and pathological states remains largely unknown. Here, we present cryo-EM structures of ClC-6 that guided subsequent functional studies. Previously unrecognized ATP binding to cytosolic ClC-6 domains enhanced ion transport activity. Guided by a disease-causing mutation (p.Y553C), we identified an interaction network formed by Y553/F317/T520 as potential hotspot for disease-causing mutations. This was validated by the identification of a patient with a de novo pathogenic variant p.T520A. Extending these findings, we found contacts between intramembrane helices and connecting loops that modulate the voltage dependence of ClC-6 gating and constitute additional candidate regions for disease-associated gain-of-function mutations. Besides providing insights into the structure, function, and regulation of ClC-6, our work correctly predicts hotspots for CLCN6 mutations in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bing Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Maya M. Polovitskaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | - Jingbo Yi
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Binglu Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Ruochong Li
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Sebastian Neuens
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Balfroid
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Daphné Vens
- Pediatric Intensive Care Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alec Aeby
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xiaoling Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Jinjin Cai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Yingcai Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Yuanxi Li
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, 200237 Shanghai, China
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Yang Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
- Cryo-EM Facility Center, Southern University of Science & Technology, 518055 Shenzhen, Guangdong, China
| | - Zhiqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| |
Collapse
|
11
|
Ma T, Wang L, Chai A, Liu C, Cui W, Yuan S, Wing Ngor Au S, Sun L, Zhang X, Zhang Z, Lu J, Gao Y, Wang P, Li Z, Liang Y, Vogel H, Wang YT, Wang D, Yan K, Zhang H. Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42. Nat Commun 2023; 14:3424. [PMID: 37296152 PMCID: PMC10256776 DOI: 10.1038/s41467-023-39218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
ClC-2 transports chloride ions across plasma membranes and plays critical roles in cellular homeostasis. Its dysfunction is involved in diseases including leukodystrophy and primary aldosteronism. AK-42 was recently reported as a specific inhibitor of ClC-2. However, experimental structures are still missing to decipher its inhibition mechanism. Here, we present cryo-EM structures of apo ClC-2 and its complex with AK-42, both at 3.5 Å resolution. Residues S162, E205 and Y553 are involved in chloride binding and contribute to the ion selectivity. The side-chain of the gating glutamate E205 occupies the putative central chloride-binding site, indicating that our structure represents a closed state. Structural analysis, molecular dynamics and electrophysiological recordings identify key residues to interact with AK-42. Several AK-42 interacting residues are present in ClC-2 but not in other ClCs, providing a possible explanation for AK-42 specificity. Taken together, our results experimentally reveal the potential inhibition mechanism of ClC-2 inhibitor AK-42.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- National Science and Technology Innovation 2030 Major Program (No. 2022ZD0211900)
- the Science and Technology Innovation Committee of Shenzhen(No. JCYJ20200109150700942), the Key-Area Research and Development Program of Guangdong Province (2019B030335001), the Shenzhen Fund for Guangdong Provincial High Level Clinical Key Specialties (No. SZGSP013), and the Shenzhen Key Medical Discipline Construction Fund (No. SZXK042)
- The Shenzhen Key Laboratory of Computer Aided Drug Discovery, Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China, Funding number: ZDSYS20201230165400001. The Chinese Academy of Science President’s International Fellowship Initiative (PIFI) (No. 2020FSB0003), Guangdong Retired Expert (granted by Guangdong Province), National Overseas High Level Talent Introduction Plan-Foreign Expert from Organization Department of the CPC Central Committee (1000 talent project), Shenzhen Pengcheng Scientist, NSFC-SNSF Funding (No. 32161133022), AlphaMol & SIAT Joint Laboratory, Shenzhen Government Top-talent Working Funding and Guangdong Province Academician Work Funding.
- NSFC-Guangdong Joint Fund-U20A6005, Shenzhen Key Laboratory of Translational Research for Brain Diseases (ZDSYS20200828154800001)
- Shenzhen Science and Technology Program (No. JCYJ20220530115214033 and No. KQTD20210811090115021)
Collapse
Affiliation(s)
- Tao Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lei Wang
- School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Anping Chai
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, Shenzhen, Guangdong, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wenqiang Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Yuan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Shannon Wing Ngor Au
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liang Sun
- Shenzhen Shuli Tech Co., Ltd, 518126, Shenzhen, Guangdong, China
| | - Xiaokang Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, Shenzhen, Guangdong, China
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
| | - Zhenzhen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Yuanzhu Gao
- Cryo-EM Facility Center, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Peiyi Wang
- Cryo-EM Facility Center, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Zhifang Li
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Yu Tian Wang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China.
| | - Daping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, China.
| | - Kaige Yan
- School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Huawei Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
12
|
Yue Z, Li C, Voth GA. The role of conformational change and key glutamic acid residues in the ClC-ec1 antiporter. Biophys J 2023; 122:1068-1085. [PMID: 36698313 PMCID: PMC10111279 DOI: 10.1016/j.bpj.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The triple glutamine (Q) mutant (QQQ) structure of a Cl-/H+ antiporter from Escherichia coli (ClC-ec1) displaying a novel backbone arrangement has been used to challenge the long-held notion that Cl-/H+ antiporters do not operate through large conformational motions. The QQQ mutant substitutes the glutamine residue for an external glutamate E148, an internal glutamate E203, and a third glutamate E113 that hydrogen-bonds with E203. However, it is unknown if QQQ represents a physiologically relevant state, as well as how the protonation of the wild-type glutamates relates to the global dynamics. We herein apply continuous constant-pH molecular dynamics to investigate the H+-coupled dynamics of ClC-ec1. Although any large-scale conformational rearrangement upon acidification would be due to the accumulation of excess charge within the protein, protonation of the glutamates significantly impacts mainly the local structure and dynamics. Despite the fact that the extracellular pore enlarges at acidic pHs, an occluded ClC-ec1 within the active pH range of 3.5-7.5 requires a protonated E148 to facilitate extracellular Cl- release. E203 is also involved in the intracellular H+ transfer as an H+ acceptor. The water wire connection of E148 with the intracellular solution is regulated by the charge states of the E113/E203 dyad with coupled proton titration. However, the dynamics extracted from our simulations are not QQQ-like, indicating that the QQQ mutant does not represent the behavior of the wild-type ClC-ec1. These findings reinforce the necessity of having a protonatable residue at the E203 position in ClC-ec1 and suggest that a higher level of complexity exists for the intracellular H+ transfer in Cl-/H+ antiporters.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
13
|
Stavniichuk A, Pyrshev K, Tomilin VN, Kordysh M, Zaika O, Pochynyuk O. Modus operandi of ClC-K2 Cl - Channel in the Collecting Duct Intercalated Cells. Biomolecules 2023; 13:177. [PMID: 36671562 PMCID: PMC9855527 DOI: 10.3390/biom13010177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The renal collecting duct is known to play a critical role in many physiological processes, including systemic water-electrolyte homeostasis, acid-base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl--permeable channel expressed on the basolateral membrane of several segments of the renal tubule, including the collecting duct intercalated cells. ClC-Kb mutations are causative for Bartters' syndrome type 3 manifested as hypotension, urinary salt wasting, and metabolic alkalosis. However, little is known about the significance of the channel in the collecting duct with respect to the normal physiology and pathology of Bartters' syndrome. In this review, we summarize the available experimental evidence about the signaling determinants of ClC-K2 function and the regulation by systemic and local factors as well as critically discuss the recent advances in understanding the collecting-duct-specific roles of ClC-K2 in adaptations to changes in dietary Cl- intake and maintaining systemic acid-base homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
14
|
Cryo-EM structure of the plant nitrate transporter AtCLCa reveals characteristics of the anion-binding site and the ATP-binding pocket. J Biol Chem 2022; 299:102833. [PMID: 36581207 PMCID: PMC9898749 DOI: 10.1016/j.jbc.2022.102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022] Open
Abstract
Nitrate is one of the major nitrogen sources for most plants. Chloride channel (CLC) proteins mediate the transport and vacuole storage of nitrate in plants, but the structural basis of nitrate transport by plant CLC proteins remains unknown. Here, we solved the cryo-EM structure of ATP-bound Arabidopsis thaliana CLCa (AtCLCa) at 2.8 Å resolution. Structural comparison between nitrate-selective AtCLCa and chloride-selective CLC-7 reveals key differences in the central anion-binding site. We observed that the central nitrate is shifted by ∼1.4 Å from chloride, which is likely caused by a weaker interaction between the anion and Pro160; the side chains of aromatic residues around the central binding site are rearranged to accommodate the larger nitrate. Additionally, we identified the ATP-binding pocket of AtCLCa to be located between the cytosolic cystathionine β-synthase domains and the N-terminus. The N-terminus may mediate the ATP inhibition of AtCLCa by interacting with both ATP and the pore-forming transmembrane helix. Together, our studies provide insights into the nitrate selectivity and ATP regulation of plant CLCs.
Collapse
|
15
|
Leisle L, Lam K, Dehghani-Ghahnaviyeh S, Fortea E, Galpin JD, Ahern CA, Tajkhorshid E, Accardi A. Backbone amides are determinants of Cl - selectivity in CLC ion channels. Nat Commun 2022; 13:7508. [PMID: 36473856 PMCID: PMC9726985 DOI: 10.1038/s41467-022-35279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Chloride homeostasis is regulated in all cellular compartments. CLC-type channels selectively transport Cl- across biological membranes. It is proposed that side-chains of pore-lining residues determine Cl- selectivity in CLC-type channels, but their spatial orientation and contributions to selectivity are not conserved. This suggests a possible role for mainchain amides in selectivity. We use nonsense suppression to insert α-hydroxy acids at pore-lining positions in two CLC-type channels, CLC-0 and bCLC-k, thus exchanging peptide-bond amides with ester-bond oxygens which are incapable of hydrogen-bonding. Backbone substitutions functionally degrade inter-anion discrimination in a site-specific manner. The presence of a pore-occupying glutamate side chain modulates these effects. Molecular dynamics simulations show backbone amides determine ion energetics within the bCLC-k pore and how insertion of an α-hydroxy acid alters selectivity. We propose that backbone-ion interactions are determinants of Cl- specificity in CLC channels in a mechanism reminiscent of that described for K+ channels.
Collapse
Affiliation(s)
- Lilia Leisle
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Kin Lam
- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eva Fortea
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
16
|
Guo X, Schmiege P, Assafa TE, Wang R, Xu Y, Donnelly L, Fine M, Ni X, Jiang J, Millhauser G, Feng L, Li X. Structure and mechanism of human cystine exporter cystinosin. Cell 2022; 185:3739-3752.e18. [PMID: 36113465 PMCID: PMC9530027 DOI: 10.1016/j.cell.2022.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023]
Abstract
Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tufa E Assafa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Fine
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA.
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
The Poly-Glutamate Motif of GmMATE4 Regulates Its Isoflavone Transport Activity. MEMBRANES 2022; 12:membranes12020206. [PMID: 35207127 PMCID: PMC8880658 DOI: 10.3390/membranes12020206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Multidrug and toxic compound extrusion (MATE) transporters in eukaryotes have been characterized to be antiporters that mediate the transport of substrates in exchange for protons. In plants, alkaloids, phytohormones, ion chelators, and flavonoids have been reported to be the substrates of MATE transporters. Structural analyses have been conducted to dissect the functional significance of various motifs of MATE proteins. However, an understanding of the functions of the N- and C-termini has been inadequate. Here, by performing phylogenetic analyses and protein sequence alignment of 14 representative plant species, we identified a distinctive N-terminal poly-glutamate motif among a cluster of MATE proteins in soybean. Amongst them, GmMATE4 has the most consecutive glutamate residues at the N-terminus. A subcellular localization study showed that GmMATE4 was localized at the vacuolar membrane-like structure. Protein charge prediction showed that the mutation of the glutamate residues to alanine would reduce the negative charge at the N-terminus. Using yeast as the model, we showed that GmMATE4 mediated the transport of daidzein, genistein, glycitein, and glycitin. In addition, the glutamate-to-alanine mutation reduced the isoflavone transport capacity of GmMATE4. Altogether, we demonstrated GmMATE4 as an isoflavone transporter and the functional significance of the N-terminal poly-glutamate motif of GmMATE4 for regulating the isoflavone transport activity.
Collapse
|
18
|
Miszta P, Nazaruk E, Nieciecka D, Możajew M, Krysiński P, Bilewicz R, Filipek S. The EcCLC antiporter embedded in lipidic liquid crystalline films - molecular dynamics simulations and electrochemical methods. Phys Chem Chem Phys 2022; 24:3066-3077. [PMID: 35040466 DOI: 10.1039/d1cp03992j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipidic-liquid crystalline nanostructures (lipidic cubic phases), which are biomimetic and stable in an excess of water, were used as a convenient environment to investigate the transport properties of the membrane antiporter E. coli CLC-1 (EcCLC). The chloride ion transfer by EcCLC was studied by all-atom molecular dynamics simulations combined with electrochemical methods at pH 7 and pH 5. The cubic phase film was used as the membrane between the chloride donor and receiving compartments and it was placed on the glassy carbon electrode and immersed in the chloride solution. Structural characterization of lipidic mesoscopic systems with and without the incorporation of EcCLC was performed using small-angle X-ray scattering. The EcCLC transported chloride ions more efficiently at more acidic pH, and the resistance of the film decreased at lower pH. 4,4-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) employed as an inhibitor of the protein was shown to decrease the transport efficiency upon hydrolysis to DADS at both pH 7 and pH 5. The molecular dynamics simulations, performed for the first time in lipidic cubic phases for EcCLC, allowed studying the collective movements of chloride ions which can help in elucidating the mechanism of transporting the ions by the EcCLC antiporter. The protein modified lipidic cubic phase film is a convenient and simple system for screening potential inhibitors of integral membrane proteins, as demonstrated by the example of the EcCLC antiporter. The use of lipidic cubic phases may also be important for the further development of new electrochemical sensors for membrane proteins and enzyme electrodes.
Collapse
Affiliation(s)
- Przemysław Miszta
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Dorota Nieciecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Mariusz Możajew
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Paweł Krysiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Renata Bilewicz
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Sławomir Filipek
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
19
|
The Role of the Lysosomal Cl−/H+ Antiporter ClC-7 in Osteopetrosis and Neurodegeneration. Cells 2022; 11:cells11030366. [PMID: 35159175 PMCID: PMC8833911 DOI: 10.3390/cells11030366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
CLC proteins comprise Cl− channels and anion/H+ antiporters involved in several fundamental physiological processes. ClC-7 is a lysosomal Cl−/H+ antiporter that together with its beta subunit Ostm1 has a critical role in the ionic homeostasis of lysosomes and of the osteoclasts’ resorption lacuna, although the specific underlying mechanism has so far remained elusive. Mutations in ClC-7 cause osteopetrosis, but also a form of lysosomal storage disease and neurodegeneration. Interestingly, both loss-of- and gain-of-function mutations of ClC-7 can be pathogenic, but the mechanistic implications of this finding are still unclear. This review will focus on the recent advances in our understanding of the biophysical properties of ClC-7 and of its role in human diseases with a focus on osteopetrosis and neurodegeneration.
Collapse
|
20
|
Islam MS, Gaston JP, Baker MAB. Fluorescence Approaches for Characterizing Ion Channels in Synthetic Bilayers. MEMBRANES 2021; 11:857. [PMID: 34832086 PMCID: PMC8619978 DOI: 10.3390/membranes11110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Ion channels are membrane proteins that play important roles in a wide range of fundamental cellular processes. Studying membrane proteins at a molecular level becomes challenging in complex cellular environments. Instead, many studies focus on the isolation and reconstitution of the membrane proteins into model lipid membranes. Such simpler, in vitro, systems offer the advantage of control over the membrane and protein composition and the lipid environment. Rhodopsin and rhodopsin-like ion channels are widely studied due to their light-interacting properties and are a natural candidate for investigation with fluorescence methods. Here we review techniques for synthesizing liposomes and for reconstituting membrane proteins into lipid bilayers. We then summarize fluorescence assays which can be used to verify the functionality of reconstituted membrane proteins in synthetic liposomes.
Collapse
Affiliation(s)
- Md. Sirajul Islam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
| | - James P. Gaston
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
21
|
Niu Y, Tao X, Vaisey G, Olinares PDB, Alwaseem H, Chait BT, MacKinnon R. Analysis of the mechanosensor channel functionality of TACAN. eLife 2021; 10:71188. [PMID: 34374644 PMCID: PMC8376246 DOI: 10.7554/elife.71188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanosensitive ion channels mediate transmembrane ion currents activated by mechanical forces. A mechanosensitive ion channel called TACAN was recently reported. We began to study TACAN with the intent to understand how it senses mechanical forces and functions as an ion channel. Using cellular patch-recording methods, we failed to identify mechanosensitive ion channel activity. Using membrane reconstitution methods, we found that TACAN, at high protein concentrations, produces heterogeneous conduction levels that are not mechanosensitive and are most consistent with disruptions of the lipid bilayer. We determined the structure of TACAN using single-particle cryo-electron microscopy and observed that it is a symmetrical dimeric transmembrane protein. Each protomer contains an intracellular-facing cleft with a coenzyme A cofactor, confirmed by mass spectrometry. The TACAN protomer is related in three-dimensional structure to a fatty acid elongase, ELOVL7. Whilst its physiological function remains unclear, we anticipate that TACAN is not a mechanosensitive ion channel.
Collapse
Affiliation(s)
- Yiming Niu
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, United States
| | - Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, United States.,Howard Hughes Medical Institute, New York, United States
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, United States.,Howard Hughes Medical Institute, New York, United States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, United States
| | - Hanan Alwaseem
- Proteomics Resource Center, Rockefeller University, New York, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, United States.,Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
22
|
Yue Z, Bernardi A, Li C, Mironenko AV, Swanson JMJ. Toward a Multipathway Perspective: pH-Dependent Kinetic Selection of Competing Pathways and the Role of the Internal Glutamate in Cl -/H + Antiporters. J Phys Chem B 2021; 125:7975-7984. [PMID: 34260231 PMCID: PMC8409247 DOI: 10.1021/acs.jpcb.1c03304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Canonical descriptions of multistep biomolecular transformations generally follow a single-pathway viewpoint, with a series of transitions through intermediates converting reactants to products or repeating a conformational cycle. However, mounting evidence suggests that more complexity and pathway heterogeneity are mechanistically relevant due to the statistical distribution of multiple interconnected rate processes. Making sense of such pathway complexity remains a significant challenge. To better understand the role and relevance of pathway heterogeneity, we herein probe the chemical reaction network of a Cl-/H+ antiporter, ClC-ec1, and analyze reaction pathways using multiscale kinetic modeling (MKM). This approach allows us to describe the nature of the competing pathways and how they change as a function of pH. We reveal that although pH-dependent Cl-/H+ transport rates are largely regulated by the charge state of amino acid E148, the charge state of E203 determines relative contributions from coexisting pathways and can shift the flux pH-dependence. The selection of pathways via E203 explains how ionizable mutations (D/H/K/R) would impact the ClC-ec1 bioactivity from a kinetic perspective and lends further support to the indispensability of an internal glutamate in ClC antiporters. Our results demonstrate how quantifying the kinetic selection of competing pathways under varying conditions leads to a deeper understanding of the Cl-/H+ exchange mechanism and can suggest new approaches for mechanistic control.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Austen Bernardi
- Department of Chemistry, Biological Chemistry Program, and Center for Cell and Genome Science, The University of Utah, Salt Lake City, Utah 84112, United States
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander V. Mironenko
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jessica M. J. Swanson
- Department of Chemistry, Biological Chemistry Program, and Center for Cell and Genome Science, The University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
23
|
Human ferroportin mediates proton-coupled active transport of iron. Blood Adv 2021; 4:4758-4768. [PMID: 33007076 DOI: 10.1182/bloodadvances.2020001864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
As the sole iron exporter in humans, ferroportin controls systemic iron homeostasis through exporting iron into the blood plasma. The molecular mechanism of how ferroportin exports iron under various physiological settings remains unclear. Here we found that purified ferroportin incorporated into liposomes preferentially transports Fe2+ and exhibits lower affinities of transporting other divalent metal ions. The iron transport by ferroportin is facilitated by downhill proton gradients at the same direction. Human ferroportin is also capable of transporting protons, and this activity is tightly coupled to the iron transport. Remarkably, ferroportin can conduct active transport uphill against the iron gradient, with favorable charge potential providing the driving force. Targeted mutagenesis suggests that the iron translocation site is located at the pore region of human ferroportin. Together, our studies enhance the mechanistic understanding by which human ferroportin transports iron and suggest that a combination of electrochemical gradients regulates iron export.
Collapse
|
24
|
Abstract
Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Michal T Ruprecht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
25
|
Schrecker M, Korobenko J, Hite RK. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. eLife 2020; 9:e59555. [PMID: 32749217 PMCID: PMC7440919 DOI: 10.7554/elife.59555] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
The chloride-proton exchanger CLC-7 plays critical roles in lysosomal homeostasis and bone regeneration and its mutation can lead to osteopetrosis, lysosomal storage disease and neurological disorders. In lysosomes and the ruffled border of osteoclasts, CLC-7 requires a β-subunit, OSTM1, for stability and activity. Here, we present electron cryomicroscopy structures of CLC-7 in occluded states by itself and in complex with OSTM1, determined at resolutions up to 2.8 Å. In the complex, the luminal surface of CLC-7 is entirely covered by a dimer of the heavily glycosylated and disulfide-bonded OSTM1, which serves to protect CLC-7 from the degradative environment of the lysosomal lumen. OSTM1 binding does not induce large-scale rearrangements of CLC-7, but does have minor effects on the conformation of the ion-conduction pathway, potentially contributing to its regulatory role. These studies provide insights into the role of OSTM1 and serve as a foundation for understanding the mechanisms of CLC-7 regulation.
Collapse
Affiliation(s)
- Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Julia Korobenko
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
26
|
Zhang B, Liu X, Lambert E, Mas G, Hiller S, Veening JW, Perez C. Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis. Nat Struct Mol Biol 2020; 27:561-569. [PMID: 32367070 DOI: 10.1038/s41594-020-0425-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/30/2020] [Indexed: 01/09/2023]
Abstract
Lipoteichoic acids (LTAs) are essential cell-wall components in Gram-positive bacteria, including the human pathogen Staphylococcus aureus, contributing to cell adhesion, cell division and antibiotic resistance. Genetic evidence has suggested that LtaA is the flippase that mediates the translocation of the lipid-linked disaccharide that anchors LTA to the cell membrane, a rate-limiting step in S. aureus LTA biogenesis. Here, we present the structure of LtaA, describe its flipping mechanism and show its functional relevance for S. aureus fitness. We demonstrate that LtaA is a proton-coupled antiporter flippase that contributes to S. aureus survival under physiological acidic conditions. Our results provide foundations for the development of new strategies to counteract S. aureus infections.
Collapse
Affiliation(s)
- Bing Zhang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
27
|
Leisle L, Xu Y, Fortea E, Lee S, Galpin JD, Vien M, Ahern CA, Accardi A, Bernèche S. Divergent Cl - and H + pathways underlie transport coupling and gating in CLC exchangers and channels. eLife 2020; 9:e51224. [PMID: 32343228 PMCID: PMC7274781 DOI: 10.7554/elife.51224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
The CLC family comprises H+-coupled exchangers and Cl- channels, and mutations causing their dysfunction lead to genetic disorders. The CLC exchangers, unlike canonical 'ping-pong' antiporters, simultaneously bind and translocate substrates through partially congruent pathways. How ions of opposite charge bypass each other while moving through a shared pathway remains unknown. Here, we use MD simulations, biochemical and electrophysiological measurements to identify two conserved phenylalanine residues that form an aromatic pathway whose dynamic rearrangements enable H+ movement outside the Cl- pore. These residues are important for H+ transport and voltage-dependent gating in the CLC exchangers. The aromatic pathway residues are evolutionarily conserved in CLC channels where their electrostatic properties and conformational flexibility determine gating. We propose that Cl- and H+ move through physically distinct and evolutionarily conserved routes through the CLC channels and transporters and suggest a unifying mechanism that describes the gating mechanism of both CLC subtypes.
Collapse
Affiliation(s)
- Lilia Leisle
- Department of Anesthesiology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Yanyan Xu
- SIB Swiss Institute of Bioinformatics, University of BaselBaselSwitzerland
- Biozentrum, University of BaselBaselSwitzerland
| | - Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of MedicineIowa CityUnited States
| | - Malvin Vien
- Department of Anesthesiology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of MedicineIowa CityUnited States
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical CollegeNew YorkUnited States
- Department of Physiology and Biophysics, Weill Cornell Medical CollegeNew YorkUnited States
- Department of Biochemistry, Weill Cornell Medical CollegeNew YorkUnited States
| | - Simon Bernèche
- SIB Swiss Institute of Bioinformatics, University of BaselBaselSwitzerland
- Biozentrum, University of BaselBaselSwitzerland
| |
Collapse
|
28
|
Chavan TS, Cheng RC, Jiang T, Mathews II, Stein RA, Koehl A, Mchaourab HS, Tajkhorshid E, Maduke M. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl -/H + transport cycle. eLife 2020; 9:53479. [PMID: 32310757 PMCID: PMC7253180 DOI: 10.7554/elife.53479] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Among coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl– for H+). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize with many experimental findings, gaps and inconsistencies in our understanding have remained. One limitation has been that global conformational change – which occurs in all conventional transporter mechanisms – has not been observed in any high-resolution structure. Here, we describe the 2.6 Å structure of a CLC mutant designed to mimic the fully H+-loaded transporter. This structure reveals a global conformational change to improve accessibility for the Cl– substrate from the extracellular side and new conformations for two key glutamate residues. Together with DEER measurements, MD simulations, and functional studies, this new structure provides evidence for a unified model of H+/Cl– transport that reconciles existing data on all CLC-type proteins. Cells are shielded from harmful molecules and other threats by a thin, flexible layer called the membrane. However, this barrier also prevents chloride, sodium, protons and other ions from moving in or out of the cell. Channels and transporters are two types of membrane proteins that form passageways for these charged particles. Channels let ions flow freely from one side of the membrane to the other. To do so, these proteins change their three-dimensional shape to open or close as needed. On the other hand, transporters actively pump ions across the membrane to allow the charged particles to accumulate on one side. The shape changes needed for that type of movement are different: the transporters have to open a passageway on one side of the membrane while closing it on the other side, alternating openings to one side or the other. In general, channels and transporters are not related to each other, but one exception is a group called CLCs proteins. Present in many organisms, this family contains a mixture of channels and transporters. For example, humans have nine CLC proteins: four are channels that allow chloride ions in and out, and five are ‘exchange transporters’ that make protons and chloride ions cross the membrane in opposite directions. These proteins let one type of charged particle move freely across the membrane, which generates energy that the transporter then uses to actively pump the other ion in the direction needed by the cell. Yet, the exact three-dimensional changes required for CLC transporters and channels to perform their roles are still unknown. To investigate this question, Chavan, Cheng et al. harnessed a technique called X-ray crystallography, which allows scientists to look at biological molecules at the level of the atom. This was paired with other methods to examine a CLC mutant that adopts the shape of a normal CLC transporter when it is loaded with a proton. The experiments revealed how various elements in the transporter move relative to each other to adopt a structure that allows protons and chloride ions to enter the protein from opposite sides of the membrane, using separate pathways. While obtained on a bacterial CLC, these results can be applied to other CLC channels and transporters (including those in humans), shedding light on how this family transports charged particles across membranes. From bone diseases to certain types of seizures, many human conditions are associated with poorly functioning CLCs. Understanding the way these structures change their shapes to perform their roles could help to design new therapies for these health problems.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ricky C Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Antoine Koehl
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
29
|
Hussey GA, Thomas NE, Henzler-Wildman KA. Highly coupled transport can be achieved in free-exchange transport models. J Gen Physiol 2020; 152:e201912437. [PMID: 31816638 PMCID: PMC7034097 DOI: 10.1085/jgp.201912437] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023] Open
Abstract
Secondary active transporters couple the transport of an ion species down its concentration gradient to the uphill transport of another substrate. Despite the importance of secondary active transport to multidrug resistance, metabolite transport, and nutrient acquisition, among other biological processes, the microscopic steps of the coupling mechanism are not well understood. Often, transport models illustrate coupling mechanisms through a limited number of "major" conformations or states, yet recent studies have indicated that at least some transporters violate these models. The small multidrug resistance transporter EmrE has been shown to couple proton influx to multidrug efflux via a mechanism that incorporates both "major" and "minor" conformational states and transitions. The resulting free exchange transport model includes multiple leak pathways and theoretically allows for both exchange and cotransport of ion and substrate. To better understand how coupled transport can be achieved in such a model, we numerically simulate a free-exchange model of transport to determine the step-by-step requirements for coupled transport. We find that only moderate biasing of rate constants for key transitions produce highly efficient net transport approaching a perfectly coupled, stoichiometric model. We show how a free-exchange model can enable complex phenotypes, including switching transport direction with changing environmental conditions or substrates. This research has broad implications for synthetic biology, as it demonstrates the utility of free-exchange transport models and the fine tuning required for perfectly coupled transport.
Collapse
|
30
|
Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl -/H + antiporter. Proc Natl Acad Sci U S A 2019; 116:17345-17354. [PMID: 31409705 DOI: 10.1073/pnas.1901822116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl- channels and Cl-/H+ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluex, could explain the transport cycle of CLC-type Cl-/H+ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluex has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae Thus, we aimed to investigate further the heterogeneity of Gluex-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluex mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the "Midlow" conformation. We also found that an extra anion can be located above the external Cl--binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl--binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluex can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.
Collapse
|
31
|
Duster AW, Garza CM, Aydintug BO, Negussie MB, Lin H. Adaptive Partitioning QM/MM for Molecular Dynamics Simulations: 6. Proton Transport through a Biological Channel. J Chem Theory Comput 2019; 15:892-905. [DOI: 10.1021/acs.jctc.8b01128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam W. Duster
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Christina M. Garza
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Baris O. Aydintug
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Mikias B. Negussie
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Hai Lin
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| |
Collapse
|
32
|
Rohrbough J, Nguyen H, Lamb FS. Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter. J Physiol 2018; 596:4091-4119. [PMID: 29917234 PMCID: PMC6117567 DOI: 10.1113/jp276332] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS The ClC-3 2Cl- /1H+ exchanger modulates endosome pH and Cl- concentration. We investigated the relationships between ClC-3-mediated ion transport (steady-state transport current, ISS ), gating charge (Q) and cytoplasmic alkalization. ClC-3 transport is functionally unidirectional. ClC-5 and ClC-3 display indistinguishable exchange ratios, but ClC-3 cycling is less "efficient", as reflected by a large Q/ISS . An M531A mutation predicted to increase water-wire stability and cytoplasmic proton supply improves efficiency. Protonation (pH 5.0) of the outer glutamate gate (Gluext ; E224) reduces Q, inhibits transport, and weakens coupling. Removal of the central tyrosine anion gate (Y572S) greatly increases uncoupled anion current. Tyrosine -OH removal (Y572F) alters anion selectivity and impairs coupling. E224 and Y572 act as anion barriers, and contribute to gating. The Y572 side chain and -OH regulate Q movement kinetics and voltage dependence. E224 and Y572 interact to create a "closed" inner gate conformation that maintains coupling during cycling. ABSTRACT We utilized plasma membrane-localized ClC-3 to investigate relationships between steady-state transport current (ISS ), gating charge (Q) movement, and cytoplasmic alkalization rate. ClC-3 exhibited lower transport efficiency than ClC-5, as reflected by a larger Q/ISS ratio, but an indistinguishable Cl- /H+ coupling ratio. External SCN- reduced H+ transport rate and uncoupled anion/H+ exchange by 80-90%. Removal of the external gating glutamate ("Gluext ") (E224A mutation) reduced Q and abolished H+ transport. We hypothesized that Methionine 531 (M531) impedes "water wire" H+ transfer from the cytoplasm to E224. Accordingly, an M531A mutation decreased the Q/ISS ratio by 50% and enhanced H+ transport. External protons (pH 5.0) inhibited ISS and markedly reduced Q while shifting the Q-voltage (V) relationship positively. The Cl- /H+ coupling ratio at pH 5.0 was significantly increased, consistent with externally protonated Gluext adopting an outward/open position. Internal "anion gate" removal (Y572S) dramatically increased ISS and impaired coupling, without slowing H+ transport rate. Loss of both gates (Y572S/E224A) resulted in a large "open pore" conductance. Y572F (removing only the phenolic hydroxide) and Y572S shortened Q duration similarly, resulting in faster Q kinetics at all voltages. These data reveal a complex relationship between Q and ion transport. Q/ISS must be assessed together with coupling ratio to properly interpret efficiency. Coupling and transport rate are influenced by the anion, internal proton supply and external protons. Y572 regulates H+ coupling as well as anion selectivity, and interacts directly with E224. Disruption of this "closed gate" conformation by internal protons may represent a critical step in the ClC-3 transport cycle.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Hong‐Ngan Nguyen
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Fred S. Lamb
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
33
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
34
|
Park E, MacKinnon R. Structure of the CLC-1 chloride channel from Homo sapiens. eLife 2018; 7:36629. [PMID: 29809153 PMCID: PMC6019066 DOI: 10.7554/elife.36629] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 11/18/2022] Open
Abstract
CLC channels mediate passive Cl− conduction, while CLC transporters mediate active Cl− transport coupled to H+ transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its ‘glutamate gate’ residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl− conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl− at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl− affinity distinguish CLC channels and transporters. Channels and transporters are two classes of proteins that transport molecules and ions – collectively referred to as “substrates” – across cell membranes. Channels form a pore in the membrane and the substrates diffuse through passively. Transporters, on the other hand, actively pump substrates across a membrane, consuming energy in the process. Thus, channels and transporters work in distinct ways. Channels and transporters most often have unrelated structures, but there are rare examples of both existing within the same family of structurally similar proteins. CLC proteins, for example, include both chloride ion channels and transporters that pump chloride ions in one direction by harnessing the energy from hydrogen ions flowing in the other direction. It remains unclear why some CLC proteins work as channels while others are transporters, especially since the two seem indistinguishable on the basis of the order of their amino acids – the building blocks of all proteins. The conservation of the amino acid sequences implies they are structurally very similar. How then can different members perform such energetically distinct processes? Park and MacKinnon now show that the answer to this question serves as a reminder of how subtle nature can be. Indeed, while the structure of a human CLC channel (called CLC-1) is indeed similar to those of CLC transporters, one amino acid adopts a unique shape that explains why the protein cannot act as a transporter. This specific amino acid, a glutamate, is central to the exchange of chloride and hydrogen ions in CLC transporters. Park and MacKinnon show that its conformation in the CLC-1 channel stops this exchange, while leaving the pore open for the passive transport of chloride ions. Also, two other amino acids along the ion diffusion pathway in the CLC channel are smaller than their counterparts in CLC transporters, and so allow chloride ions to diffuse through more quickly. Lastly, Park and MacKinnon also note that channels do not require a wide pore: instead ions can still flow rapidly through a narrow pore if the chemical environment inside permits it. CLC proteins perform a number of important roles in humans, and mutations in CLC-encoding genes underlie numerous heritable diseases. It remains too early to know how this mechanistic study may or may not impact treatments, yet the findings will likely interest scientists working on ion conduction mechanisms and the evolution of molecular function.
Collapse
Affiliation(s)
- Eunyong Park
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
35
|
Wang CH, Duster AW, Aydintug BO, Zarecki MG, Lin H. Chloride Ion Transport by the E. coli CLC Cl -/H + Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study. Front Chem 2018; 6:62. [PMID: 29594103 PMCID: PMC5859129 DOI: 10.3389/fchem.2018.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023] Open
Abstract
We performed steered molecular dynamics (SMD) and umbrella sampling simulations of Cl- ion migration through the transmembrane domain of a prototypical E. coli CLC Cl-/H+ antiporter by employing combined quantum-mechanical (QM) and molecular-mechanical (MM) calculations. The SMD simulations revealed interesting conformational changes of the protein. While no large-amplitude motions of the protein were observed during pore opening, the side chain rotation of the protonated external gating residue Glu148 was found to be critical for full access of the channel entrance by Cl-. Moving the anion into the external binding site (Sext) induced small-amplitude shifting of the protein backbone at the N-terminal end of helix F. As Cl- traveled through the pore, rigid-body swinging motions of helix R separated it from helix D. Helix R returned to its original position once Cl- exited the channel. Population analysis based on polarized wavefunction from QM/MM calculations discovered significant (up to 20%) charge loss for Cl- along the ion translocation pathway inside the pore. The delocalized charge was redistributed onto the pore residues, especially the functional groups containing π bonds (e.g., the Tyr445 side chain), while the charges of the H atoms coordinating Cl- changed almost negligibly. Potentials of mean force computed from umbrella sampling at the QM/MM and MM levels both displayed barriers at the same locations near the pore entrance and exit. However, the QM/MM PMF showed higher barriers (~10 kcal/mol) than the MM PMF (~2 kcal/mol). Binding energy calculations indicated that the interactions between Cl- and certain pore residues were overestimated by the semi-empirical PM3 Hamiltonian and underestimated by the CHARMM36 force fields, both of which were employed in the umbrella sampling simulations. In particular, CHARMM36 underestimated binding interactions for the functional groups containing π bonds, missing the stabilizations of the Cl- ion due to electron delocalization. The results suggested that it is important to explore these quantum effects for accurate descriptions of the Cl- transport.
Collapse
Affiliation(s)
- Chun-Hung Wang
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Adam W Duster
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Baris O Aydintug
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - MacKenzie G Zarecki
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
36
|
Mayes HB, Lee S, White AD, Voth GA, Swanson JMJ. Multiscale Kinetic Modeling Reveals an Ensemble of Cl -/H + Exchange Pathways in ClC-ec1 Antiporter. J Am Chem Soc 2018; 140:1793-1804. [PMID: 29332400 PMCID: PMC5812667 DOI: 10.1021/jacs.7b11463] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite several years of research, the ion exchange mechanisms in chloride/proton antiporters and many other coupled transporters are not yet understood at the molecular level. Here, we present a novel approach to kinetic modeling and apply it to ion exchange in ClC-ec1. Our multiscale kinetic model is developed by (1) calculating the state-to-state rate coefficients with reactive and polarizable molecular dynamics simulations, (2) optimizing these rates in a global kinetic network, and (3) predicting new electrophysiological results. The model shows that the robust Cl:H exchange ratio (2.2:1) can indeed arise from kinetic coupling without large protein conformational changes, indicating a possible facile evolutionary connection to chloride channels. The E148 amino acid residue is shown to couple chloride and proton transport through protonation-dependent blockage of the central anion binding site and an anion-dependent pKa value, which influences proton transport. The results demonstrate how an ensemble of different exchange pathways, as opposed to a single series of transitions, culminates in the macroscopic observables of the antiporter, such as transport rates, chloride/proton stoichiometry, and pH dependence.
Collapse
Affiliation(s)
- Heather B Mayes
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Sangyun Lee
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.,Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Andrew D White
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.,Department of Chemical Engineering, University of Rochester , Rochester, New York 14627-0166, United States
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.,James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, United States
| | - Jessica M J Swanson
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
37
|
Two Cl Ions and a Glu Compete for a Helix Cage in the CLC Proton/Cl - Antiporter. Biophys J 2017; 113:1025-1036. [PMID: 28877486 DOI: 10.1016/j.bpj.2017.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022] Open
Abstract
The ubiquitously expressed CLC chloride transporters are involved in a great variety of physiological functions. The CLC protein fold is shared by Cl- channels and 2Cl-:1H+ antiporters. The antiporters pump three charges per cycle across the membrane with two Cl ions moving in the opposite direction of one proton. Multiconformational continuum electrostatics was used to calculate the coupled thermodynamics of the protonation of the extracellular-facing gating Glu (Ex) and Cl- binding to the external (Sx) and central (Sc) sites in CLC-ec1, the Escherichia coli exchanger. Sx, Sc, and Ex are buried within the protein where the intersection of two helix N-termini creates a region with a strong, localized positive potential for anion binding. Our chemical potential titrations describe the thermodynamic linkage for binding the Cl- to each site and protons to Ex. We find that the 2Cl-:1H+ binding stoichiometry is a result of Cl- binding to Sx requiring H+ binding to Ex, whereas Cl- binding to Sc does not lead to proton uptake. When Sx binds a Cl-, the protonated Ex moves upward, out of the positive helix cage. The increasing Ex proton affinity on binding the first Cl- reduces the cost of binding the second Cl- at either Sx or Sc. Despite the repulsion among the anions, the lowest energy states have two anions bound in the helix cage. The state with no Cl- is not favored electrostatically, but relies on Ex blocking Sx and on the central residues Y445 and S107 blocking Sc.
Collapse
|
38
|
Atkovska K, Hub JS. Energetics and mechanism of anion permeation across formate-nitrite transporters. Sci Rep 2017; 7:12027. [PMID: 28931899 PMCID: PMC5607303 DOI: 10.1038/s41598-017-11437-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/24/2017] [Indexed: 01/13/2023] Open
Abstract
Formate-nitrite transporters (FNTs) facilitate the translocation of monovalent polyatomic anions, such as formate and nitrite, across biological membranes. FNTs are widely distributed among pathogenic bacteria and eukaryotic parasites, but they lack human homologues, making them attractive drug targets. The mechanisms and energetics involved in anion permeation across the FNTs have remained largely unclear. Both, channel and transporter mode of function have been proposed, with strong indication of proton coupling to the permeation process. We combine molecular dynamics simulations, quantum mechanical calculations, and pK a calculations, to compute the energetics of the complete permeation cycle of an FNT. We find that anions as such, are not able to traverse the FNT pore. Instead, anion binding into the pore is energetically coupled to protonation of a centrally located histidine. In turn, the histidine can protonate the permeating anion, thereby enabling its release. Such mechanism can accommodate the functional diversity among the FNTs, as it may facilitate both, export and import of substrates, with or without proton co-transport. The mechanism excludes proton leakage via the Grotthuss mechanism, and it rationalises the selectivity for weak acids.
Collapse
Affiliation(s)
- Kalina Atkovska
- University of Goettingen, Institute for Microbiology and Genetics, Goettingen, 37077, Germany.,University of Goettingen, Göttingen Center for Molecular Biosciences, Goettingen, 37077, Germany
| | - Jochen S Hub
- University of Goettingen, Institute for Microbiology and Genetics, Goettingen, 37077, Germany. .,University of Goettingen, Göttingen Center for Molecular Biosciences, Goettingen, 37077, Germany.
| |
Collapse
|
39
|
Regulatory Conformational Coupling between CLC Anion Channel Membrane and Cytoplasmic Domains. Biophys J 2017; 111:1887-1896. [PMID: 27806270 DOI: 10.1016/j.bpj.2016.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/30/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022] Open
Abstract
CLC anion channels are homodimeric proteins. Each subunit is comprised of 18 α-helices designated "A-R" and an intracellular carboxy-terminus containing two cystathionine-β-synthase (CBS1 and CBS2) domains. Conformational coupling between membrane and intracellular domains via poorly understood mechanisms is required for CLC regulation. The activity of the C. elegans CLC channel CLH-3b is reduced by phosphorylation of a carboxy-terminus "activation domain," which disrupts its interaction with CBS domains. CBS2 interfaces with a short intracellular loop, the H-I loop, connecting membrane helices H and I. Alanine mutation of a conserved H-I loop tyrosine residue, Y232, prevents regulation demonstrating that the loop functions to couple phosphorylation-dependent CBS domain conformational changes to channel membrane domains. To gain further insight into the mechanisms of this coupling, we mutated conserved amino acid residues in membrane helices H and I. Only mutation of the H-helix valine residue V228 to leucine prevented phosphorylation-dependent channel regulation. Structural and functional studies of other CLC proteins suggest that V228 may interact with Y529, a conserved R-helix tyrosine residue that forms part of the CLC ion conduction pathway. Mutation of Y529 to alanine also prevented CLH-3b regulation. Intracellular application of the sulfhydryl reactive reagent MTSET using CLH-3b channels engineered with single-cysteine residues in CBS2 indicate that V228L, Y529A, and Y232A disrupt putative regulatory intracellular conformational changes. Extracellular Zn2+ inhibits CLH-3b and alters the effects of intracellular MTSET on channel activity. The effects of Zn2+ are disrupted by V228L, Y529A, and Y232A. Collectively, our findings indicate that there is conformational coupling between CBS domains and the H and R membrane helices mediated by the H-I loop. We propose a simple model by which conformational changes in H and R helices mediate CLH-3b regulation by activation domain phosphorylation.
Collapse
|
40
|
Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 2016; 541:500-505. [PMID: 28002411 PMCID: PMC5576512 DOI: 10.1038/nature20812] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022]
Abstract
CLC proteins transport chloride (Cl-) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl- ions passively, whereas others are secondary active transporters that exchange two Cl- ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture on the basis of sequence homology. Here we determined the structure of a bovine CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl- transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl- passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl-/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl- down its electrochemical gradient.
Collapse
|
41
|
Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter. Biophys J 2016; 110:1334-45. [PMID: 27028643 DOI: 10.1016/j.bpj.2016.02.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/22/2022] Open
Abstract
Multiscale reactive molecular dynamics simulations are used to study proton transport through the central region of ClC-ec1, a widely studied ClC transporter that enables the stoichiometric exchange of 2 Cl(-) ions for 1 proton (H(+)). It has long been known that both Cl(-) and proton transport occur through partially congruent pathways, and that their exchange is strictly coupled. However, the nature of this coupling and the mechanism of antiporting remain topics of debate. Here multiscale simulations have been used to characterize proton transport between E203 (Glu(in)) and E148 (Glu(ex)), the internal and external intermediate proton binding sites, respectively. Free energy profiles are presented, explicitly accounting for the binding of Cl(-) along the central pathway, the dynamically coupled hydration changes of the central region, and conformational changes of Glu(in) and Glu(ex). We find that proton transport between Glu(in) and Glu(ex) is possible in both the presence and absence of Cl(-) in the central binding site, although it is facilitated by the anion presence. These results support the notion that the requisite coupling between Cl(-) and proton transport occurs elsewhere (e.g., during proton uptake or release). In addition, proton transport is explored in the E203K mutant, which maintains proton permeation despite the substitution of a basic residue for Glu(in). This collection of calculations provides for the first time, to our knowledge, a detailed picture of the proton transport mechanism in the central region of ClC-ec1 at a molecular level.
Collapse
|
42
|
Seong JY, Ha K, Hong C, Myeong J, Lim HH, Yang D, So I. Helix O modulates voltage dependency of CLC-1. Pflugers Arch 2016; 469:183-193. [PMID: 27921211 DOI: 10.1007/s00424-016-1907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/14/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
Abstract
The chloride channel (CLC) family of proteins consists of channels and transporters that share similarities in architecture and play essential roles in physiological functions. Among the CLC family, CLC-1 channels have the representative homodimeric double-barreled structure carrying two gating processes. One is protopore gating that acts on each pore independently by glutamate residue (Eext). The other is common gating that closes both pores simultaneously in association with large conformational changes across each subunit. In skeletal muscle, CLC-1 is associated with maintaining normal sarcolemmal excitability, and a number of myotonic mutants were reported to modify the channel gating of CLC-1. In this study, we characterized highly conserved helix O as a key determinant of structural stability in CLC-1. Supporting this hypothesis, myotonic mutant (G523D) at N-terminal of helix O showed the activation at hyperpolarizing membrane potentials with a reversed voltage dependency. However, introducing glutamate at serine residue (S537) at the C-terminal of the helix O on G523D restored WT-like voltage dependency of the common gate and showed proton insensitive voltage dependency. To further validate this significant site, site-specific mutagenesis experiments was performed on V292 that is highly conserved as glutamate in antiporter and closely located to S537 and showed that this area is essential for channel function. Taken together, the results of our study suggest the importance of helix O as the main contributor for stable structure of evolutionary conserved CLC proteins and its key role in voltage dependency of the CLC-1. Furthermore, the C-terminal of the helix O can offer a clue for possible proton involvement in CLC-1 channel.
Collapse
Affiliation(s)
- Ju Yong Seong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Hyun-Ho Lim
- Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon, 461-701, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
43
|
Lee S, Mayes HB, Swanson JMJ, Voth GA. The Origin of Coupled Chloride and Proton Transport in a Cl -/H + Antiporter. J Am Chem Soc 2016; 138:14923-14930. [PMID: 27783900 PMCID: PMC5114699 DOI: 10.1021/jacs.6b06683] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The ClC family of transmembrane proteins
functions throughout nature
to control the transport of Cl– ions across biological
membranes. ClC-ec1 from Escherichia coli is an antiporter,
coupling the transport of Cl– and H+ ions
in opposite directions and driven by the concentration gradients of
the ions. Despite keen interest in this protein, the molecular mechanism
of the Cl–/H+ coupling has not been fully
elucidated. Here, we have used multiscale simulation to help identify
the essential mechanism of the Cl–/H+ coupling. We find that the highest barrier for proton transport
(PT) from the intra- to extracellular solution is attributable to
a chemical reaction, the deprotonation of glutamic acid 148 (E148).
This barrier is significantly reduced by the binding of Cl– in the “central” site (Cl–cen), which displaces E148 and thereby facilitates its deprotonation.
Conversely, in the absence of Cl–cen E148
favors the “down” conformation, which results in a much
higher cumulative rotation and deprotonation barrier that effectively
blocks PT to the extracellular solution. Thus, the rotation of E148
plays a critical role in defining the Cl–/H+ coupling. As a control, we have also simulated PT in the
ClC-ec1 E148A mutant to further understand the role of this residue.
Replacement with a non-protonatable residue greatly increases the
free energy barrier for PT from E203 to the extracellular solution,
explaining the experimental result that PT in E148A is blocked whether
or not Cl–cen is present. The results
presented here suggest both how a chemical reaction can control the
rate of PT and also how it can provide a mechanism for a coupling
of the two ion transport processes.
Collapse
Affiliation(s)
- Sangyun Lee
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, United States
| | - Heather B Mayes
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, United States
| | - Jessica M J Swanson
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
44
|
Chen Y, Roux B. Constant-pH Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulation Method. J Chem Theory Comput 2016; 11:3919-31. [PMID: 26300709 PMCID: PMC4535364 DOI: 10.1021/acs.jctc.5b00261] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys. 2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD-MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD-MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems.
Collapse
Affiliation(s)
- Yunjie Chen
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
45
|
Xie J, Owen T, Xia K, Callahan B, Wang C. A Single Aspartate Coordinates Two Catalytic Steps in Hedgehog Autoprocessing. J Am Chem Soc 2016; 138:10806-9. [PMID: 27529645 PMCID: PMC5589136 DOI: 10.1021/jacs.6b06928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hedgehog (Hh) signaling is driven by the cholesterol-modified Hh ligand, generated by autoprocessing of Hh precursor protein. Two steps in Hh autoprocessing, N-S acyl shift and transesterification, must be coupled for efficient Hh cholesteroylation and downstream signal transduction. In the present study, we show that a conserved aspartate residue, D46 of the Hh autoprocessing domain, coordinates these two catalytic steps. Mutagenesis demonstrated that D46 suppresses non-native Hh precursor autoprocessing and is indispensable for transesterification with cholesterol. NMR measurements indicated that D46 has a pKa of 5.6, ∼2 units above the expected pKa of aspartate, due to a hydrogen-bond between protonated D46 and a catalytic cysteine residue. However, the deprotonated form of D46 side chain is also essential, because a D46N mutation cannot mediate cholesteroylation. On the basis of these data, we propose that the proton shuttling of D46 side chain mechanistically couples the two steps of Hh cholesteroylation.
Collapse
Affiliation(s)
- Jian Xie
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Timothy Owen
- Department of Chemistry, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Brian Callahan
- Department of Chemistry, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Chunyu Wang
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
46
|
A macroscopic H+ and Cl- ions pump via reconstitution of EcClC membrane proteins in lipidic cubic mesophases. Proc Natl Acad Sci U S A 2016; 113:7491-6. [PMID: 27313210 DOI: 10.1073/pnas.1603965113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional reconstitution of membrane proteins within lipid bilayers is crucial for understanding their biological function in living cells. While this strategy has been extensively used with liposomes, reconstitution of membrane proteins in lipidic cubic mesophases presents significant challenges related to the structural complexity of the lipid bilayer, organized on saddle-like minimal surfaces. Although reconstitution of membrane proteins in lipidic cubic mesophases plays a prominent role in membrane protein crystallization, nanotechnology, controlled drug delivery, and pathology of diseased cells, little is known about the molecular mechanism of protein reconstitution and about how transport properties of the doped mesophase mirror the original molecular gating features of the reconstituted membrane proteins. In this work we design a general strategy to demonstrate correct functional reconstitution of active and selective membrane protein transporters in lipidic mesophases, exemplified by the bacterial ClC exchanger from Escherichia coli (EcClC) as a model ion transporter. We show that its correct reconstitution in the lipidic matrix can be used to generate macroscopic proton and chloride pumps capable of selectively transporting charges over the length scale of centimeters. By further exploiting the coupled chloride/proton exchange of this membrane protein and by combining parallel or antiparallel chloride and proton gradients, we show that the doped mesophase can operate as a charge separation device relying only on the reconstituted EcClC protein and an external bias potential. These results may thus also pave the way to possible applications in supercapacitors, ion batteries, and molecular pumps.
Collapse
|
47
|
Chen Z, Beck TL. Free Energies of Ion Binding in the Bacterial CLC-ec1 Chloride Transporter with Implications for the Transport Mechanism and Selectivity. J Phys Chem B 2016; 120:3129-39. [DOI: 10.1021/acs.jpcb.6b01150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhihong Chen
- Department
of Physics, and ‡Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Thomas L. Beck
- Department
of Physics, and ‡Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
48
|
Lee H, Kim J, Kim H, Kim Y. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers. Sci Rep 2016; 6:19527. [PMID: 26846891 PMCID: PMC4742829 DOI: 10.1038/srep19527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/09/2015] [Indexed: 11/09/2022] Open
Abstract
We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180(°).
Collapse
Affiliation(s)
- Hyena Lee
- Organic Nanoelectronics Laboratory, Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jungnam Kim
- Organic Nanoelectronics Laboratory, Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hwajeong Kim
- Organic Nanoelectronics Laboratory, Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea.,Priority Research Center, Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory, Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
49
|
Khantwal CM, Abraham SJ, Han W, Jiang T, Chavan TS, Cheng RC, Elvington SM, Liu CW, Mathews II, Stein RA, Mchaourab HS, Tajkhorshid E, Maduke M. Revealing an outward-facing open conformational state in a CLC Cl(-)/H(+) exchange transporter. eLife 2016; 5. [PMID: 26799336 PMCID: PMC4769167 DOI: 10.7554/elife.11189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022] Open
Abstract
CLC secondary active transporters exchange Cl- for H+. Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using 19F NMR, we show that as [H+] is increased to protonate Gluex and enrich the outward-facing state, a residue ~20 Å away from Gluex, near the subunit interface, moves from buried to solvent-exposed. Consistent with functional relevance of this motion, constriction via inter-subunit cross-linking reduces transport. Molecular dynamics simulations indicate that the cross-link dampens extracellular gate-opening motions. In support of this model, mutations that decrease steric contact between Helix N (part of the extracellular gate) and Helix P (at the subunit interface) remove the inhibitory effect of the cross-link. Together, these results demonstrate the formation of a previously uncharacterized 'outward-facing open' state, and highlight the relevance of global structural changes in CLC function. DOI:http://dx.doi.org/10.7554/eLife.11189.001 Cells have transporter proteins on their surface to carry molecules in and out of the cell. For example, the CLC family of transporters move two chloride ions in one direction at the same time as moving one hydrogen ion in the opposite direction. To be able to move these ions in opposite directions, transporters have to cycle through a series of shapes in which the ions can only access alternate sides of the membrane. First, the transporter adopts an 'outward-facing' shape when the ions first bind to the transporter, then it switches into the 'occluded' shape to move the ions through the membrane. Finally, the transporter takes on the 'inward-facing' shape to release the ions on the other side of the membrane. However, structural studies of CLCs suggest that the structures of these proteins do not change much while they are moving ions, which suggests that they might work in a different way. Khantwal, Abraham et al. have now used techniques called “nuclear magnetic resonance” and "double electron-electron resonance" to investigate how a CLC from a bacterium moves ions. The experiments suggest that when the transporter adopts the outward-facing shape, points on the protein known as Y419 and D417 shift their positions. Chemically linking two regions of the CLC prevented this movement and inhibited the transport of chloride ions across the membrane. Khantwal, Abraham et al. then used a computer simulation to model how the protein changes shape in more detail. This model predicts that two regions of the transporter undergo major rearrangements resulting in a gate-opening motion that widens a passage to allow the chloride ions to bind to the protein. Khantwal, Abraham et al.’s findings will prompt future studies to reveal the other shapes and how CLCs transition between them. DOI:http://dx.doi.org/10.7554/eLife.11189.002
Collapse
Affiliation(s)
- Chandra M Khantwal
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Sherwin J Abraham
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Wei Han
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tao Jiang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tanmay S Chavan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ricky C Cheng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Shelley M Elvington
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
50
|
De Jesús-Pérez JJ, Castro-Chong A, Shieh RC, Hernández-Carballo CY, De Santiago-Castillo JA, Arreola J. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy. ACTA ACUST UNITED AC 2015; 147:25-37. [PMID: 26666914 PMCID: PMC4692487 DOI: 10.1085/jgp.201511424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
Abstract
Intracellular permeant anions, and not extracellular protons, are the predominant driver of fast gating in the hyperpolarization-activated CLC-2 chloride channel. CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl−, Br−, SCN−, and I−) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl−]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate.
Collapse
Affiliation(s)
- José J De Jesús-Pérez
- Physics Institute, Universidad Autónoma de San Luis Potosí, 78290 San Luis Potosí, México
| | - Alejandra Castro-Chong
- Physics Institute, Universidad Autónoma de San Luis Potosí, 78290 San Luis Potosí, México
| | - Ru-Chi Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | | | | | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, 78290 San Luis Potosí, México
| |
Collapse
|