1
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
2
|
Sumi MP, Tupta B, Song K, Mavrakis L, Comhair S, Erzurum SC, Liu X, Stuehr DJ, Ghosh A. Expression of soluble guanylate cyclase (sGC) and its ability to form a functional heterodimer are crucial for reviving the NO-sGC signaling in PAH. Free Radic Biol Med 2024; 225:846-855. [PMID: 39515593 DOI: 10.1016/j.freeradbiomed.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In order to determine the underpinnings of a dysfunctional NO-sGC signal pathway which occurs in pulmonary arterial hypertension (PAH), we investigated pulmonary arterial smooth muscle cells (PASMCs) derived from PAH patients. We found low expression of sGC, a poor sGCα1β1 heterodimer and this correlated with low expression of its facilitator chaperon, hsp90. Treating PASMCs overnight (16 h) with low micromolar doses of a slow release NO donor DETANONOate, reinstated the sGCα1β1 heterodimer and restored its NO-heme dependent activity. Transwell co-culture of HEK cells stably expressing eNOS with PAH PASMCs also restored the sGC heterodimer and its heme-dependent activity with sGC stimulator, BAY 41-2272. To determine whether the dysfunctionality in the NO-sGC pathway stems from a dysfunctional eNOS producing negligible NO, we did transwell co-cultures of pulmonary arterial endothelial cells (PAECs) with PASMCs. Our results indicated that PAECs from both control and PAH samples when activated for eNOS restored both sGC heterodimer and its heme-dependent sGC activity in the corresponding PASMCs, suggesting that PAECs from PAH can also generate NO. In line with these results expression of eNOS, its support chaperon hsp90, its specific kinase Akt, p-Akt or post-translational modifications (PTMs) like OGlcNAc or phospho-tyrosine were unchanged in PAH relative to controls. Additionally there was uniform expression of Hbα/β and Mb in PASMCs or PAECs in PAH or controls and these globins can effectively scavenge the eNOS generated NO, as there was evidence of strong eNOS-Hb/Mb interactions. Our studies suggest that factors such as globin NO scavenging along with vascular remodeling in PAH can cause hampered vasodilation which in the face of poor NO levels as occurs in PAH are additional impediments for effective vasodilation. However importantly our studies suggests that future therapies can use low doses of NO along with sGC stimulators as a potential drug for PAH subjects.
Collapse
Affiliation(s)
- Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Kevin Song
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Lori Mavrakis
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Suzy Comhair
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Xuefeng Liu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44196, USA.
| |
Collapse
|
3
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
4
|
Pino MTL, Rocca MV, Acosta LH, Cabilla JP. Challenging the Norm: The Unrecognized Impact of Soluble Guanylyl Cyclase Subunits in Cancer. Int J Mol Sci 2024; 25:10053. [PMID: 39337539 PMCID: PMC11432225 DOI: 10.3390/ijms251810053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Since the discovery of nitric oxide (NO), a long journey has led us to the present, during which much knowledge has been gained about its pathway members and their roles in physiological and various pathophysiological conditions. Soluble guanylyl cyclase (sGC), the main NO receptor composed of the sGCα1 and sGCβ1 subunits, has been one of the central figures in this narrative. However, the sGCα1 and sGCβ1 subunits remained obscured by the focus on sGC's enzymatic activity for many years. In this review, we restore the significance of the sGCα1 and sGCβ1 subunits by compiling and analyzing available but previously overlooked information regarding their roles beyond enzymatic activity. We delve into the basics of sGC expression regulation, from its transcriptional regulation to its interaction with proteins, placing particular emphasis on evidence thus far demonstrating the actions of each sGC subunit in different tumor models. Exploring the roles of sGC subunits in cancer offers a valuable opportunity to enhance our understanding of tumor biology and discover new therapeutic avenues.
Collapse
Affiliation(s)
- María Teresa L Pino
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - María Victoria Rocca
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - Lucas H Acosta
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - Jimena P Cabilla
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| |
Collapse
|
5
|
Montfort WR. Per-ARNT-Sim Domains in Nitric Oxide Signaling by Soluble Guanylyl Cyclase. J Mol Biol 2024; 436:168235. [PMID: 37572934 PMCID: PMC10858291 DOI: 10.1016/j.jmb.2023.168235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Nitric oxide (NO) regulates large swaths of animal physiology including wound healing, vasodilation, memory formation, odor detection, sexual function, and response to infectious disease. The primary NO receptor is soluble guanyly/guanylate cyclase (sGC), a dimeric protein of ∼150 kDa that detects NO through a ferrous heme, leading to a large change in conformation and enhanced production of cGMP from GTP. In humans, loss of sGC function contributes to multiple disease states, including cardiovascular disease and cancer, and is the target of a new class of drugs, sGC stimulators, now in clinical use. sGC evolved through the fusion of four ancient domains, a heme nitric oxide / oxygen (H-NOX) domain, a Per-ARNT-Sim (PAS) domain, a coiled coil, and a cyclase domain, with catalysis occurring at the interface of the two cyclase domains. In animals, the predominant dimer is the α1β1 heterodimer, with the α1 subunit formed through gene duplication of the β1 subunit. The PAS domain provides an extensive dimer interface that remains unchanged during sGC activation, acting as a core anchor. A large cleft formed at the PAS-PAS dimer interface tightly binds the N-terminal end of the coiled coil, keeping this region intact and unchanged while the rest of the coiled coil repacks, and the other domains reposition. This interface buries ∼3000 Å2 of monomer surface and includes highly conserved apolar and hydrogen bonding residues. Herein, we discuss the evolutionary history of sGC, describe the role of PAS domains in sGC function, and explore the regulatory factors affecting sGC function.
Collapse
Affiliation(s)
- William R Montfort
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
6
|
Nelissen E, Schepers M, Ponsaerts L, Foulquier S, Bronckaers A, Vanmierlo T, Sandner P, Prickaerts J. Soluble guanylyl cyclase: A novel target for the treatment of vascular cognitive impairment? Pharmacol Res 2023; 197:106970. [PMID: 37884069 DOI: 10.1016/j.phrs.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Laura Ponsaerts
- Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience (MHeNS), School for Cardiovascular Diseases (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
7
|
Chen C, Hamza I. Notes from the Underground: Heme Homeostasis in C. elegans. Biomolecules 2023; 13:1149. [PMID: 37509184 PMCID: PMC10377359 DOI: 10.3390/biom13071149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is an iron-containing tetrapyrrole that plays a critical role in various biological processes, including oxygen transport, electron transport, signal transduction, and catalysis. However, free heme is hydrophobic and potentially toxic to cells. Organisms have evolved specific pathways to safely transport this essential but toxic macrocycle within and between cells. The bacterivorous soil-dwelling nematode Caenorhabditis elegans is a powerful animal model for studying heme-trafficking pathways, as it lacks the ability to synthesize heme but instead relies on specialized trafficking pathways to acquire, distribute, and utilize heme. Over the past 15 years, studies on this microscopic animal have led to the identification of a number of heme-trafficking proteins, with corresponding functional homologs in vertebrates. In this review, we provide a comprehensive overview of the heme-trafficking proteins identified in C. elegans and their corresponding homologs in related organisms.
Collapse
Affiliation(s)
- Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
8
|
Dai Y, Stuehr DJ. BAY58-2667 Activates Different Soluble Guanylyl Cyclase Species by Distinct Mechanisms that Indicate Its Principal Target in Cells is the Heme-Free Soluble Guanylyl Cyclase-Heat Shock Protein 90 Complex. Mol Pharmacol 2023; 103:286-296. [PMID: 36868790 PMCID: PMC10166446 DOI: 10.1124/molpharm.122.000624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023] Open
Abstract
Nitric oxide (NO)-unresponsive forms of soluble guanylyl cyclase (sGC) exist naturally and in disease can disable NO-sGC-cGMP signaling. Agonists like BAY58-2667 (BAY58) target these sGC forms, but their mechanisms of action in living cells are unclear. We studied rat lung fibroblast-6 cells and human airway smooth muscle cells that naturally express sGC and HEK293 cells that we transfected to express sGC and variants. Cells were cultured to build up different forms of sGC, and we used fluorescence and FRET-based measures to monitor BAY58-driven cGMP production and any protein partner exchange or heme loss events that may occur for each sGC species. We found that: (i) BAY58 activated cGMP production by the apo-sGCβ-Hsp90 species after a 5-8 minute delay that was associated with apo-sGCβ exchanging its Hsp90 partner with an sGCα subunit. (ii) In cells containing an artificially constructed heme-free sGC heterodimer, BAY58 initiated an immediate and three times faster cGMP production. However, this behavior was not observed in cells expressing native sGC under any condition. (iii) BAY58 activated cGMP production by ferric heme sGC only after a 30-minute delay, coincident with it initiating a delayed, slow ferric heme loss from sGCβ We conclude that the kinetics favor BAY58 activation of the apo-sGCβ-Hsp90 species over the ferric heme sGC species in living cells. The protein partner exchange events driven by BAY58 account for the initial delay in cGMP production and also limit the speed of subsequent cGMP production in the cells. Our findings clarify how agonists like BAY58 may activate sGC in health and disease. SIGNIFICANCE STATEMENT: A class of agonists can activate cyclic guanosine monophosphate (cGMP) synthesis by forms of soluble guanylyl cyclase (sGC) that do not respond to NO and accumulate in disease, but the mechanisms of action are unclear. This study clarifies what forms of sGC exist in living cells, which of these can be activated by the agonists, and the mechanisms and kinetics by which each form is activated. This information may help to hasten deployment of these agonists for pharmaceutical intervention and clinical therapy.
Collapse
Affiliation(s)
- Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
9
|
Sumi MP, Tupta B, Roychowdhury S, Comhair S, Asosingh K, Stuehr DJ, Erzurum SC, Ghosh A. Hemoglobin resident in the lung epithelium is protective for smooth muscle soluble guanylate cyclase function. Redox Biol 2023; 63:102717. [PMID: 37120930 PMCID: PMC10172757 DOI: 10.1016/j.redox.2023.102717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Hemoglobin (Hb) present in the lung epithelium is of unknown significance. However Hb being an nitric oxide (NO) scavenger can bind to NO and reduce its deleterious effects. Hence we postulated an NO scavenging role for this lung Hb. Doing transwell co-culture with bronchial epithelial cells, A549/16-HBE (apical) and human airway smooth muscle cells (HASMCs as basal), we found that Hb can protect the smooth muscle soluble guanylyl cyclase (sGC) from excess NO. Inducing the apical A549/16-HBE cells with cytokines to trigger iNOS expression and NO generation caused a time dependent increase in SNO-sGC and this was accompanied with a concomitant drop in sGC-α1β1 heterodimerization. Silencing Hbαβ in the apical cells further increased the SNO on sGC with a faster drop in the sGC heterodimer and these effects were additive along with further silencing of thioredoxin 1 (Trx1). Since heme of Hb is critical for NO scavenging we determined the Hb heme in a mouse model of allergic asthma (OVA) and found that Hb in the inflammed OVA lungs was low in heme or heme-free relative to those of naïve lungs. Further we established a direct correlation between the status of the sGC heterodimer and the Hb heme from lung samples of human asthma, iPAH, COPD and cystic fibrosis. These findings present a new mechanism of protection of lung sGC by the epithelial Hb, and suggests that this protection maybe lost in asthma or COPD where lung Hb is unable to scavenge the NO due to it being heme-deprived.
Collapse
Affiliation(s)
- Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Suzy Comhair
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
10
|
Sharina I, Martin E. Cellular Factors That Shape the Activity or Function of Nitric Oxide-Stimulated Soluble Guanylyl Cyclase. Cells 2023; 12:471. [PMID: 36766813 PMCID: PMC9914232 DOI: 10.3390/cells12030471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
NO-stimulated guanylyl cyclase (SGC) is a hemoprotein that plays key roles in various physiological functions. SGC is a typical enzyme-linked receptor that combines the functions of a sensor for NO gas and cGMP generator. SGC possesses exclusive selectivity for NO and exhibits a very fast binding of NO, which allows it to function as a sensitive NO receptor. This review describes the effect of various cellular factors, such as additional NO, cell thiols, cell-derived small molecules and proteins on the function of SGC as cellular NO receptor. Due to its vital physiological function SGC is an important drug target. An increasing number of synthetic compounds that affect SGC activity via different mechanisms are discovered and brought to clinical trials and clinics. Cellular factors modifying the activity of SGC constitute an opportunity for improving the effectiveness of existing SGC-directed drugs and/or the creation of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Emil Martin
- Department of Internal Medicine, Cardiology Division, The University of Texas—McGovern Medical School, 1941 East Road, Houston, TX 77054, USA
| |
Collapse
|
11
|
Morishima Y, Lau M, Pratt WB, Osawa Y. Dynamic cycling with a unique Hsp90/Hsp70-dependent chaperone machinery and GAPDH is needed for heme insertion and activation of neuronal NO synthase. J Biol Chem 2023; 299:102856. [PMID: 36596358 PMCID: PMC9922822 DOI: 10.1016/j.jbc.2022.102856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is known to mediate heme insertion and activation of heme-deficient neuronal nitric oxide (NO) synthase (apo-nNOS) in cells by a highly dynamic interaction that has been extremely difficult to study mechanistically with the use of subcellular systems. In that the heme content of many critical hemeproteins is regulated by Hsp90 and the heme chaperone GAPDH, the development of an in vitro system for the study of this chaperone-mediated heme regulation would be extremely useful. Here, we show that use of an antibody-immobilized apo-nNOS led not only to successful assembly of chaperone complexes but the ability to show a clear dependence on Hsp90 and GAPDH for heme-mediated activation of apo-nNOS. The kinetics of binding for Hsp70 and Hsp90, the ATP and K+ dependence, and the absolute requirement for Hsp70 in assembly of Hsp90•apo-nNOS heterocomplexes all point to a similar chaperone machinery to the well-established canonical machine regulating steroid hormone receptors. However, unlike steroid receptors, the use of a purified protein system containing Hsp90, Hsp70, Hsp40, Hop, and p23 is unable to activate apo-nNOS. Thus, heme insertion requires a unique Hsp90-chaperone complex. With this newly developed in vitro system, which recapitulates the cellular process requiring GAPDH as well as Hsp90, further mechanistic studies are now possible to better understand the components of the Hsp90-based chaperone system as well as how this heterocomplex works with GAPDH to regulate nNOS and possibly other hemeproteins.
Collapse
Affiliation(s)
- Yoshihiro Morishima
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miranda Lau
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Ghosh A, Sumi MP, Tupta B, Okamoto T, Aulak K, Tsutsui M, Shimokawa H, Erzurum SC, Stuehr DJ. Low levels of nitric oxide promotes heme maturation into several hemeproteins and is also therapeutic. Redox Biol 2022; 56:102478. [PMID: 36116161 PMCID: PMC9486108 DOI: 10.1016/j.redox.2022.102478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide (NO) is a signal molecule and plays a critical role in the regulation of vascular tone, displays anti-platelet and anti-inflammatory properties. While our earlier and current studies found that low NO doses trigger a rapid heme insertion into immature heme-free soluble guanylyl cyclase β subunit (apo-sGCβ), resulting in a mature sGC-αβ heterodimer, more recent evidence suggests that low NO doses can also trigger heme-maturation of hemoglobin and myoglobin. This low NO phenomena was not only limited to sGC and the globins, but was also found to occur in all three nitric oxide synthases (iNOS, nNOS and eNOS) and Myeloperoxidase (MPO). Interestingly high NO doses were inhibitory to heme-insertion for these hemeproteins, suggesting that NO has a dose-dependent dual effect as it can act both ways to induce or inhibit heme-maturation of key hemeproteins. While low NO stimulated heme-insertion of globins required the presence of the NO-sGC-cGMP signal pathway, iNOS heme-maturation also required the presence of an active sGC. These effects of low NO were significantly diminished in the tissues of double (n/eNOS−/−) and triple (n/i/eNOS−/−) NOS knock out mice where lung sGC was found be heme-free and the myoglobin or hemoglobin from the heart/lungs were found be low in heme, suggesting that loss of endogenous NO globally impacts the whole animal and that this impact of low NO is both essential and physiologically relevant for hemeprotein maturation. Effects of low NO were also found to be protective against ischemia reperfusion injury on an ex vivo lung perfusion (EVLP) system prior to lung transplant, which further suggests that low NO levels are also therapeutic. Low levels of NO enable heme-maturation of the globins by a process that required an NO triggered heme-insertion into sGCβ. •This effect of low NO was also found to occur for all three nitric oxide synthases (NOSs) and Myeloperoxidase (MPO). •Tissues from n/eNOS−/− and n/i/eNOS−/− knock out mice had low heme levels in the globins, while sGC was largely heme-free. •Low NO at ppm levels also manifests itself as a therapy during ischemic reperfusion injury of lungs on the EVLP.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Toshihiro Okamoto
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kulwant Aulak
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Hiroaki Shimokawa
- Faculty of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
13
|
Stuehr DJ, Dai Y, Biswas P, Sweeny EA, Ghosh A. New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals. Biol Chem 2022; 403:1005-1015. [PMID: 36152339 PMCID: PMC10184026 DOI: 10.1515/hsz-2022-0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022]
Abstract
The intracellular trafficking of mitochondrial heme presents a fundamental challenge to animal cells. This article provides some background on heme allocation, discusses some of the concepts, and then reviews research done over the last decade, much in the author's laboratory, that is uncovering unexpected and important roles for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), heat shock protein 90 (hsp90), and nitric oxide (NO) in enabling and regulating the allocation of mitochondrial heme to hemeproteins that mature and function outside of the mitochondria. A model for how hemeprotein functions can be regulated in cells through the coordinate participation of GAPDH, hsp90, and NO in allocating cellular heme is presented.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Elizabeth A Sweeny
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Cui C, Wu C, Shu P, Liu T, Li H, Beuve A. Soluble guanylyl cyclase mediates noncanonical nitric oxide signaling by nitrosothiol transfer under oxidative stress. Redox Biol 2022; 55:102425. [PMID: 35961098 PMCID: PMC9372771 DOI: 10.1016/j.redox.2022.102425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Soluble guanylyl cyclase (GC1) is an α/β heterodimer producing cGMP when stimulated by nitric oxide (NO). The NO-GC1-cGMP pathway is essential for cardiovascular homeostasis but is disrupted by oxidative stress, which causes GC1 desensitization to NO by heme oxidation and S-nitrosation (SNO) of specific cysteines. We discovered that under these conditions, GC1-α subunit increases cellular S-nitrosation via transfer of nitrosothiols to other proteins (transnitrosation) in cardiac and smooth muscle cells. One of the GC1 SNO-targets was the oxidized form of Thioredoxin1 (oTrx1), which is unidirectionally transnitrosated by GC1 with αC610 as a SNO-donor. Because oTrx1 itself drives transnitrosation, we sought and identified SNO-proteins targeted by both GC1 and Trx1. We found that transnitrosation of the small GTPase RhoA by SNO-GC1 requires oTrx1 as a nitrosothiol relay, suggesting a SNO-GC1→oTrx1→RhoA cascade. The RhoA signaling pathway, which is antagonized by the canonical NO-cGMP pathway, was alternatively inhibited by GC1-α-dependent S-nitrosation under oxidative conditions. We propose that SNO-GC1, via transnitrosation, mediates adaptive responses triggered by oxidation of the canonical NO-cGMP pathway.
Collapse
Affiliation(s)
- Chuanlong Cui
- Rutgers School of Graduate Studies, Newark Health Science, Newark, NJ, 07103, USA; Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA
| | - Changgong Wu
- Thermo Fisher Scientific, Somerset, NJ, 08873, USA
| | - Ping Shu
- Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA
| | - Annie Beuve
- Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School at Rutgers, Newark, NJ, 07103, USA.
| |
Collapse
|
15
|
Tawa M, Okamura T. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels. Vascul Pharmacol 2022; 145:107023. [PMID: 35718342 DOI: 10.1016/j.vph.2022.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Soluble guanylate cyclase (sGC) plays an important role in maintaining vascular homeostasis, as an acceptor for the biological messenger nitric oxide (NO). However, only reduced sGC (with a ferrous heme) can be activated by NO; oxidized (ferric heme) and apo (absent heme) sGC cannot. In addition, the proportions of reduced, oxidized, and apo sGC change under pathological conditions. Although diseased blood vessels often show decreased NO bioavailability in the vascular wall, a shift of sGC heme redox balance in favor of the oxidized/apo forms can also occur. Therefore, sGC is of growing interest as a drug target for various cardiovascular diseases. Notably, the balance between NO-sensitive reduced sGC and NO-insensitive oxidized/apo sGC in the body is regulated in a reversible manner by various biological molecules and proteins. Many studies have attempted to identify endogenous factors and determinants that influence this redox state. For example, various reactive nitrogen and oxygen species are capable of inducing the oxidation of sGC heme. Conversely, a heme reductase and some antioxidants reduce the ferric heme in sGC to the ferrous state. This review summarizes the factors and mechanisms identified by these studies that operate to regulate the sGC heme redox state.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1094, Japan.
| | - Tomio Okamura
- Emeritus Professor, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
16
|
Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches. Cells 2022; 11:cells11060976. [PMID: 35326427 PMCID: PMC8946885 DOI: 10.3390/cells11060976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The maturation of hemeprotein dictates that they incorporate heme and become active, but knowledge of this essential cellular process remains incomplete. Studies on chaperon Hsp90 has revealed that it drives functional heme maturation of inducible nitric oxide synthase (iNOS), soluble guanylate cyclase (sGC) hemoglobin (Hb) and myoglobin (Mb) along with other proteins including GAPDH, while globin heme maturations also need an active sGC. In all these cases, Hsp90 interacts with the heme-free or apo-protein and then drives the heme maturation by an ATP dependent process before dissociating from the heme-replete proteins, suggesting that it is a key player in such heme-insertion processes. As the studies on globin maturation also need an active sGC, it connects the globin maturation to the NO-sGC (Nitric oxide-sGC) signal pathway, thereby constituting a novel NO-sGC-Globin axis. Since many aggressive cancer cells make Hbβ/Mb to survive, the dependence of the globin maturation of cancer cells places the NO-sGC signal pathway in a new light for therapeutic intervention. Given the ATPase function of Hsp90 in heme-maturation of client hemeproteins, Hsp90 inhibitors often cause serious side effects and this can encourage the alternate use of sGC activators/stimulators in combination with specific Hsp90 inhibitors for better therapeutic intervention.
Collapse
|
17
|
Biswas P, Dai Y, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels. Free Radic Biol Med 2022; 180:179-190. [PMID: 35051612 PMCID: PMC11389873 DOI: 10.1016/j.freeradbiomed.2022.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygense (TDO) are heme-containing dioxygenases that catalyze the conversion of tryptophan to N-formyl-kynurenine and thus enable generation of l-kynurenine and related metabolites that govern the immune response and broadly impact human biology. Given that TDO and IDO1 activities are directly proportional to their heme contents, it is important to understand their heme delivery and insertion processes. Early studies established that TDO and IDO1 heme levels are sub-saturating in vivo and subject to change but did not identify the cellular mechanisms that provide their heme or enable dynamic changes in their heme contents. We investigated the potential involvement of GAPDH and chaperone Hsp90, based on our previous studies linking these proteins to intracellular heme allocation. We studied heme delivery and insertion into IDO1 and TDO expressed in both normal and heme-deficient HEK293T cells and into IDO1 naturally expressed in HeLa cells in response to IFN-γ, and also investigated the interactions of TDO and IDO1 with GAPDH and Hsp90 in cells and among their purified forms. We found that GAPDH delivered both mitochondrially-generated and exogenous heme to apo-IDO1 and apo-TDO in cells, potentially through a direct interaction with either enzyme. In contrast, we found Hsp90 interacted with apo-IDO1 but not with apo-TDO, and was only needed to drive heme insertion into apo-IDO1. By uncovering the cellular processes that allocate heme to IDO1 and TDO, our study provides new insight on how their activities and l-kynurenine production may be controlled in health and disease.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
18
|
NO rapidly mobilizes cellular heme to trigger assembly of its own receptor. Proc Natl Acad Sci U S A 2022; 119:2115774119. [PMID: 35046034 PMCID: PMC8795550 DOI: 10.1073/pnas.2115774119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) performs many biological functions, but how it operates at the molecular and cellular levels is not fully understood. We discovered that cell NO generation at physiologic levels triggers a rapid redeployment of intracellular heme, an iron-containing cofactor, and we show that this drives the assembly of the natural NO receptor protein, soluble guanylyl cyclase, which is needed for NO to perform its biological signaling functions. Our study uncovers a way that NO can shape biological signaling processes and a way that cells may use NO to control their hemeprotein activities through deployment of the heme cofactor. These concepts broaden our understanding of NO function in biology and medicine. Nitric oxide (NO) signaling in biology relies on its activating cyclic guanosine monophosphate (cGMP) production by the NO receptor soluble guanylyl cyclase (sGC). sGC must obtain heme and form a heterodimer to become functional, but paradoxically often exists as an immature heme-free form in cells and tissues. Based on our previous finding that NO can drive sGC maturation, we investigated its basis by utilizing a fluorescent sGC construct whose heme level can be monitored in living cells. We found that NO generated at physiologic levels quickly triggered cells to mobilize heme to immature sGC. This occurred when NO was generated within cells or by neighboring cells, began within seconds of NO exposure, and led cells to construct sGC heterodimers and thus increase their active sGC level by several-fold. The NO-triggered heme deployment involved cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH)–heme complexes and required the chaperone hsp90, and the newly formed sGC heterodimers remained functional long after NO generation had ceased. We conclude that NO at physiologic levels triggers assembly of its own receptor by causing a rapid deployment of cellular heme. Redirecting cellular heme in response to NO is a way for cells and tissues to modulate their cGMP signaling and to more generally tune their hemeprotein activities wherever NO biosynthesis takes place.
Collapse
|
19
|
Yeh CF, Cheng SH, Lin YS, Shentu TP, Huang RT, Zhu J, Chen YT, Kumar S, Lin MS, Kao HL, Huang PH, Roselló-Sastre E, Garcia F, Jo H, Fang Y, Yang KC. Targeting mechanosensitive endothelial TXNDC5 to stabilize eNOS and reduce atherosclerosis in vivo. SCIENCE ADVANCES 2022; 8:eabl8096. [PMID: 35061532 PMCID: PMC8782452 DOI: 10.1126/sciadv.abl8096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Although atherosclerosis preferentially develops at arterial curvatures and bifurcations where disturbed flow (DF) activates endothelium, therapies targeting flow-dependent mechanosensing pathways in the vasculature are unavailable. Here, we provided experimental evidence demonstrating a previously unidentified causal role of DF-induced endothelial TXNDC5 (thioredoxin domain containing 5) in atherosclerosis. TXNDC5 was increased in human and mouse atherosclerotic lesions and induced in endothelium subjected to DF. Endothelium-specific Txndc5 deletion markedly reduced atherosclerosis in ApoE-/- mice. Mechanistically, DF-induced TXNDC5 increases proteasome-mediated degradation of heat shock factor 1, leading to reduced heat shock protein 90 and accelerated eNOS (endothelial nitric oxide synthase) protein degradation. Moreover, nanoparticles formulated to deliver Txndc5-targeting CRISPR-Cas9 plasmids driven by an endothelium-specific promoter (CDH5) significantly increase eNOS protein and reduce atherosclerosis in ApoE-/- mice. These results delineate a new molecular paradigm that DF-induced endothelial TXNDC5 promotes atherosclerosis and establish a proof of concept of targeting endothelial mechanosensitive pathways in vivo against atherosclerosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, Biological Sciences Division and College, The University of Chicago, Chicago, IL, USA
| | - Shih-Hsin Cheng
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Shan Lin
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Pin Shentu
- Department of Medicine, Biological Sciences Division and College, The University of Chicago, Chicago, IL, USA
| | - Ru-Ting Huang
- Department of Medicine, Biological Sciences Division and College, The University of Chicago, Chicago, IL, USA
| | - Jiayu Zhu
- Department of Medicine, Biological Sciences Division and College, The University of Chicago, Chicago, IL, USA
| | - Yen-Ting Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Li Kao
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Internal Medicine, Veteran General Hospital, Taipei, Taiwan
| | - Esther Roselló-Sastre
- Department of Anatomic Pathology, Hospital General Universitario de Castellón, Castellón, Spain
| | - Francisca Garcia
- Department of Vascular Surgery, Hospital General Universitario de Castellón, Castellón, Spain
- Department of Health Sciences, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division and College, The University of Chicago, Chicago, IL, USA
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Tupta B, Stuehr E, Sumi MP, Sweeny EA, Smith B, Stuehr DJ, Ghosh A. GAPDH is involved in the heme-maturation of myoglobin and hemoglobin. FASEB J 2022; 36:e22099. [PMID: 34972240 DOI: 10.1096/fj.202101237rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022]
Abstract
GAPDH, a heme chaperone, has been previously implicated in the incorporation of heme into iNOS and soluble guanylyl cyclase (sGC). Since sGC is critical for myoglobin (Mb) heme-maturation, we investigated the role of GAPDH in the maturation of this globin, as well as hemoglobins α, β, and γ. Utilizing cell culture systems, we found that overexpression of wild-type GAPDH increased, whereas GAPDH mutants H53A and K227A decreased, the heme content of Mb and Hbα and Hbβ. Overexpression of wild-type GAPDH fully recovered the heme-maturation inhibition observed with the GAPDH mutants. Partial rescue was observed by overexpression of sGCβ1 but not by overexpression of a sGCΔβ1 deletion mutant, which is unable to bind the sGCα1 subunit required to form the active sGCα1β1 complex. Wild type and mutant GAPDH was found to be associated in a complex with each of the globins and Hsp90. GAPDH at endogenous levels was found to be associated with Mb in differentiating C2C12 myoblasts, and with Hbγ or Hbα in differentiating HiDEP-1 erythroid progenitor cells. Knockdown of GAPDH in C2C12 cells suppressed Mb heme-maturation. GAPDH knockdown in K562 erythroleukemia cells suppressed Hbα and Hbγ heme-maturation as well as Hb dimerization. Globin heme incorporation was not only dependent on elevated sGCα1β1 heterodimer formation, but also influenced by iron provision and magnitude of expression of GAPDH, d-aminolevulinic acid, and FLVCR1b. Together, our data support an important role for GAPDH in the maturation of myoglobin and γ, β, and α hemoglobins.
Collapse
Affiliation(s)
- Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Brandon Smith
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Tsolaki VDC, Georgiou-Siafis SK, Tsamadou AI, Tsiftsoglou SA, Samiotaki M, Panayotou G, Tsiftsoglou AS. Hemin accumulation and identification of a heme-binding protein clan in K562 cells by proteomic and computational analysis. J Cell Physiol 2021; 237:1315-1340. [PMID: 34617268 DOI: 10.1002/jcp.30595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
Heme (iron protoporphyrin IX) is an essential regulator conserved in all known organisms. We investigated the kinetics of intracellular accumulation of hemin (oxidized form) in human transformed proerythroid K562 cells using [14 C]-hemin and observed that it is time and temperature-dependent, affected by the presence of serum proteins, as well as the amphipathic/hydrophobic properties of hemin. Hemin-uptake exhibited saturation kinetics as a function of the concentration added, suggesting the involvement of a carrier-cell surface receptor-mediated process. The majority of intracellular hemin accumulated in the cytoplasm, while a substantial portion entered the nucleus. Cytosolic proteins isolated by hemin-agarose affinity column chromatography (HACC) were found to form stable complexes with [59 Fe]-hemin. The HACC fractionation and Liquid chromatography-mass spectrometry analysis of cytosolic, mitochondrial, and nuclear protein isolates from K562 cell extracts revealed the presence of a large number of hemin-binding proteins (HeBPs) of diverse ontologies, including heat shock proteins, cytoskeletal proteins, enzymes, and signaling proteins such as actinin a4, mitogen-activated protein kinase 1 as well as several others. The subsequent computational analysis of the identified HeBPs using HemoQuest confirmed the presence of various hemin/heme-binding motifs [C(X)nC, H, Y] in their primary structures and conformations. The possibility that these HeBPs contribute to a heme intracellular trafficking protein network involved in the homeostatic regulation of the pool and overall functions of heme is discussed.
Collapse
Affiliation(s)
- Vasiliki-Dimitra C Tsolaki
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Sofia K Georgiou-Siafis
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Athina I Tsamadou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Stefanos A Tsiftsoglou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, B.S.R.C. "Alexander Fleming", Vari, Attiki, Greece
| | - George Panayotou
- Institute of Bioinnovation, B.S.R.C. "Alexander Fleming", Vari, Attiki, Greece
| | - Asterios S Tsiftsoglou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| |
Collapse
|
22
|
Aramide Modupe Dosunmu-Ogunbi A, Galley JC, Yuan S, Schmidt HM, Wood KC, Straub AC. Redox Switches Controlling Nitric Oxide Signaling in the Resistance Vasculature and Implications for Blood Pressure Regulation: Mid-Career Award for Research Excellence 2020. Hypertension 2021; 78:912-926. [PMID: 34420371 DOI: 10.1161/hypertensionaha.121.16493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The arterial resistance vasculature modulates blood pressure and flow to match oxygen delivery to tissue metabolic demand. As such, resistance arteries and arterioles have evolved a series of highly orchestrated cell-cell communication mechanisms between endothelial cells and vascular smooth muscle cells to regulate vascular tone. In response to neurohormonal agonists, release of several intracellular molecules, including nitric oxide, evokes changes in vascular tone. We and others have uncovered novel redox switches in the walls of resistance arteries that govern nitric oxide compartmentalization and diffusion. In this review, we discuss our current understanding of redox switches controlling nitric oxide signaling in endothelial and vascular smooth muscle cells, focusing on new mechanistic insights, physiological and pathophysiological implications, and advances in therapeutic strategies for hypertension and other diseases.
Collapse
Affiliation(s)
- Atinuke Aramide Modupe Dosunmu-Ogunbi
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Joseph C Galley
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA.,Center for Microvascular Research (A.C.S.), University of Pittsburgh, PA
| |
Collapse
|
23
|
Dai Y, Stuehr DJ. Inactivation of soluble guanylyl cyclase in living cells proceeds without loss of haem and involves heterodimer dissociation as a common step. Br J Pharmacol 2021; 179:2505-2518. [PMID: 33975383 DOI: 10.1111/bph.15527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Nitric oxide (NO) activates soluble guanylyl cyclase (sGC) for cGMP production, but in disease, sGC becomes insensitive towards NO activation. What changes occur to sGC during its inactivation in cells is not clear. EXPERIMENTAL APPROACH We utilized HEK293 cells expressing sGC proteins to study the changes that occur regarding its haem content, heterodimer status and sGCβ protein partners when the cells were given the oxidant ODQ or the NO donor NOC12 to inactivate sGC. Haem content of sGCβ was monitored in live cells through use of a fluorescent-labelled sGCβ construct, whereas sGC heterodimer status and protein interactions were studied by Western blot analysis. Experiments with purified proteins were also performed. KEY RESULTS ODQ- or NOC12-driven inactivation of sGC in HEK293 cells was associated with haem oxidation (by ODQ), S-nitrosation of the sGCβ subunit (by NOC12), sGC heterodimer breakup and association of the freed sGCβ subunit with cell chaperone Hsp90. These changes occurred without detectable loss of haem from the sGCβ reporter construct. Treating a purified ferrous haem-containing sGCβ with ODQ or NOC12 caused it to bind with Hsp90 without showing any haem loss. CONCLUSION AND IMPLICATIONS Oxidative (ODQ) or nitrosative (NOC12) inactivation of cell sGC involves sGC heterodimer dissociation and rearrangement of the sGCβ protein partners without any haem loss from sGCβ. Clarifying what changes do and do not occur to sGC during its inactivation in cells may direct strategies to preserve or recover NO-dependent cGMP signalling in health and disease.
Collapse
Affiliation(s)
- Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, 44195, USA
| |
Collapse
|
24
|
Ghosh A, Koziol-White CJ, Jester WF, Erzurum SC, Asosingh K, Panettieri RA, Stuehr DJ. An inherent dysfunction in soluble guanylyl cyclase is present in the airway of severe asthmatics and is associated with aberrant redox enzyme expression and compromised NO-cGMP signaling. Redox Biol 2021; 39:101832. [PMID: 33360351 PMCID: PMC7772568 DOI: 10.1016/j.redox.2020.101832] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
A subset of asthmatics develop a severe form of the disease whose etiology involves airway inflammation along with inherent drivers that remain ill-defined. To address this, we studied human airway smooth muscle cells (HASMC), whose relaxation drives airway bronchodilation and whose dysfunction contributes to airway obstruction and hypersensitivity in severe asthma. Because HASMC relaxation can be driven by the NO-soluble guanylyl cyclase (sGC)-cGMP signaling pathway, we questioned if HASMC from severe asthma donors might possess inherent defects in their sGC or in redox enzymes that support sGC function. We analyzed HASMC primary lines derived from 17 severe asthma and 16 normal donors and corresponding lung tissue samples regarding sGC activation by NO or by pharmacologic agonists, and also determined expression levels of sGC α1 and β1 subunits, supporting redox enzymes, and related proteins. We found a majority of the severe asthma donor HASMC (12/17) and lung samples primarily expressed a dysfunctional sGC that was NO-unresponsive and had low heterodimer content and high Hsp90 association. This sGC phenotype correlated with lower expression levels of the supporting redox enzymes cytochrome b5 reductase, catalase, and thioredoxin-1, and higher expression of heme oxygenases 1 and 2. Together, our work reveals that severe asthmatics are predisposed toward defective NO-sGC-cGMP signaling in their airway smooth muscle due to an inherent sGC dysfunction, which in turn is associated with inherent changes in the cell redox enzymes that impact sGC maturation and function.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - William F Jester
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
25
|
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 2021; 296:100336. [PMID: 33508317 PMCID: PMC7949132 DOI: 10.1016/j.jbc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing heterodimeric enzyme that generates many molecules of cGMP in response to its ligand nitric oxide (NO); sGC thereby acts as an amplifier in NO-driven biological signaling cascades. Because sGC helps regulate the cardiovascular, neuronal, and gastrointestinal systems through its cGMP production, boosting sGC activity and preventing or reversing sGC inactivation are important therapeutic and pharmacologic goals. Work over the last two decades is uncovering the processes by which sGC matures to become functional, how sGC is inactivated, and how sGC is rescued from damage. A diverse group of small molecules and proteins have been implicated in these processes, including NO itself, reactive oxygen species, cellular heme, cell chaperone Hsp90, and various redox enzymes as well as pharmacologic sGC agonists. This review highlights their participation and provides an update on the processes that enable sGC maturation, drive its inactivation, or assist in its recovery in various settings within the cell, in hopes of reaching a better understanding of how sGC function is regulated in health and disease.
Collapse
|
26
|
Wu X, Sun X, Sharma S, Lu Q, Yegambaram M, Hou Y, Wang T, Fineman JR, Black SM. Arginine recycling in endothelial cells is regulated BY HSP90 and the ubiquitin proteasome system. Nitric Oxide 2020; 108:12-19. [PMID: 33338599 DOI: 10.1016/j.niox.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022]
Abstract
Despite the saturating concentrations of intracellular l-arginine, nitric oxide (NO) production in endothelial cells (EC) can be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox" led to the discovery of an arginine recycling pathway in which l-citrulline is recycled to l-arginine by utilizing two important urea cycle enzymes argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Prior work has shown that ASL is present in a NO synthetic complex containing hsp90 and endothelial NO synthase (eNOS). However, it is unclear whether hsp90 forms functional complexes with ASS and ASL and if it is involved regulating their activity. Thus, elucidating the role of hsp90 in the arginine recycling pathway was the goal of this study. Our data indicate that both ASS and ASL are chaperoned by hsp90. Inhibiting hsp90 activity with geldanamycin (GA), decreased the activity of both ASS and ASL and decreased cellular l-arginine levels in bovine aortic endothelial cells (BAEC). hsp90 inhibition led to a time-dependent decrease in ASS and ASL protein, despite no changes in mRNA levels. We further linked this protein loss to a proteasome dependent degradation of ASS and ASL via the E3 ubiquitin ligase, C-terminus of Hsc70-interacting protein (CHIP) and the heat shock protein, hsp70. Transient over-expression of CHIP was sufficient to stimulate ASS and ASL degradation while the over-expression of CHIP mutant proteins identified both TPR- and U-box-domain as essential for ASS and ASL degradation. This study provides a novel insight into the molecular regulation l-arginine recycling in EC and implicates the proteasome pathway as a possible therapeutic target to stimulate NO signaling.
Collapse
Affiliation(s)
- Xiaomin Wu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Xutong Sun
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qing Lu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Manivannan Yegambaram
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Yali Hou
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ting Wang
- Department of Internal Medicine, University of Arizona, Phoenix, AZ, 85004, USA
| | - Jeffrey R Fineman
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; The Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
27
|
Heat Shock Proteins Accelerate the Maturation of Brain Endothelial Cell Glucocorticoid Receptor in Focal Human Drug-Resistant Epilepsy. Mol Neurobiol 2020; 57:4511-4529. [PMID: 32748370 DOI: 10.1007/s12035-020-02043-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Pharmacoresistance in epilepsy is a major challenge to successful clinical therapy. Glucocorticoid receptor (GR) dysregulation can affect the underlying disease pathogenesis. We recently reported that local drug biotransformation at the blood-brain barrier is upregulated by GR, which controls drug-metabolizing enzymes (e.g., cytochrome P450s, CYPs) and efflux drug transporters (MDR1) in human epileptic brain endothelial cells (EPI-ECs). Here, we establish that this mechanism is influenced upstream by GR and its association with heat shock proteins/co-chaperones (Hsps) during maturation, which differentially affect human epileptic (EPI) tissue and brain endothelial cells. Overexpressed GR, Hsp90, Hsp70, and Hsp40 were found in EPI vs. NON-EPI brain regions. Elevated neurovascular GR expression and co-localization with Hsps was evident in the EPI regions with cortical dysplasia, predominantly in the brain micro-capillaries and neurons. A corresponding increase in ATPase activity (*p < 0.05) was found in the EPI regions. The GR-Hsp90/Hsp70 binding patterns indicated a faster chaperone-promoted maturation of GR, leading to its overactivation in both the tissue and EPI-ECs derived from EPI/focal regions and GR silencing in EPI-ECs slowed such GR-Hsp interactions. Significantly accelerated GR nuclear translocation was determined in EPI-ECs following treatment with GR modulators/ligands dexamethasone, rifampicin, or phenytoin. Our findings reveal that overexpressed GR co-localizes with Hsps in the neurovasculature of EPI brain, increased GR maturation by Hsps accelerates EPI GR machinery, and furthermore this change in EPI and NON-EPI GR-Hsp interaction alters with the age of seizure onset in epileptic patients, together affecting the pathophysiology and drug regulation in the epileptic brain endothelium.
Collapse
|
28
|
Sweeny EA, Schlanger S, Stuehr DJ. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol 2020; 36:101656. [PMID: 32738790 PMCID: PMC7394750 DOI: 10.1016/j.redox.2020.101656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
NADPH oxidase 5 (NOX5) is a transmembrane signaling enzyme that produces superoxide in response to elevated cytosolic calcium. In addition to its association with numerous human diseases, NOX5 has recently been discovered to play crucial roles in the immune response and cardiovascular system. Details of NOX5 maturation, and specifically its response to changes in intracellular heme levels have remained unclear. Here we establish an experimental system in mammalian cells that allows us to probe the influence of heme availability on ROS production by NOX5. We identified a mode of dynamic regulatory control over NOX5 activity through modulation of its heme saturation and oligomeric state by intracellular heme levels and Hsp90 binding. This regulatory mechanism allows for fine-tuning and reversible modulation of NOX5 activity in response to stimuli.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
29
|
Zhao XX, Cho H, Lee S, Woo JS, Song MY, Cheng XW, Lee KH, Kim W. BAY60-2770 attenuates doxorubicin-induced cardiotoxicity by decreased oxidative stress and enhanced autophagy. Chem Biol Interact 2020; 328:109190. [PMID: 32652078 DOI: 10.1016/j.cbi.2020.109190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Doxorubicin (DOX) administration decreases cardiac soluble guanylate cyclase (sGC) activity. We hypothesized that bypassing impaired NO-sGC-cGMP pathway resulting from the activation of oxidized and heme-free soluble guanylate cyclase (sGC) could be a therapeutic target for DOX-mediated cardiomyopathy (DOX-CM). The present study investigated the therapeutic roles and mechanism of BAY60-2770, an activator of oxidized sGC, in alleviating DOX-CM. METHODS H9c2 cardiomyocytes were pretreated with BAY60-2770 followed by DOX. Cell viability and intracellular reactive oxygen species (ROS) were subsequently measured. To determine the role BAY60-2770 in mitochondrial ROS generation and mitochondrial membrane potential, we examined mitoSOX RED and TMRE fluorescence under DOX exposure. As animal experiments, rats were orally administered with 5 mg/kg of BAY60-2770 at 1 h prior to every DOX treatment and then assessed by echocardiography and apoptotic marker and autophagy. RESULTS BAY60-2770 ameliorated cell viability and DOX-induced oxidative stress in H9c2 cells, which was mediated by PKG activation. Mitochondrial ROS and TMRE fluorescence were attenuated by BAY60-2770 in DOX-treated H9c2 cells. DOX-induced caspase-3 activation decreased after pretreatment with BAY60-2770 in vivo and in vitro. Echocardiography showed that BAY60-2770 significantly improved DOX-induced myocardial dysfunction. Autophagosome was increased by BAY60-2770 in vivo. CONCLUSIONS BAY60-2770 appears to mitigate DOX-induced mitochondrial ROS, membrane potential loss, autophagy, and subsequent apoptosis, leading to protection of myocardial injury and dysfunction. These novel results highlighted the therapeutic potential of BAY60-2770 in preventing DOX-CM.
Collapse
Affiliation(s)
- Xiao-Xiao Zhao
- Department of Internal Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Haneul Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea
| | - Sora Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea
| | - Jong Shin Woo
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea
| | - Min-Young Song
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China
| | - Kyung Hye Lee
- Department of Biotechnology, Cha University, Pocheon, South Korea.
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
30
|
Dao VTV, Elbatreek MH, Deile M, Nedvetsky PI, Güldner A, Ibarra-Alvarado C, Gödecke A, Schmidt HHHW. Non-canonical chemical feedback self-limits nitric oxide-cyclic GMP signaling in health and disease. Sci Rep 2020; 10:10012. [PMID: 32561822 PMCID: PMC7305106 DOI: 10.1038/s41598-020-66639-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Nitric oxide (NO)-cyclic GMP (cGMP) signaling is a vasoprotective pathway therapeutically targeted, for example, in pulmonary hypertension. Its dysregulation in disease is incompletely understood. Here we show in pulmonary artery endothelial cells that feedback inhibition by NO of the NO receptor, the cGMP forming soluble guanylate cyclase (sGC), may contribute to this. Both endogenous NO from endothelial NO synthase and exogenous NO from NO donor compounds decreased sGC protein and activity. This effect was not mediated by cGMP as the NO-independent sGC stimulator, or direct activation of cGMP-dependent protein kinase did not mimic it. Thiol-sensitive mechanisms were also not involved as the thiol-reducing agent N-acetyl-L-cysteine did not prevent this feedback. Instead, both in-vitro and in-vivo and in health and acute respiratory lung disease, chronically elevated NO led to the inactivation and degradation of sGC while leaving the heme-free isoform, apo-sGC, intact or even increasing its levels. Thus, NO regulates sGC in a bimodal manner, acutely stimulating and chronically inhibiting, as part of self-limiting direct feedback that is cGMP independent. In high NO disease conditions, this is aggravated but can be functionally recovered in a mechanism-based manner by apo-sGC activators that re-establish cGMP formation.
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands.
- Department for Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Martin Deile
- Primary Care Center, Altenberger Str. 27, 01277, Dresden, Germany
| | - Pavel I Nedvetsky
- Universitätsklinikum Münster, Medical Clinic D, Medical Cell Biology, Münster, Germany
| | - Andreas Güldner
- Residency Anesthesiology, Department of Anesthesiology and Critical Care Medicine, Technische Universität, Dresden, Germany
| | - César Ibarra-Alvarado
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
31
|
Dai Y, Sweeny EA, Schlanger S, Ghosh A, Stuehr DJ. GAPDH delivers heme to soluble guanylyl cyclase. J Biol Chem 2020; 295:8145-8154. [PMID: 32358060 DOI: 10.1074/jbc.ra120.013802] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Soluble guanylyl cyclase (sGC) is a key component of NO-cGMP signaling in mammals. Although heme must bind in the sGC β1 subunit (sGCβ) for sGC to function, how heme is delivered to sGCβ remains unknown. Given that GAPDH displays properties of a heme chaperone for inducible NO synthase, here we investigated whether heme delivery to apo-sGCβ involves GAPDH. We utilized an sGCβ reporter construct, tetra-Cys sGCβ, whose heme insertion can be followed by fluorescence quenching in live cells, assessed how lowering cell GAPDH expression impacts heme delivery, and examined whether expressing WT GAPDH or a GAPDH variant defective in heme binding recovers heme delivery. We also studied interaction between GAPDH and sGCβ in cells and their complex formation and potential heme transfer using purified proteins. We found that heme delivery to apo-sGCβ correlates with cellular GAPDH expression levels and depends on the ability of GAPDH to bind intracellular heme, that apo-sGCβ associates with GAPDH in cells and dissociates when heme binds sGCβ, and that the purified GAPDH-heme complex binds to apo-sGCβ and transfers its heme to sGCβ. On the basis of these results, we propose a model where GAPDH obtains mitochondrial heme and then forms a complex with apo-sGCβ to accomplish heme delivery to sGCβ. Our findings illuminate a critical step in sGC maturation and uncover an additional mechanism that regulates its activity in health and disease.
Collapse
Affiliation(s)
- Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Biebl MM, Buchner J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034017. [PMID: 30745292 DOI: 10.1101/cshperspect.a034017] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the maturation of a plethora of substrates ("clients"), including protein kinases, transcription factors, and E3 ubiquitin ligases, positioning Hsp90 as a central regulator of cellular proteostasis. Hsp90 undergoes large conformational changes during its ATPase cycle. The processing of clients by cytosolic Hsp90 is assisted by a cohort of cochaperones that affect client recruitment, Hsp90 ATPase function or conformational rearrangements in Hsp90. Because of the importance of Hsp90 in regulating central cellular pathways, strategies for the pharmacological inhibition of the Hsp90 machinery in diseases such as cancer and neurodegeneration are being developed. In this review, we summarize recent structural and mechanistic progress in defining the function of organelle-specific and cytosolic Hsp90, including the impact of individual cochaperones on the maturation of specific clients and complexes with clients as well as ways of exploiting Hsp90 as a drug target.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
33
|
Dai Y, Schlanger S, Haque MM, Misra S, Stuehr DJ. Heat shock protein 90 regulates soluble guanylyl cyclase maturation by a dual mechanism. J Biol Chem 2019; 294:12880-12891. [PMID: 31311859 DOI: 10.1074/jbc.ra119.009016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/28/2019] [Indexed: 01/07/2023] Open
Abstract
The enzyme soluble guanylyl cyclase (sGC) is a heterodimer composed of an α subunit and a heme-containing β subunit. It participates in signaling by generating cGMP in response to nitric oxide (NO). Heme insertion into the β1 subunit of sGC (sGCβ) is critical for function, and heat shock protein 90 (HSP90) associates with heme-free sGCβ (apo-sGCβ) to drive its heme insertion. Here, we tested the accuracy and relevance of a modeled apo-sGCβ-HSP90 complex by constructing sGCβ variants predicted to have an impaired interaction with HSP90. Using site-directed mutagenesis, purified recombinant proteins, mammalian cell expression, and fluorescence approaches, we found that (i) three regions in apo-sGCβ predicted by the model mediate direct complex formation with HSP90 both in vitro and in mammalian cells; (ii) such HSP90 complex formation directly correlates with the extent of heme insertion into apo-sGCβ and with cyclase activity; and (iii) apo-sGCβ mutants possessing an HSP90-binding defect instead bind to sGCα in cells and form inactive, heme-free sGC heterodimers. Our findings uncover the molecular features of the cellular apo-sGCβ-HSP90 complex and reveal its dual importance in enabling heme insertion while preventing inactive heterodimer formation during sGC maturation.
Collapse
Affiliation(s)
- Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Mohammad Mahfuzul Haque
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Saurav Misra
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
34
|
Ghosh A, Dai Y, Biswas P, Stuehr DJ. Myoglobin maturation is driven by the hsp90 chaperone machinery and by soluble guanylyl cyclase. FASEB J 2019; 33:9885-9896. [PMID: 31170354 DOI: 10.1096/fj.201802793rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myoglobin (Mb) maturation involves heme incorporation as a final step. We investigated a role for heat shock protein (hsp) 90 in Mb maturation in C2C12 skeletal muscle myoblasts and cell lines. We found the following: 1) Hsp90 directly interacts preferentially with heme-free Mb both in purified form and in cells. 2) Hsp90 drives heme insertion into apoprotein-Mb in an ATP-dependent process. 3) During differentiation of C2C12 myoblasts into myotubes, the apo-Mb-hsp90 complex associates with 5 cell cochaperons, Hsp70, activator of hsp90 ATPase protein 1 (Aha1), alanyl-tRNA synthetase domain containing 1 (Aarsd1), cell division cycle 37 (Cdc37), and stress induced phosphoprotein 1 (STIP1) in a pattern that is consistent with their enabling Mb maturation. 4) Mb heme insertion was significantly increased in cells that had a functional soluble guanylyl cyclase (sGC)-cGMP signaling pathway and was diminished upon small interfering RNA knockdown of sGCβ1 or upon overexpression of a phosphodiesterase to prevent cGMP buildup. Together, our findings suggest that hsp90 works in concert with cochaperons (Hsp70, Aha1, Aarsd1, STIP1, and Cdc37) and an active sGC-cGMP signaling pathway to promote heme insertion into immature apo-Mb, and thus generate functional Mb during muscle myotube formation. This fills gaps in our understanding and suggests new ways to potentially control these processes.-Ghosh, A., Dai, Y., Biswas, P., Stuehr, D. J. Myoglobin maturation is driven by the hsp90 chaperone machinery and by soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Ghosh A, Stuehr DJ. Hsp90 and Its Role in Heme-Maturation of Client Proteins: Implications for Human Diseases. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Hao Y, Yang W, Ren J, Hall Q, Zhang Y, Kaplan JM. Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide. eLife 2018; 7:36833. [PMID: 30014846 PMCID: PMC6066330 DOI: 10.7554/elife.36833] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/01/2018] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) is released into the air by NO-producing organisms; however, it is unclear if animals utilize NO as a sensory cue. We show that C. elegans avoids Pseudomonas aeruginosa (PA14) in part by detecting PA14-produced NO. PA14 mutants deficient for NO production fail to elicit avoidance and NO donors repel worms. PA14 and NO avoidance are mediated by a chemosensory neuron (ASJ) and these responses require receptor guanylate cyclases and cyclic nucleotide gated ion channels. ASJ exhibits calcium increases at both the onset and removal of NO. These NO-evoked ON and OFF calcium transients are affected by a redox sensing protein, TRX-1/thioredoxin. TRX-1’s trans-nitrosylation activity inhibits the ON transient whereas TRX-1’s de-nitrosylation activity promotes the OFF transient. Thus, C. elegans exploits bacterially produced NO as a cue to mediate avoidance and TRX-1 endows ASJ with a bi-phasic response to NO exposure. Nitric oxide is a colorless gas that contains one nitrogen atom and one oxygen atom. Found at very low levels in the air, this gas is produced by the intense heat of lightning strikes and by combustion engines. Almost all living organisms also produce nitric oxide. In animals, for example, nitric oxide regulates blood pressure and signaling between neurons. However, it was not known if animals could detect nitric oxide in their environment and respond to it. Caenorhabditis elegans is a worm that has been intensively studied in many fields of biology. Unlike most animals, it cannot make nitric oxide. Yet, living in the soil, C. elegans does come into contact with many microbes that can, including the bacterium Pseudomonas aeruginosa. These bacteria can infect and kill C. elegans, and so the worm typically avoids them. Hao, Yang et al. asked whether C. elegans does so by detecting the nitric oxide that these harmful bacteria release into their environment. First, worms were added to a petri dish where a small patch of P. aeruginosa was growing. Consistent with previous results, the worms had all moved away from the bacteria after a few hours. The experiments were then repeated with mutant bacteria that cannot produce nitric oxide. The worms were less likely to avoid these mutant bacteria, suggesting that C. elegans does indeed avoid infection by detecting bacterially produced nitric oxide. Next, using a range of techniques, Hao, Yang et al. showed that C. elegans avoids nitric oxide released into its environment by detecting the gas via a pair of sensory neurons. These neurons require several specific proteins to be able to detect nitric oxide and respond to it. In particular, a protein called Thioredoxin was found to determine the beginning and end of the worm’s sensory response to nitric oxide. All of these proteins are also found in many other animals, and so it is possible that these findings may be relevant to other species too. Further studies are now needed to confirm whether other organisms can sense nitric oxide from their environment and, if so, how their nervous systems equip them to do this.
Collapse
Affiliation(s)
- Yingsong Hao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Jing Ren
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Qi Hall
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
38
|
Inhibition of ferrochelatase impairs vascular eNOS/NO and sGC/cGMP signaling. PLoS One 2018; 13:e0200307. [PMID: 29985945 PMCID: PMC6037352 DOI: 10.1371/journal.pone.0200307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/22/2018] [Indexed: 01/14/2023] Open
Abstract
Ferrochelatase (FECH) is an enzyme necessary for heme synthesis, which is essential for maintaining normal functions of endothelial nitric oxide synthase (eNOS) and soluble guanylyl cyclase (sGC). We tested the hypothesis that inhibition of vascular FECH to attenuate heme synthesis downregulates eNOS and sGC expression, resulting in impaired NO/cGMP-dependent relaxation. To this end, isolated bovine coronary arteries (BCAs) were in vitro incubated without (as controls) or with N-methyl protoporphyrin (NMPP; 10−5–10-7M; a selective FECH antagonist) for 24 and 72 hours respectively. Tissue FECH activity, heme, nitrite/NO and superoxide levels were sequentially measured. Protein expression of FECH, eNOS and sGC was detected by western blot analysis. Vascular responses to various vasoactive agents were evaluated via isometric tension studies. Treatment of BCAs with NMPP initiated a time- and dose-dependent attenuation of FECH activity without changes in its protein expression, followed by significant reduction in the heme level. Moreover, ACh-induced relaxation and ACh-stimulated release of NO were significant reduced, associated with suppression of eNOS protein expression in NMPP-treated groups. Decreased relaxation to NO donor spermine-NONOate reached the statistical significance in BCAs incubated with NMPP for 72 hours, concomitantly with downregulation of sGCβ1 expression that was independent of heat shock protein 90 (HSP90), nor did it significantly affect BCA relaxation caused by BAY 58–2667 that activates sGC in the heme-deficiency. Neither vascular responses to non-NO/sGC-mediators nor production of superoxide was affected by NMPP-treatment. In conclusion, deletion of vascular heme production via inhibiting FECH elicits downregulation of eNOS and sGC expression, leading to an impaired NO-mediated relaxation in an oxidative stress-independent manner.
Collapse
|
39
|
Shah RC, Sanker S, Wood KC, Durgin BG, Straub AC. Redox regulation of soluble guanylyl cyclase. Nitric Oxide 2018; 76:97-104. [PMID: 29578056 DOI: 10.1016/j.niox.2018.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 11/15/2022]
Abstract
The nitric oxide/soluble guanylyl cyclase (NO-sGC) signaling pathway regulates the cardiovascular, neuronal, and gastrointestinal systems. Impaired sGC signaling can result in disease and system-wide organ failure. This review seeks to examine the redox control of sGC through heme and cysteine regulation while discussing therapeutic drugs that target various conditions. Heme regulation involves mechanisms of insertion of the heme moiety into the sGC protein, the molecules and proteins that control switching between the oxidized (Fe3+) and reduced states (Fe2+), and the activity of heme degradation. Modifications to cysteine residues by S-nitrosation on the α1 and β1 subunits of sGC have been shown to be important in sGC signaling. Moreover, redox balance and localization of sGC is thought to control downstream effects. In response to altered sGC activity due to changes in the redox state, many therapeutic drugs have been developed to target decreased NO-sGC signaling. The importance and relevance of sGC continues to grow as sGC dysregulation leads to numerous disease conditions.
Collapse
Affiliation(s)
- Rohan C Shah
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Subramaniam Sanker
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brittany G Durgin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Hsp90 chaperones hemoglobin maturation in erythroid and nonerythroid cells. Proc Natl Acad Sci U S A 2018; 115:E1117-E1126. [PMID: 29358373 DOI: 10.1073/pnas.1717993115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Maturation of adult (α2β2) and fetal hemoglobin (α2γ2) tetramers requires that heme be incorporated into each globin. While hemoglobin alpha (Hb-α) relies on a specific erythroid chaperone (alpha Hb-stabilizing protein, AHSP), the other chaperones that may help mature the partner globins (Hb-γ or Hb-β) in erythroid cells, or may enable nonerythroid cells to express mature Hb, are unknown. We investigated a role for heat-shock protein 90 (hsp90) in Hb maturation in erythroid precursor cells that naturally express Hb-α with either Hb-γ (K562 and HiDEP-1 cells) or Hb-β (HUDEP-2) and in nonerythroid cell lines that either endogenously express Hb-αβ (RAW and A549) or that we transfected to express the globins. We found the following: (i) AHSP and hsp90 associate with distinct globin partners in their immature heme-free states (AHSP with apo-Hbα, and hsp90 with apo-Hbβ or Hb-γ) and that hsp90 does not associate with mature Hb. (ii) Hsp90 stabilizes the apo-globins and helps to drive their heme insertion reactions, as judged by pharmacologic hsp90 inhibition or by coexpression of an ATP-ase defective hsp90. (iii) In nonerythroid cells, heme insertion into all globins became hsp90-dependent, which may explain how mixed Hb tetramers can mature in cells that do not express AHSP. Together, our findings uncover a process in which hsp90 first binds to immature, heme-free Hb-γ or Hb-β, drives their heme insertion process, and then dissociates to allow their heterotetramer formation with Hb-α. Thus, in driving heme insertion, hsp90 works in concert with AHSP to generate functional Hb tetramers during erythropoiesis.
Collapse
|
41
|
Rahaman MM, Nguyen AT, Miller MP, Hahn SA, Sparacino-Watkins C, Jobbagy S, Carew NT, Cantu-Medellin N, Wood KC, Baty CJ, Schopfer FJ, Kelley EE, Gladwin MT, Martin E, Straub AC. Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling. Circ Res 2017; 121:137-148. [PMID: 28584062 DOI: 10.1161/circresaha.117.310705] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Soluble guanylate cyclase (sGC) heme iron, in its oxidized state (Fe3+), is desensitized to NO and limits cGMP production needed for downstream activation of protein kinase G-dependent signaling and blood vessel dilation. OBJECTIVE Although reactive oxygen species are known to oxidize the sGC heme iron, the basic mechanism(s) governing sGC heme iron recycling to its NO-sensitive, reduced state remain poorly understood. METHODS AND RESULTS Oxidant challenge studies show that vascular smooth muscle cells have an intrinsic ability to reduce oxidized sGC heme iron and form protein-protein complexes between cytochrome b5 reductase 3, also known as methemoglobin reductase, and oxidized sGC. Genetic knockdown and pharmacological inhibition in vascular smooth muscle cells reveal that cytochrome b5 reductase 3 expression and activity is critical for NO-stimulated cGMP production and vasodilation. Mechanistically, we show that cytochrome b5 reductase 3 directly reduces oxidized sGC required for NO sensitization as assessed by biochemical, cellular, and ex vivo assays. CONCLUSIONS Together, these findings identify new insights into NO-sGC-cGMP signaling and reveal cytochrome b5 reductase 3 as the first identified physiological sGC heme iron reductase in vascular smooth muscle cells, serving as a critical regulator of cGMP production and protein kinase G-dependent signaling.
Collapse
Affiliation(s)
- Mizanur M Rahaman
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Anh T Nguyen
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Megan P Miller
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Scott A Hahn
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Courtney Sparacino-Watkins
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Soma Jobbagy
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Nolan T Carew
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Nadiezhda Cantu-Medellin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Katherine C Wood
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Catherine J Baty
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Francisco J Schopfer
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Eric E Kelley
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Mark T Gladwin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Emil Martin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Adam C Straub
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.).
| |
Collapse
|
42
|
Abstract
The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
43
|
Ghosh A, Stuehr DJ. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives. Antioxid Redox Signal 2017; 26:182-190. [PMID: 26983679 PMCID: PMC5278824 DOI: 10.1089/ars.2016.6690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form. CRITICAL ISSUES In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways. FUTURE DIRECTIONS We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182-190.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
44
|
Sharina IG, Martin E. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:122-136. [PMID: 26972233 PMCID: PMC7061304 DOI: 10.1089/ars.2016.6687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. CRITICAL ISSUES Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. FUTURE DIRECTIONS Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.
Collapse
Affiliation(s)
- Iraida G Sharina
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas
| | - Emil Martin
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas.,2 School of Science and Technology, Nazarbayev University , Astana, Kazakhstan
| |
Collapse
|
45
|
Chaperonin 60 regulation of SOX9 ubiquitination mitigates the development of knee osteoarthritis. J Mol Med (Berl) 2016; 94:755-69. [DOI: 10.1007/s00109-016-1422-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/06/2016] [Accepted: 04/17/2016] [Indexed: 02/04/2023]
|
46
|
Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proc Natl Acad Sci U S A 2016; 113:E2355-62. [PMID: 27071111 DOI: 10.1073/pnas.1524398113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Asthma is defined by airway inflammation and hyperresponsiveness, and contributes to morbidity and mortality worldwide. Although bronchodilation is a cornerstone of treatment, current bronchodilators become ineffective with worsening asthma severity. We investigated an alternative pathway that involves activating the airway smooth muscle enzyme, soluble guanylate cyclase (sGC). Activating sGC by its natural stimulant nitric oxide (NO), or by pharmacologic sGC agonists BAY 41-2272 and BAY 60-2770, triggered bronchodilation in normal human lung slices and in mouse airways. Both BAY 41-2272 and BAY 60-2770 reversed airway hyperresponsiveness in mice with allergic asthma and restored normal lung function. The sGC from mouse asthmatic lungs displayed three hallmarks of oxidative damage that render it NO-insensitive, and identical changes to sGC occurred in human lung slices or in human airway smooth muscle cells when given chronic NO exposure to mimic the high NO in asthmatic lung. Our findings show how allergic inflammation in asthma may impede NO-based bronchodilation, and reveal that pharmacologic sGC agonists can achieve bronchodilation despite this loss.
Collapse
|
47
|
Chen F, Haigh S, Yu Y, Benson T, Wang Y, Li X, Dou H, Bagi Z, Verin AD, Stepp DW, Csanyi G, Chadli A, Weintraub NL, Smith SME, Fulton DJR. Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones. Free Radic Biol Med 2015; 89:793-805. [PMID: 26456056 PMCID: PMC4751585 DOI: 10.1016/j.freeradbiomed.2015.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/15/2015] [Accepted: 09/03/2015] [Indexed: 10/22/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that orchestrates the folding and stability of proteins that regulate cellular signaling, proliferation and inflammation. We have previously shown that Hsp90 controls the production of reactive oxygen species by modulating the activity of Noxes1-3 and 5, but not Nox4. The goal of the current study was to define the regions on Nox5 that bind Hsp90 and determine how Hsp90 regulates enzyme activity. In isolated enzyme activity assays, we found that Hsp90 inhibitors selectively decrease superoxide, but not hydrogen peroxide, production. The addition of Hsp90 alone only modestly increases Nox5 enzyme activity but in combination with the co-chaperones, Hsp70, HOP, Hsp40, and p23 it robustly stimulated superoxide, but not hydrogen peroxide, production. Proximity ligation assays reveal that Nox5 and Hsp90 interact in intact cells. In cell lysates using a co-IP approach, Hsp90 binds to Nox5 but not Nox4, and the degree of binding can be influenced by calcium-dependent stimuli. Inhibition of Hsp90 induced the degradation of full length, catalytically inactive and a C-terminal fragment (aa398-719) of Nox5. In contrast, inhibition of Hsp90 did not affect the expression levels of N-terminal fragments (aa1-550) suggesting that Hsp90 binding maintains the stability of C-terminal regions. In Co-IP assays, Hsp90 was bound only to the C-terminal region of Nox5. Further refinement using deletion analysis revealed that the region between aa490-550 mediates Hsp90 binding. Converse mapping experiments show that the C-terminal region of Nox5 bound to the M domain of Hsp90 (aa310-529). In addition to Hsp90, Nox5 bound other components of the foldosome including co-chaperones Hsp70, HOP, p23 and Hsp40. Silencing of HOP, Hsp40 and p23 reduced Nox5-dependent superoxide. In contrast, increased expression of Hsp70 decreased Nox5 activity whereas a mutant of Hsp70 failed to do so. Inhibition of Hsp90 results in the loss of higher molecular weight complexes of Nox5 and decreased interaction between monomers. Collectively these results show that the C-terminal region of Nox5 binds to the M domain of Hsp90 and that the binding of Hsp90 and select co-chaperones facilitate oligomerization and the efficient production of superoxide.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029 China; Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA.
| | - Steven Haigh
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Yanfang Yu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Tyler Benson
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Yusi Wang
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Xueyi Li
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Huijuan Dou
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Zsolt Bagi
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Alexander D Verin
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - David W Stepp
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Gabor Csanyi
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Ahmed Chadli
- Cancer Research Center, Molecular Chaperones Program, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw GA 30152, USA
| | - David J R Fulton
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA.
| |
Collapse
|
48
|
Sarkar A, Dai Y, Haque MM, Seeger F, Ghosh A, Garcin ED, Montfort WR, Hazen SL, Misra S, Stuehr DJ. Heat Shock Protein 90 Associates with the Per-Arnt-Sim Domain of Heme-free Soluble Guanylate Cyclase: IMplications for Enzyme Maturation. J Biol Chem 2015; 290:21615-28. [PMID: 26134567 DOI: 10.1074/jbc.m115.645515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90 (hsp90) drives heme insertion into the β1 subunit of soluble guanylate cyclase (sGC) β1, which enables it to associate with a partner sGCα1 subunit and mature into a nitric oxide (NO)-responsive active form. We utilized fluorescence polarization measurements and hydrogen-deuterium exchange mass spectrometry to define molecular interactions between the specific human isoforms hsp90β and apo-sGCβ1. hsp90β and its isolated M domain, but not its isolated N and C domains, bind with low micromolar affinity to a heme-free, truncated version of sGCβ1 (sGCβ1(1-359)-H105F). Surprisingly, hsp90β and its M domain bound to the Per-Arnt-Sim (PAS) domain of apo-sGC-β1(1-359), which lies adjacent to its heme-binding (H-NOX) domain. The interaction specifically involved solvent-exposed regions in the hsp90β M domain that are largely distinct from sites utilized by other hsp90 clients. The interaction strongly protected two regions of the sGCβ1 PAS domain and caused local structural relaxation in other regions, including a PAS dimerization interface and a segment in the H-NOX domain. Our results suggest a means by which the hsp90β interaction could prevent apo-sGCβ1 from associating with its partner sGCα1 subunit while enabling structural changes to assist heme insertion into the H-NOX domain. This mechanism would parallel that in other clients like the aryl hydrocarbon receptor and HIF1α, which also interact with hsp90 through their PAS domains to control protein partner and small ligand binding interactions.
Collapse
Affiliation(s)
| | - Yue Dai
- From the Departments of Pathobiology
| | | | - Franziska Seeger
- the Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, Baltimore, Maryland 21250, and
| | | | - Elsa D Garcin
- the Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, Baltimore, Maryland 21250, and
| | - William R Montfort
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | | - Saurav Misra
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | | |
Collapse
|
49
|
Sun F, Cheng Y, Chen C. Regulation of heme biosynthesis and transport in metazoa. SCIENCE CHINA-LIFE SCIENCES 2015; 58:757-64. [PMID: 26100009 DOI: 10.1007/s11427-015-4885-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/22/2015] [Indexed: 02/08/2023]
Abstract
Heme is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxygen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells synthesize heme via a conserved pathway comprised of eight enzyme-catalyzed reactions. Heme can also be acquired from food or extracellular environment. Cellular heme homeostasis is maintained through the coordinated regulation of synthesis, transport, and degradation. This review presents the current knowledge of the synthesis and transport of heme in metazoans and highlights recent advances in the regulation of these pathways.
Collapse
Affiliation(s)
- FengXiu Sun
- College of Life Sciences and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | | | | |
Collapse
|
50
|
Papapetropoulos A, Hobbs AJ, Topouzis S. Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS. Br J Pharmacol 2015; 172:1397-414. [PMID: 25302549 DOI: 10.1111/bph.12980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 09/08/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023] Open
Abstract
The discovery of NO as both an endogenous signalling molecule and as a mediator of the cardiovascular effects of organic nitrates was acknowledged in 1998 by the Nobel Prize in Physiology/Medicine. The characterization of its downstream signalling, mediated through stimulation of soluble GC (sGC) and cGMP generation, initiated significant translational interest, but until recently this was almost exclusively embodied by the use of PDE5 inhibitors in erectile dysfunction. Since then, research progress in two areas has contributed to an impressive expansion of the therapeutic targeting of the NO-sGC-cGMP axis: first, an increased understanding of the molecular events operating within this complex pathway and second, a better insight into its dys-regulation and uncoupling in human disease. Already-approved PDE5 inhibitors and novel, first-in-class molecules, which up-regulate the activity of sGC independently of NO and/or of the enzyme's haem prosthetic group, are undergoing clinical evaluation to treat pulmonary hypertension and myocardial failure. These molecules, as well as combinations or second-generation compounds, are also being assessed in additional experimental disease models and in patients in a wide spectrum of novel indications, such as endotoxic shock, diabetic cardiomyopathy and Becker's muscular dystrophy. There is well-founded optimism that the modulation of the NO-sGC-cGMP pathway will sustain the development of an increasing number of successful clinical candidates for years to come.
Collapse
|