1
|
Ng C, Huang P, Cho Y, Lee P, Liu Y, Chang T. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth. Hum Brain Mapp 2024; 45:e26777. [PMID: 39046114 PMCID: PMC11267564 DOI: 10.1002/hbm.26777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
The development and refinement of functional brain circuits crucial to human cognition is a continuous process that spans from childhood to adulthood. Research increasingly focuses on mapping these evolving configurations, with the aim to identify markers for functional impairments and atypical development. Among human cognitive systems, nonsymbolic magnitude representations serve as a foundational building block for future success in mathematical learning and achievement for individuals. Using task-based frontoparietal (FPN) and salience network (SN) features during nonsymbolic magnitude processing alongside machine learning algorithms, we developed a framework to construct brain age prediction models for participants aged 7-30. Our study revealed differential developmental profiles in the synchronization within and between FPN and SN networks. Specifically, we observed a linear increase in FPN connectivity, concomitant with a decline in SN connectivity across the age span. A nonlinear U-shaped trajectory in the connectivity between the FPN and SN was discerned, revealing reduced FPN-SN synchronization among adolescents compared to both pediatric and adult cohorts. Leveraging the Gradient Boosting machine learning algorithm and nested fivefold stratified cross-validation with independent training datasets, we demonstrated that functional connectivity measures of the FPN and SN nodes predict chronological age, with a correlation coefficient of .727 and a mean absolute error of 2.944 between actual and predicted ages. Notably, connectivity within the FPN emerged as the most contributing feature for age prediction. Critically, a more matured brain age estimate is associated with better arithmetic performance. Our findings shed light on the intricate developmental changes occurring in the neural networks supporting magnitude representations. We emphasize brain age estimation as a potent tool for understanding cognitive development and its relationship to mathematical abilities across the critical developmental period of youth. PRACTITIONER POINTS: This study investigated the prolonged changes in the brain's architecture across childhood, adolescence, and adulthood, with a focus on task-state frontoparietal and salience networks. Distinct developmental pathways were identified: frontoparietal synchronization strengthens consistently throughout development, while salience network connectivity diminishes with age. Furthermore, adolescents show a unique dip in connectivity between these networks. Leveraging advanced machine learning methods, we accurately predicted individuals' ages based on these brain circuits, with a more mature estimated brain age correlating with better math skills.
Collapse
Affiliation(s)
- Chan‐Tat Ng
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Po‐Hsien Huang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Cheng Cho
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Pei‐Hong Lee
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Chang Liu
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Ting‐Ting Chang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| |
Collapse
|
2
|
Garcia-Sanz S, Serra Grabulosa JM, Cohen Kadosh R, Muñóz Aguilar N, Marín Gutiérrez A, Redolar Ripoll D. Effects of prefrontal and parietal neuromodulation on magnitude processing and integration. PROGRESS IN BRAIN RESEARCH 2023; 282:95-121. [PMID: 38035911 DOI: 10.1016/bs.pbr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Numerical cognition is an essential skill for survival, which includes the processing of discrete and continuous quantities, involving a mainly right fronto-parietal network. However, the neurocognitive systems underlying the processing and integration of discrete and continuous quantities are currently under debate. Noninvasive brain stimulation techniques have been used in the study of the neural basis of numerical cognition with a spatial, temporal and functional resolution superior to other neuroimaging techniques. The present randomized sham-controlled single-blinded trial addresses the involvement of the right dorsolateral prefrontal cortex and the right intraparietal sulcus in magnitude processing and integration. Multifocal anodal transcranial direct current stimulation was applied online during the execution of magnitude comparison tasks in three conditions: right prefrontal, right parietal and sham stimulation. The results show that prefrontal stimulation produced a moderated decrease in response times in all magnitude processing and integration tasks compared to sham condition. While parietal stimulation had no significant effect on any of the tasks. The effect found is interpreted as a generalized improvement in processing speed and magnitude integration due to right prefrontal neuromodulation, which may be attributable to domain-general or domain-specific factors.
Collapse
Affiliation(s)
- Sara Garcia-Sanz
- Faculty of Psychology and Education, Universidad del Atlantico Medio, Las Palmas, Spain; Child Development Research Group, Universidad de La Sabana, Chía, Colombia.
| | | | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | - Diego Redolar Ripoll
- Cognitive Neurolab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
3
|
Liu K, Huang X, Yang X. Visual perception and linguistic abilities, not quantitative knowledge, count in geometric knowledge of kindergarten children. Cogn Process 2023; 24:563-574. [PMID: 37428367 DOI: 10.1007/s10339-023-01145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Geometric knowledge is one of the important mathematical skills acquired by children at a young age and is a major area of future mathematical learning; however, there is no direct research on the factors influencing kindergarteners' early geometric knowledge. The pathways model to mathematics was modified to examine the cognitive mechanisms underlying geometric knowledge in Chinese kindergarten children aged 5-7 (n = 99). Quantitative knowledge, visual-spatial processing, and linguistic abilities were stepped into hierarchical multiple regression models. The results revealed that after age, sex, and nonverbal intelligence were statistically controlled, visual perception, phonological awareness, and rapid automatized naming in linguistic abilities significantly predicted the variation in geometric knowledge. For quantitative knowledge, neither dot comparison nor number comparison test could be a significant precursor of geometry skills. The findings indicate that visual perception and linguistic abilities, not quantitative knowledge, account for the geometric knowledge of kindergarten children.
Collapse
Affiliation(s)
- Kaichun Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Beijing Normal University, Beijing, 100875, China
| | - Xiaohan Huang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Beijing Normal University, Beijing, 100875, China
| | - Xiujie Yang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
4
|
Gilmore C. Understanding the complexities of mathematical cognition: A multi-level framework. Q J Exp Psychol (Hove) 2023; 76:1953-1972. [PMID: 37129432 PMCID: PMC10466984 DOI: 10.1177/17470218231175325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 05/03/2023]
Abstract
Mathematics skills are associated with future employment, well-being, and quality of life. However, many adults and children fail to learn the mathematics skills they require. To improve this situation, we need to have a better understanding of the processes of learning and performing mathematics. Over the past two decades, there has been a substantial growth in psychological research focusing on mathematics. However, to make further progress, we need to pay greater attention to the nature of, and multiple elements involved in, mathematical cognition. Mathematics is not a single construct; rather, overall mathematics achievement is comprised of proficiency with specific components of mathematics (e.g., number fact knowledge, algebraic thinking), which in turn recruit basic mathematical processes (e.g., magnitude comparison, pattern recognition). General cognitive skills and different learning experiences influence the development of each component of mathematics as well as the links between them. Here, I propose and provide evidence for a framework that structures how these components of mathematics fit together. This framework allows us to make sense of the proliferation of empirical findings concerning influences on mathematical cognition and can guide the questions we ask, identifying where we are missing both research evidence and models of specific mechanisms.
Collapse
Affiliation(s)
- Camilla Gilmore
- Centre for Mathematical Cognition, Loughborough University, Loughborough, UK
| |
Collapse
|
5
|
Lee H, Choi W, Lee D, Paik SB. Comparison of visual quantities in untrained neural networks. Cell Rep 2023; 42:112900. [PMID: 37516959 DOI: 10.1016/j.celrep.2023.112900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The ability to compare quantities of visual objects with two distinct measures, proportion and difference, is observed even in newborn animals. However, how this function originates in the brain, even before visual experience, remains unknown. Here, we propose a model in which neuronal tuning for quantity comparisons can arise spontaneously in completely untrained neural circuits. Using a biologically inspired model neural network, we find that single units selective to proportions and differences between visual quantities emerge in randomly initialized feedforward wirings and that they enable the network to perform quantity comparison tasks. Notably, we find that two distinct tunings to proportion and difference originate from a random summation of monotonic, nonlinear neural activities and that a slight difference in the nonlinear response function determines the type of measure. Our results suggest that visual quantity comparisons are primitive types of functions that can emerge spontaneously before learning in young brains.
Collapse
Affiliation(s)
- Hyeonsu Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Dongil Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Bonny JW, Lourenco SF. Electrophysiological Comparison of Cumulative Area and Non-Symbolic Number Judgments. Brain Sci 2023; 13:975. [PMID: 37371453 DOI: 10.3390/brainsci13060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the importance of representing different magnitudes (i.e., number and cumulative area) for action planning and formal mathematics, there is much debate about the nature of these representations, particularly the extent to which magnitudes interact in the mind and brain. Early interaction views suggest that there are shared perceptual processes that form overlapping magnitude representations. However, late interaction views hold that representations of different magnitudes remain distinct, interacting only when preparing a motor response. The present study sheds light on this debate by examining the temporal onset of ratio and congruity effects as participants made ordinal judgments about number and cumulative area. Event-related potentials (ERPs) were recorded to identify whether the onset of such effects aligned with early versus late views. Ratio effects for both magnitudes were observed starting in the P100. Moreover, a congruity effect emerged within the P100. That interactions were observed early in processing, at the same time that initial ratio effects occurred, suggests that number and cumulative area processes interacted when magnitude representations were being formed, prior to preparing a decision response. Our findings are consistent with an early interaction view of magnitude processing, in which number and cumulative area may rely on shared perceptual mechanisms.
Collapse
Affiliation(s)
- Justin W Bonny
- Department of Psychology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | | |
Collapse
|
7
|
Cheng C, Kibbe MM. Is Nonsymbolic Arithmetic Truly "Arithmetic"? Examining the Computational Capacity of the Approximate Number System in Young Children. Cogn Sci 2023; 47:e13299. [PMID: 37303302 DOI: 10.1111/cogs.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/09/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Young children with limited knowledge of formal mathematics can intuitively perform basic arithmetic-like operations over nonsymbolic, approximate representations of quantity. However, the algorithmic rules that guide such nonsymbolic operations are not entirely clear. We asked whether nonsymbolic arithmetic operations have a function-like structure, like symbolic arithmetic. Children (n = 74 4- to -8-year-olds in Experiment 1; n = 52 7- to 8-year-olds in Experiment 2) first solved two nonsymbolic arithmetic problems. We then showed children two unequal sets of objects, and asked children which of the two derived solutions should be added to the smaller of the two sets to make them "about the same." We hypothesized that, if nonsymbolic arithmetic follows similar function rules to symbolic arithmetic, then children should be able to use the solutions of nonsymbolic computations as inputs into another nonsymbolic problem. Contrary to this hypothesis, we found that children were unable to reliably do so, suggesting that these solutions may not operate as independent representations that can be used inputs into other nonsymbolic computations. These results suggest that nonsymbolic and symbolic arithmetic computations are algorithmically distinct, which may limit the extent to which children can leverage nonsymbolic arithmetic intuitions to acquire formal mathematics knowledge.
Collapse
Affiliation(s)
- Chen Cheng
- Division of Social Science, Hong Kong University of Science and Technology
| | - Melissa M Kibbe
- Department of Psychological and Brain Sciences, Boston University
| |
Collapse
|
8
|
Bonny JW, Jones AM. Teams moving more synchronously are perceived as socially dominant. Acta Psychol (Amst) 2023; 237:103952. [PMID: 37247536 DOI: 10.1016/j.actpsy.2023.103952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/25/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
Characteristics indicative of individual and group power can be used to judge social dominance. The present study investigated whether observers use movement synchrony to judge the dominance of teams during a social conflict. How synchronously individuals move together has been found to influence judgments of team effectiveness and the formidability of groups. Across four experiments, the present study examined whether movement synchrony is also used as a cue of team dominance. Experiment 1 provided evidence that teams of animated characters with higher movement synchrony were judged as more likely to win a competition and were rated as more dominant. A similar effect of synchrony on teams winning a competition was observed in Experiment 2 with different types of movement. Experiment 3 replicated the effects of the prior experiments: teams that moved more synchronously were judged as more likely to win a competition and rated as more socially dominant. These effects were extended in Experiment 4 with a new set of stimuli, human-like avatars performing complex dance actions, replicating synchrony-effects with different types of characters. This research indicates that human observers use movement synchrony to judge the social dominance of teams. This expands the types of behavioral cues that are used to predict the power of teams when social conflicts occur.
Collapse
Affiliation(s)
| | - Anya M Jones
- Department of Psychology, Morgan State University, USA
| |
Collapse
|
9
|
Caves EM, Kelley LA. Proportional processing of a visual mate choice signal in the green swordtail, Xiphophorus hellerii. Ecol Lett 2023; 26:575-585. [PMID: 36786312 DOI: 10.1111/ele.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
During mate choice, receivers often assess the magnitude (duration, size, etc.) of signals that vary along a continuum and reflect variation in signaller quality. It is generally assumed that receivers assess this variation linearly, meaning each difference in signalling trait between signallers results in a commensurate change in receiver response. However, increasing evidence shows receivers can respond to signals non-linearly, for example through Weber's Law of proportional processing, where discrimination between stimuli is based on proportional, rather than absolute, differences in magnitude. We quantified mate preferences of female green swordtail fish, Xiphophorus hellerii, for pairs of males differing in body size. Preferences for larger males were better predicted by the proportional difference between males (proportional processing) than the absolute difference (linear processing). This demonstration of proportional processing of a visual signal implies that receiver perception may be an important mechanism selecting against the evolution of ever-larger signalling traits.
Collapse
Affiliation(s)
- Eleanor M Caves
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Laura A Kelley
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
10
|
Lin P, Zhou X, Zang S, Zhu Y, Zhang L, Bai Y, Wang H. Early neural markers for individual difference in mathematical achievement determined from rational number processing. Neuropsychologia 2023; 181:108493. [PMID: 36707024 DOI: 10.1016/j.neuropsychologia.2023.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The neural markers for individual differences in mathematical achievement have been studied extensively using magnetic resonance imaging; however, high temporal resolution electrophysiological evidence for individual differences in mathematical achievement require further elucidation. This study evaluated the event-related potential (ERP) when 48 college students with high or low mathematical achievement (HA vs. LA) matched non-symbolic and symbolic rational numbers. Behavioral results indicated that HA students had better performance in the discretized non-symbolic matching, although the two groups showed similar performances in the continuous matching. ERP data revealed that even before non-symbolic stimulus presentation, HA students had greater Bereitschaftspotential (BP) amplitudes over posterior central electrodes. After the presentation of non-symbolic numbers, HA students had larger N1 amplitudes at 160 ms post-stimulus, over left-lateralized parieto-occipital electrodes. After the presentation of symbolic numbers, HA students displayed more profound P1 amplitudes at 100 ms post-stimulus, over left parietal electrodes. Furthermore, larger BP and N1 amplitudes were associated with the shorter reaction times, and larger P1 amplitudes corresponded to lower error rates. The BP effect could indicate preparation processing, and early left-lateralized N1 and P1 effects could reflect the non-symbolic and symbolic number processing along the dorsal neural pathways. These results suggest that the left-lateralized P1 and N1 components elicited by matching non-symbolic and symbolic rational numbers can be considered as neurocognitive markers for individual differences in mathematical achievement.
Collapse
Affiliation(s)
- Pingting Lin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Shiyi Zang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Yanmei Zhu
- School for Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PR China
| | - Li Zhang
- School for Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PR China
| | - Yi Bai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Haixian Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China.
| |
Collapse
|
11
|
Decarli G, Piazza M, Izard V. Are infants' preferences in the number change detection paradigm driven by sequence patterns? INFANCY 2023; 28:206-217. [PMID: 36135719 DOI: 10.1111/infa.12505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inter-individual differences in infants' numerosity processing have been assessed using a change detection paradigm, where participants were presented with two concurrent streams of images, one alternating between two numerosities and the other showing one constant numerosity. While most infants look longer at the changing stream in this paradigm, the reasons underlying these preferences have remained unclear. We suggest that, besides being attracted by numerosity changes, infants perhaps also respond to the alternating pattern of the changing stream. We conducted two experiments (N = 32) with 6-month-old infants to assess this hypothesis. In the first experiment, infants responded to changes in numerosity even when the changing stream showed numerosities in an unpredictable random order. In the second experiment, infants did not display any preference when an alternating stream was pitted against a random stream. These findings do not provide evidence that the alternating pattern of the changing stream contributes to drive infants' preferences. Instead, around the age of 6 months, infants' responses in the numerosity change detection paradigm appear to be mainly driven by changes in numerosity, with different levels of preference reflecting inter-individual difference in the acuity of numerosity perception.
Collapse
Affiliation(s)
- Gisella Decarli
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Véronique Izard
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| |
Collapse
|
12
|
Aulet LS, Lourenco SF. No intrinsic number bias: Evaluating the role of perceptual discriminability in magnitude categorization. Dev Sci 2023; 26:e13305. [PMID: 35851738 DOI: 10.1111/desc.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 01/29/2023]
Abstract
Accumulating evidence suggests that there is a spontaneous preference for numerical, compared to non-numerical (e.g., cumulative surface area), information. However, given a paucity of research on the perception of non-numerical magnitudes, it is unclear whether this preference reflects a specific bias towards number, or a general bias towards the more perceptually discriminable dimension (i.e., number). Here, we found that when the number and area of visual dot displays were matched in mathematical ratio, number was more perceptually discriminable than area in both adults and children. Moreover, both adults and children preferentially categorized these ratio-matched stimuli based on number, consistent with previous work. However, when number and area were matched in perceptual discriminability, a different pattern of results emerged. In particular, children preferentially categorized stimuli based on area, suggesting that children's previously observed number bias may be due to a mismatch in the perceptual discriminability of number and area, not an intrinsic salience of number. Interestingly, adults continued to categorize the displays on the basis of number. Altogether, these findings suggest a dominant role for area during childhood, refuting the claim that number is inherently and uniquely salient. Yet they also reveal an increased salience of number that emerges over development. Potential explanations for this developmental shift are discussed. RESEARCH HIGHLIGHTS: Previous work found that children and adults spontaneously categorized dot array stimuli by number, over other magnitudes (e.g., area), suggesting number is uniquely salient. However, here we found that when number and area were matched by ratio, as in prior work, number was significantly more perceptually discriminable than area. When number and area were made equally discriminable ('perceptually-matched'), children, contra adults, spontaneously categorized stimuli by area over number (and other non-numerical magnitudes). These findings suggest that area may be uniquely salient early in childhood, with the previously-observed number bias not emerging until later in development.
Collapse
Affiliation(s)
- Lauren S Aulet
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
13
|
Aulet LS, Lourenco SF. Visual adaptation reveals multichannel coding for numerosity. Front Psychol 2023; 14:1125925. [PMID: 37168429 PMCID: PMC10164939 DOI: 10.3389/fpsyg.2023.1125925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Visual numerosity is represented automatically and rapidly, but much remains unknown about the computations underlying this perceptual experience. For example, it is unclear whether numerosity is represented with an opponent channel or multichannel coding system. Within an opponent channel system, all numerical values are represented via the relative activity of two pools of neurons (i.e., one pool with a preference for small numerical values and one pool with a preference for large numerical values). However, within a multichannel coding system, all numerical values are represented directly, with separate pools of neurons for each (discriminable) numerical value. Using an adaptation paradigm, we assessed whether the visual perception of number is better characterized by an opponent channel or multichannel system. Critically, these systems make distinct predictions regarding the pattern of aftereffects exhibited when an observer is adapted to an intermediate numerical value. Opponent channel coding predicts no aftereffects because both pools of neurons adapt equally. By contrast, multichannel coding predicts repulsive aftereffects, wherein numerical values smaller than the adapter are underestimated and those larger than the adapter are overestimated. Consistent with multichannel coding, visual adaptation to an intermediate value (50 dots) yielded repulsive aftereffects, such that participants underestimated stimuli ranging from 10-50 dots, but overestimated stimuli ranging from 50-250 dots. These findings provide novel evidence that the visual perception of number is supported by a multichannel, not opponent channel, coding system, and raise important questions regarding the contributions of different cortical regions, such as the ventral and lateral intraparietal areas, to the representation of number.
Collapse
Affiliation(s)
- Lauren S. Aulet
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- *Correspondence: Lauren S. Aulet,
| | | |
Collapse
|
14
|
Fang S, Zhou X. Form perception speed is critical for the relationship between non-verbal number sense and arithmetic fluency. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2022.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Zhang Y, An N, Chen J, Zhou X, Cui Z. Numerosity sense correlates with fluent mathematical abilities. Acta Psychol (Amst) 2022; 228:103655. [DOI: 10.1016/j.actpsy.2022.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 01/29/2023] Open
|
16
|
What Ability Can Predict Mathematics Performance in Typically Developing Preschoolers and Those with Autism Spectrum Disorder? J Autism Dev Disord 2022; 53:2062-2077. [PMID: 35113327 DOI: 10.1007/s10803-022-05454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Research evaluating predictors of mathematics ability in preschoolers with autism spectrum disorder (ASD) is scarce and inconclusive. The present study first compared the mathematics ability and cognitive abilities of preschoolers with ASD and age-matched typically developing (TD) peers. Then, we examined the relative contributions of cognitive abilities to the mathematics ability of preschoolers with ASD and TD. The results show that compared to those of their age-matched TD peers, the mathematics and cognitive abilities of preschoolers with ASD were impaired. The predictors of mathematics ability were found to differ among preschoolers with ASD and their age-matched TD peers. For TD preschoolers, the domain-specific approximate number system (ANS) was the key predictor of mathematics ability. For preschoolers with ASD, domain-general working memory (WM) was most important.
Collapse
|
17
|
Yousif SR, Alexandrov E, Bennette E, Aslin R, Keil FC. Do children estimate area using an ‘Additive‐Area Heuristic’? Dev Sci 2022; 25:e13235. [DOI: 10.1111/desc.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - Richard Aslin
- Yale University Department of Psychology
- Haskins Laboratories
- Yale Child Study Center
| | | |
Collapse
|
18
|
Fu W, Dolfi S, Decarli G, Spironelli C, Zorzi M. Electrophysiological Signatures of Numerosity Encoding in a Delayed Match-to-Sample Task. Front Hum Neurosci 2022; 15:750582. [PMID: 35058763 PMCID: PMC8764258 DOI: 10.3389/fnhum.2021.750582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The number of elements in a small set of items is appraised in a fast and exact manner, a phenomenon called subitizing. In contrast, humans provide imprecise responses when comparing larger numerosities, with decreasing precision as the number of elements increases. Estimation is thought to rely on a dedicated system for the approximate representation of numerosity. While previous behavioral and neuroimaging studies associate subitizing to a domain-general system related to object tracking and identification, the nature of small numerosity processing is still debated. We investigated the neural processing of numerosity across subitizing and estimation ranges by examining electrophysiological activity during the memory retention period in a delayed numerical match-to-sample task. We also assessed potential differences in the neural signature of numerical magnitude in a fully non-symbolic or cross-format comparison. In line with behavioral performance, we observed modulation of parietal-occipital neural activity as a function of numerosity that differed in two ranges, with distinctive neural signatures of small numerosities showing clear similarities with those observed in visuospatial working memory tasks. We also found differences in neural activity related to numerical information in anticipation of single vs. cross-format comparison, suggesting a top-down modulation of numerical processing. Finally, behavioral results revealed enhanced performance in the mixed-format conditions and a significant correlation between task performance and symbolic mathematical skills. Overall, we provide evidence for distinct mechanisms related to small and large numerosity and differences in numerical encoding based on task demands.
Collapse
Affiliation(s)
- Wanlu Fu
- Department of General Psychology, University of Padova, Padua, Italy
| | - Serena Dolfi
- Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy
| | - Gisella Decarli
- Department of General Psychology, University of Padova, Padua, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Padua, Italy
- IRCCS San Camillo Hospital, Venice, Italy
- *Correspondence: Marco Zorzi,
| |
Collapse
|
19
|
He X, Zhou X, Zhao J, Zhang Y. Visual Perception Supports Adults in Numerosity Processing and Arithmetical Performance. Front Psychol 2021; 12:722261. [PMID: 34744887 PMCID: PMC8570262 DOI: 10.3389/fpsyg.2021.722261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Previous studies have found a correlation between numerosity processing and arithmetical performance. Visual perception has already been indicated as the shared cognitive mechanism between these two; however, these studies mostly focused on children. It is not clear whether the association between numerosity processing and arithmetical performance still existed following the development of individual arithmetical performance. Consequently, the underlying role of visual perception in numerosity processing and arithmetical performance has not been sufficiently studied in adults. For this study, researchers selected a total of 205 adult participants with an average age of 22years. The adults were administered arithmetic tests, numerosity comparison, and visual figure matching. Mental rotation, choice reaction time, and nonverbal intelligence were used as cognitive covariates. Results showed that numerosity comparison of adults correlated with their arithmetical performance, even after controlling for age and gender differences as well as general cognitive processing. However, after controlled for visual figure matching, the well-established association between numerosity comparison and arithmetic performance disappeared. These results supported the visual perception hypothesis, that visual perception measured by visual figure matching can account for the correlation between numerosity comparison and arithmetic performance. This indicated that even for adult populations, visual perceptual ability was the underlying component of numerosity processing and arithmetic performance.
Collapse
Affiliation(s)
- Xinyao He
- School of Psychology, Liaoning Normal University, Liaoning, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Siegler Center for Innovative Learning, Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
| | - Jin Zhao
- Dalian Institute of Science and Technology, Liaoning, China
| | - Yiyun Zhang
- School of Psychology, Liaoning Normal University, Liaoning, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Siegler Center for Innovative Learning, Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
| |
Collapse
|
20
|
Numerical estimation strategies are correlated with math ability in school-aged children. COGNITIVE DEVELOPMENT 2021. [DOI: 10.1016/j.cogdev.2021.101089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Opfer JE, Kim D, Fazio LK, Zhou X, Siegler RS. Cognitive mediators of US-China differences in early symbolic arithmetic. PLoS One 2021; 16:e0255283. [PMID: 34432810 PMCID: PMC8386833 DOI: 10.1371/journal.pone.0255283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2021] [Indexed: 01/29/2023] Open
Abstract
Chinese children routinely outperform American peers in standardized tests of mathematics knowledge. To examine mediators of this effect, 95 Chinese and US 5-year-olds completed a test of overall symbolic arithmetic, an IQ subtest, and three tests each of symbolic and non-symbolic numerical magnitude knowledge (magnitude comparison, approximate addition, and number-line estimation). Overall Chinese children performed better in symbolic arithmetic than US children, and all measures of IQ and number knowledge predicted overall symbolic arithmetic. Chinese children were more accurate than US peers in symbolic numerical magnitude comparison, symbolic approximate addition, and both symbolic and non-symbolic number-line estimation; Chinese and U.S. children did not differ in IQ and non-symbolic magnitude comparison and approximate addition. A substantial amount of the nationality difference in overall symbolic arithmetic was mediated by performance on the symbolic and number-line tests.
Collapse
Affiliation(s)
- John E. Opfer
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Dan Kim
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Lisa K. Fazio
- Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xinlin Zhou
- The Siegler Center for Innovative Learning, The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Robert S. Siegler
- The Siegler Center for Innovative Learning, The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Department of Human Development, Columbia University-Teachers College, New York, New York, United States of America
| |
Collapse
|
22
|
McCormick K, Lacey S, Stilla R, Nygaard LC, Sathian K. Neural Basis of the Sound-Symbolic Crossmodal Correspondence Between Auditory Pseudowords and Visual Shapes. Multisens Res 2021; 35:29-78. [PMID: 34384048 PMCID: PMC9196751 DOI: 10.1163/22134808-bja10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Sound symbolism refers to the association between the sounds of words and their meanings, often studied using the crossmodal correspondence between auditory pseudowords, e.g., 'takete' or 'maluma', and pointed or rounded visual shapes, respectively. In a functional magnetic resonance imaging study, participants were presented with pseudoword-shape pairs that were sound-symbolically congruent or incongruent. We found no significant congruency effects in the blood oxygenation level-dependent (BOLD) signal when participants were attending to visual shapes. During attention to auditory pseudowords, however, we observed greater BOLD activity for incongruent compared to congruent audiovisual pairs bilaterally in the intraparietal sulcus and supramarginal gyrus, and in the left middle frontal gyrus. We compared this activity to independent functional contrasts designed to test competing explanations of sound symbolism, but found no evidence for mediation via language, and only limited evidence for accounts based on multisensory integration and a general magnitude system. Instead, we suggest that the observed incongruency effects are likely to reflect phonological processing and/or multisensory attention. These findings advance our understanding of sound-to-meaning mapping in the brain.
Collapse
Affiliation(s)
- Kelly McCormick
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Simon Lacey
- Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - Randall Stilla
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lynne C. Nygaard
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - K. Sathian
- Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Psychology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| |
Collapse
|
23
|
Saga M, Rkhaila A, Ounine K, Oubaha D. Developmental dyscalculia: the progress of cognitive modeling in the field of numerical cognition deficits for children. APPLIED NEUROPSYCHOLOGY-CHILD 2021; 11:904-914. [PMID: 34320331 DOI: 10.1080/21622965.2021.1955679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The study of dyscalculia requires an analysis of the current developed hypotheses which describe the cognitive mechanisms involved in this neurodevelopmental disorder. The objective of our review is to determine any progress in modeling developmental dyscalculia. The first hypothesis suggests that dyscalculia is the consequence of a specific deficit level number on the precise number system and the approximate system. Then, the second hypothesis states that developmental dyscalculia is linked to a failure to process non-symbolic representations of numbers. On the other hand, the third suggests that dyscalculia is caused by a lack of access to numerical quantities from symbols. However, the last hypothesis asserts that developmental dyscalculia is linked to general deficits. All these hypotheses are compatible with recent neuroimaging results and raise new horizons for experimentation, which will allow the development of precise diagnostic tools and the improvement of intervention strategies and the remediation of developmental dyscalculia.
Collapse
Affiliation(s)
- Mouhatti Saga
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Amine Rkhaila
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Khadija Ounine
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | | |
Collapse
|
24
|
Castaldi E, Arrighi R, Cicchini GM, Andolfi A, Maduli G, Burr DC, Anobile G. Perception of geometric sequences and numerosity both predict formal geometric competence in primary school children. Sci Rep 2021; 11:14243. [PMID: 34244592 PMCID: PMC8271001 DOI: 10.1038/s41598-021-93710-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 01/29/2023] Open
Abstract
While most animals have a sense of number, only humans have developed symbolic systems to describe and organize mathematical knowledge. Some studies suggest that human arithmetical knowledge may be rooted in an ancient mechanism dedicated to perceiving numerosity, but it is not known if formal geometry also relies on basic, non-symbolic mechanisms. Here we show that primary-school children who spontaneously detect and predict geometrical sequences (non-symbolic geometry) perform better in school-based geometry tests indexing formal geometric knowledge. Interestingly, numerosity discrimination thresholds also predicted and explained a specific portion of variance of formal geometrical scores. The relation between these two non-symbolic systems and formal geometry was not explained by age or verbal reasoning skills. Overall, the results are in line with the hypothesis that some human-specific, symbolic systems are rooted in non-symbolic mechanisms.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy.,Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy.
| | | | - Arianna Andolfi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Giuseppe Maduli
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy.,CNR Neuroscience Institute, 56100, Pisa, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| |
Collapse
|
25
|
Aulet LS, Lourenco SF. The relative salience of numerical and non-numerical dimensions shifts over development: A re-analysis of. Cognition 2021; 210:104610. [DOI: 10.1016/j.cognition.2021.104610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
|
26
|
Fuhs MW, Tavassolie N, Wang Y, Bartek V, Sheeks NA, Gunderson EA. Children’s Flexible Attention to Numerical and Spatial Magnitudes in Early Childhood. JOURNAL OF COGNITION AND DEVELOPMENT 2020. [DOI: 10.1080/15248372.2020.1844712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Judgments of spatial extent are fundamentally illusory: ‘Additive-area’ provides the best explanation. Cognition 2020; 205:104439. [DOI: 10.1016/j.cognition.2020.104439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
|
28
|
Bernabini L, Tobia V, Bonifacci P. Intergenerational Features of Math Skills: Symbolic and Non-Symbolic Magnitude Comparison and Written Calculation in Mothers and Children. JOURNAL OF COGNITION AND DEVELOPMENT 2020. [DOI: 10.1080/15248372.2020.1844711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Crollen V, Collignon O. How visual is the « number sense »? Insights from the blind. Neurosci Biobehav Rev 2020; 118:290-297. [PMID: 32711006 DOI: 10.1016/j.neubiorev.2020.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Is vision a necessary building block for the foundations of mathematical cognition? A straightforward model to test the causal role visual experience plays in the development of numerical abilities is to study people born without sight. In this review we will demonstrate that congenitally blind people can develop numerical abilities that equal or even surpass those of sighted individuals, despite representing numbers using a qualitatively different representational format. We will also show that numerical thinking in blind people maps onto regions typically involved in visuo-spatial processing in the sighted, highlighting how intrinsic computational biases may constrain the reorganization of numerical networks in case of early visual deprivation. More generally, we will illustrate how the study of arithmetic abilities in congenitally blind people represents a compelling model to understand how sensory experience scaffolds the development of higher-level cognitive representations.
Collapse
Affiliation(s)
- Virginie Crollen
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium.
| | - Olivier Collignon
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium; Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
| |
Collapse
|
30
|
Savelkouls S, Cordes S. The impact of set size on cumulative area judgments. Acta Psychol (Amst) 2020; 210:103163. [PMID: 32858461 DOI: 10.1016/j.actpsy.2020.103163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/29/2023] Open
Abstract
The ability to track number has long been considered more difficult than tracking continuous quantities. Evidence for this claim comes from work revealing that continuous properties (specifically cumulative area) influence numerical judgments, such that adults perform worse on numerical tasks when cumulative area is incongruent with number. If true, then continuous extent tracking abilities should be unimpeded by number. The aim of the present study was to determine the precision with which adults track cumulative area and to uncover the process by which they do so. Across two experiments, we presented adults with arrays of dots and asked them to judge the relative cumulative area of the displays. Participants performed worse and were slower on incongruent trials, in which the more numerous array had the smaller cumulative area. These findings suggest that number interferes with continuous quantity judgments, and that number is at least as salient as continuous variables, undermining claims in the literature that continuous properties are easier to represent, and more salient to adults. Our primary research question, however, pertained to how cumulative area representations were impacted by set size. Results revealed that the area of a single item was tracked much faster and with greater precision than the area of multiple items. However, for sets with more than one item, results revealed less accurate, yet faster responses, as set size increased, suggesting a speed-accuracy trade-off in judgments of cumulative area. Results are discussed in the context of two distinct theories regarding the process of tracking cumulative area.
Collapse
Affiliation(s)
| | - Sara Cordes
- Department of Psychology, Boston College, United States of America
| |
Collapse
|
31
|
Libertus ME, Odic D, Feigenson L, Halberda J. Effects of Visual Training of Approximate Number Sense on Auditory Number Sense and School Math Ability. Front Psychol 2020; 11:2085. [PMID: 32973627 PMCID: PMC7481447 DOI: 10.3389/fpsyg.2020.02085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 07/28/2020] [Indexed: 01/29/2023] Open
Abstract
Research with children and adults suggests that people's math performance is predicted by individual differences in an evolutionarily ancient ability to estimate and compare numerical quantities without counting (the approximate number system or ANS). However, previous work has almost exclusively used visual stimuli to measure ANS precision, leaving open the possibility that the observed link might be driven by aspects of visuospatial competence, rather than the amodal ANS. We addressed this possibility in an ANS training study. Sixty-eight 6-year-old children participated in a 5-week study that either trained their visual ANS ability or their phonological awareness (an active control group). Immediately before and after training, we assessed children's visual and auditory ANS precision, as well as their symbolic math ability and phonological awareness. We found that, prior to training, children's precision in a visual ANS task related to their math performance - replicating recent studies. Importantly, precision in an auditory ANS task also related to math performance. Furthermore, we found that children who completed visual ANS training showed greater improvements in auditory ANS precision than children who completed phonological awareness training. Finally, children in the ANS training group showed significant improvements in math ability but not phonological awareness. These results suggest that the link between ANS precision and school math ability goes beyond visuospatial abilities and that the modality-independent ANS is causally linked to math ability in early childhood.
Collapse
Affiliation(s)
- Melissa E Libertus
- Department of Psychology and Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Darko Odic
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States.,Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Justin Halberda
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
32
|
Yousif SR, Keil FC. Area, not number, dominates estimates of visual quantities. Sci Rep 2020; 10:13407. [PMID: 32770093 PMCID: PMC7414215 DOI: 10.1038/s41598-020-68593-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
The study of numerical estimation collectively spans hundreds of papers and hundreds of thousands of citations. Interest in this topic hinges on one assumption: that we can approximate number independently of continuous spatial dimensions (e.g., area). Accordingly, many studies have specifically tried to demonstrate sensitivity specific to number while controlling other dimensions. However, recent work demonstrates that perceived area (based on psychophysical judgments) differs from true area (i.e., a precise pixel count). This difference raises concerns about most past studies of approximate number, by asking if they have systematically controlled for the wrong dimension(s). Building on recent findings that the percept of area may be systematically illusory, the current study examines the relation between perceived area and number. Four experiments reveal that (1) perceived area, but not mathematical area, strongly influences numerosity judgments, (2) perceived area influences perceived number but not the reverse, (3) number acuity is greatly reduced in stimuli controlled for perceived area, and (4) the ability to make area discriminations on the basis of 'additive area' but not mathematical area predicts number discrimination ability. Together, these findings highlight a potentially serious confound in prior work, raising new theoretical and methodological challenges for the field.
Collapse
Affiliation(s)
- Sami R Yousif
- Psychology Department, Yale University, New Haven, USA.
| | - Frank C Keil
- Psychology Department, Yale University, New Haven, USA
| |
Collapse
|
33
|
Maldonado Moscoso PA, Anobile G, Primi C, Arrighi R. Math Anxiety Mediates the Link Between Number Sense and Math Achievements in High Math Anxiety Young Adults. Front Psychol 2020; 11:1095. [PMID: 32528392 PMCID: PMC7264265 DOI: 10.3389/fpsyg.2020.01095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/29/2020] [Indexed: 01/29/2023] Open
Abstract
In the past few years, many studies have suggested that subjects with high sensory precision in the processing of non-symbolic numerical quantities (approximate number system; ANS) also have higher math abilities. At the same time, there has been interest in another non-cognitive factor affecting mathematical learning: mathematical anxiety (MA). MA is defined as a debilitating emotional reaction to mathematics that interferes with the manipulation of numbers and the solving of mathematical problems. Few studies have been dedicated to uncovering the interplay between ANS and MA and those have provided conflicting evidence. Here we measured ANS precision (numerosity discrimination thresholds) in a cohort of university students with either a high (>75th percentile; n = 49) or low (<25th percentile; n = 39) score on the Abbreviate Math Anxiety Scale (AMAS). We also assessed math proficiency using a standardized test (MPP: Mathematics Prerequisites for Psychometrics), visuo-spatial attention capacity by means of a Multiple Objects Tracking task (MOT) and sensory precision for non-numerical quantities (disk size). Our results confirmed previous studies showing that math abilities and ANS precision correlate in subjects with high math anxiety. Neither precision in size-discrimination nor visuo-spatial attentional capacity were found to correlate with math capacities. Interestingly, within the group with high MA, our data also revealed a relationship between ANS precision and MA, with MA playing a key role in mediating the correlation between ANS and math achievement. Taken together, our results suggest an interplay between extreme levels of MA and the sensory precision in the processing of non-symbolic numerosity.
Collapse
Affiliation(s)
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Caterina Primi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
34
|
Yeo DJ, Price GR. Probing the mechanisms underlying numerosity-to-numeral mappings and their relation to math competence. PSYCHOLOGICAL RESEARCH 2020; 85:1248-1271. [PMID: 32060699 DOI: 10.1007/s00426-020-01299-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022]
Abstract
Numerosity estimation performance (e.g., how accurate, consistent, or proportionally spaced (linear) numerosity-numeral mappings are) has previously been associated with math competence. However, the specific mechanisms that underlie such a relation is unknown. One possible mechanism is the mapping process between numerical sets and symbolic numbers (e.g., Arabic numerals). The current study examined two hypothesized mechanisms of numerosity-numeral mappings (item-based "associative" and holistic "structural" mapping) and their roles in the estimation-and-math relation. Specifically, mappings for small numbers (e.g., 1-10) are thought to be associative and resistant to calibration (e.g., feedback on accuracy of estimates), whereas holistic "structural" mapping for larger numbers (e.g., beyond 10) may be supported by flexibly aligning a numeral "response grid" (akin to a ruler) to an analog "mental number line" upon calibration. In 57 adults, we used pre- and post-calibration estimates to measure the range of continuous associative mappings among small numbers (e.g., a base range of associative mappings from 1 to 10), and obtained measures of math competence and delayed multiple-choice strategy reports. Consistent with previous research, uncalibrated estimation performance correlated with calculation competence, controlling for reading fluency and working memory. However, having a higher base range of associative mappings was not related to estimation performance or any math competence measures. Critically, discontinuity in calibration effects was typical at the individual level, which calls into question the nature of "holistic structural mapping". A parsimonious explanation to integrate previous and current findings is that estimation performance is likely optimized by dynamically constructing numerosity-numeral mappings through the use of multiple strategies from trial to trial.
Collapse
Affiliation(s)
- Darren J Yeo
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.,Division of Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, 639818, Singapore
| | - Gavin R Price
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.
| |
Collapse
|
35
|
Gouet C, Carvajal S, Halberda J, Peña M. Training nonsymbolic proportional reasoning in children and its effects on their symbolic math abilities. Cognition 2020; 197:104154. [PMID: 31945678 DOI: 10.1016/j.cognition.2019.104154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/29/2023]
Abstract
Our understanding of proportions can be both symbolic, as when doing calculations in school mathematics, or intuitive, as when folding a bed sheet in half. While an understanding of symbolic proportions is crucial for school mathematics, the cognitive foundations of this ability remain unclear. Here we implemented a computerized training game to test a causal link from intuitive (nonsymbolic) to symbolic proportional reasoning and other math abilities in 4th grade children. An experimental group was trained in nonsymbolic proportional reasoning (PR) with continuous extents, and an active control group was trained on a remarkably similar nonsymbolic magnitude comparison. We found that the experimental group improved at nonsymbolic PR across training sessions, showed near transfer to a paper-and-pencil nonsymbolic PR test, transfer to symbolic proportions, and far transfer to geometry. The active control group showed only a predicted far transfer to geometry. In a second experiment, these results were replicated with an independent cohort of children. Overall this study extends previous correlational evidence, suggesting a functional link between nonsymbolic PR on one hand and symbolic PR and geometry on the other.
Collapse
Affiliation(s)
- Camilo Gouet
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Salvador Carvajal
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Justin Halberda
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Marcela Peña
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
36
|
Cheng D, Xiao Q, Cui J, Chen C, Zeng J, Chen Q, Zhou X. Short-term numerosity training promotes symbolic arithmetic in children with developmental dyscalculia: The mediating role of visual form perception. Dev Sci 2019; 23:e12910. [PMID: 31599035 DOI: 10.1111/desc.12910] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2019] [Accepted: 09/27/2019] [Indexed: 01/21/2023]
Abstract
Studies have shown that numerosity-based arithmetic training can promote arithmetic learning in typically developing children as well as children with developmental dyscalculia (DD), but the cognitive mechanism underlying this training effect remains unclear. The main aim of the current study was to examine the role of visual form perception in arithmetic improvement through an 8-day numerosity training for DD children. Eighty DD children were selected from four Chinese primary schools. They were randomly divided into the intervention and control groups. The intervention group received training on an apple-collecting game, whereas the control group received an English dictation task. Children's cognitive and arithmetic performances were assessed before and after training. The results showed that the intervention group showed a significant improvement in arithmetic performance, approximate number system (ANS) acuity, and visual form perception, but not in spatial processing and sentence comprehension. The control group showed no significant improvement in any cognitive ability. Mediation analysis further showed that training-related improvement in arithmetic performance was fully mediated by the improvement in visual form perception. The results suggest that short-term numerosity training enhances the arithmetic performance of DD children by improving their visual form perception.
Collapse
Affiliation(s)
- Dazhi Cheng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Department of Pediatric Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Qing Xiao
- Chinese Teaching Department, Beijing Chinese Language and Culture College, Beijing, China
| | - Jiaxin Cui
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China.,Department of Psychology, College of Education, Hebei Normal University, Shijiazhuang, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Jieying Zeng
- Business School, Beijing Wuzi University, Beijing, China
| | - Qian Chen
- Department of Pediatric Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Does 1 + 1 = 2nd? The relations between children's understanding of ordinal position and their arithmetic performance. J Exp Child Psychol 2019; 187:104651. [PMID: 31352227 DOI: 10.1016/j.jecp.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022]
Abstract
The current study examined the relations between 5- and 6-year-olds' understanding of ordinality and their mathematical competence. We focused specifically on "positional operations," a property of ordinality not contingent on magnitude, in an effort to better understand the unique contributions of position-based ordinality to math development. Our findings revealed that two types of positional operations-the ability to execute representational movement along letter sequences and the ability to update ordinal positions after item insertion or removal-predicted children's arithmetic performance. Nevertheless, these positional operations did not mediate the relation between magnitude processing (as measured by the acuity of the approximate number system) and arithmetic performance. Taken together, these findings suggest a unique role for positional ordinality in math development. We suggest that positional ordinality may aid children in their mental organization of number symbols, which may facilitate solving arithmetic computations and may support the development of novel numerical concepts.
Collapse
|
38
|
Cueli M, Areces D, McCaskey U, Álvarez-García D, González-Castro P. Mathematics Competence Level: The Contribution of Non-symbolic and Spatial Magnitude Comparison Skills. Front Psychol 2019; 10:465. [PMID: 30890988 PMCID: PMC6411688 DOI: 10.3389/fpsyg.2019.00465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Magnitude comparison skills have been related to mathematics competence, although results in this area vary. The current study aimed to describe the performance of 75 children (aged 4-5 years) in two comparison tasks; and examine the strength of the relationship between each of the two tasks and mathematics competence level (MCL). Participants were assessed with the Early Numeracy Test which provides a global MCL score. Magnitude comparison skills were assessed with two tasks: a non-symbolic number comparison task and a spatial comparison task. Results of the Pearson correlation analysis showed a relationship between the two tasks with better performance in the spatial comparison task. Regression analysis with the stepwise method showed that only the non-symbolic number comparison task had a significant value in the prediction of the MCL pointing to the need to take these kinds of tasks into account in the first years of school.
Collapse
Affiliation(s)
- Marisol Cueli
- Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Débora Areces
- Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Ursina McCaskey
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
39
|
Yousif SR, Keil FC. The Additive-Area Heuristic: An Efficient but Illusory Means of Visual Area Approximation. Psychol Sci 2019; 30:495-503. [DOI: 10.1177/0956797619831617] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
How do we determine how much of something is present? A large body of research has investigated the mechanisms and consequences of number estimation, yet surprisingly little work has investigated area estimation. Indeed, area is often treated as a pesky confound in the study of number. Here, we describe the additive-area heuristic, a means of rapidly estimating visual area that results in substantial distortions of perceived area in many contexts, visible even in simple demonstrations. We show that when we controlled for additive area, observers were unable to discriminate on the basis of true area, per se, and that these results could not be explained by other spatial dimensions. These findings reflect a powerful perceptual illusion in their own right but also have implications for other work, namely, that which relies on area controls to support claims about number estimation. We discuss several areas of research potentially affected by these findings.
Collapse
|
40
|
Number, time, and space are not singularly represented: Evidence against a common magnitude system beyond early childhood. Psychon Bull Rev 2019; 26:833-854. [PMID: 30684249 DOI: 10.3758/s13423-018-1561-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our ability to represent temporal, spatial, and numerical information is critical for understanding the world around us. Given the prominence of quantitative representations in the natural world, numerous cognitive, neurobiological, and developmental models have been proposed as a means of describing how we track quantity. One prominent theory posits that time, space, and number are represented by a common magnitude system, or a common neural locus (i.e., Bonn & Cantlon in Cognitive Neuropsychology, 29(1/2), 149-173, 2012; Cantlon, Platt, & Brannon in Trends in Cognitive Sciences, 13(2), 83-91, 2009; Meck & Church in Animal Behavior Processes, 9(3), 320, 1983; Walsh in Trends in Cognitive Sciences, 7(11), 483-488, 2003). Despite numerous similarities in representations of time, space, and number, an increasing body of literature reveals striking dissociations in how each quantity is processed, particularly later in development. These findings have led many researchers to consider the possibility that separate systems may be responsible for processing each quantity. This review will analyze evidence in favor of a common magnitude system, particularly in infancy, which will be tempered by counter evidence, the majority of which comes from experiments with children and adult participants. After reviewing the current data, we argue that although the common magnitude system may account for quantity representations in infancy, the data do not provide support for this system throughout the life span. We also identify future directions for the field and discuss the likelihood of the developmental divergence model of quantity representation, like that of Newcombe (Ecological Psychology, 2, 147-157, 2014), as a more plausible account of quantity development.
Collapse
|
41
|
Abstract
Recent research suggests that humans perceive quantity using a non-symbolic "number sense." This sense is then thought to provide a foundation for understanding symbolic numbers in formal education. Given this link, there has been interest in the extent to which the approximate number system (ANS) can be improved via dedicated training, as this could provide a route to improving performance in symbolic mathematics. However, current evidence regarding the trainability of the ANS comes largely from studies that have used short training durations, leaving open the question of whether improvements occur over a longer time span. To address this limitation, we utilized a perceptual learning approach to investigate the extent to which long-term (8,000+ trials) training modifies the ANS. Consistent with the general methodological approach common in the domain of perceptual learning (where learning specificity is commonly observed), we also examined whether ANS training generalizes to: (a) untrained locations in the visual field; (b) an enumeration task; (c) a higher-level ratio comparison task; and (d) arithmetic ability. In contrast to previous short-term training studies showing that ANS learning quickly asymptotes, our long-term training approach revealed that performance continued to improve even after thousands of trials. We further found that the training generalized to untrained visual locations. At post-test there was non-significant evidence for generalization to a low-level enumeration task, but not to our high-level tasks, including ratio comparison, multi-object tracking, and arithmetic performance. These results demonstrate the potential utility of long-term psychophysical training, but also suggest that ANS training alone (even long-duration training) may be insufficient to modify higher-level math skills.
Collapse
|
42
|
Kucian K, McCaskey U, von Aster M, O'Gorman Tuura R. Development of a Possible General Magnitude System for Number and Space. Front Psychol 2018; 9:2221. [PMID: 30510531 PMCID: PMC6252337 DOI: 10.3389/fpsyg.2018.02221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/26/2018] [Indexed: 11/13/2022] Open
Abstract
There is strong evidence for a link between numerical and spatial processing. However, whether this association is based on a common general magnitude system is far from conclusive and the impact of development is not yet known. Hence, the present study aimed to investigate the association between discrete non-symbolic number processing (comparison of dot arrays) and continuous spatial processing (comparison of angle sizes) in children between the third and sixth grade (N = 367). Present findings suggest that the processing of comparisons of number of dots or angle are related to each other, but with angle processing developing earlier and being more easily comparable than discrete number representations for children of this age range. Accordingly, results favor the existence of a more complex underlying magnitude system consisting of dissociated but closely interacting representations for continuous and discrete magnitudes.
Collapse
Affiliation(s)
- Karin Kucian
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ursina McCaskey
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michael von Aster
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Clinic for Child and Adolescent Psychiatry, German Red Cross Hospital, Berlin, Germany
| | - Ruth O'Gorman Tuura
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Elliott L, Feigenson L, Halberda J, Libertus ME. Bidirectional, Longitudinal Associations Between Math Ability and Approximate Number System Precision in Childhood. JOURNAL OF COGNITION AND DEVELOPMENT 2018. [DOI: 10.1080/15248372.2018.1551218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Braham EJ, Elliott L, Libertus ME. Using Hierarchical Linear Models to Examine Approximate Number System Acuity: The Role of Trial-Level and Participant-Level Characteristics. Front Psychol 2018; 9:2081. [PMID: 30483169 PMCID: PMC6240605 DOI: 10.3389/fpsyg.2018.02081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The ability to intuitively and quickly compare the number of items in collections without counting is thought to rely on the Approximate Number System (ANS). To assess individual differences in the precision of peoples' ANS representations, researchers often use non-symbolic number comparison tasks in which participants quickly choose the numerically larger of two arrays of dots. However, some researchers debate whether this task actually measures the ability to discriminate approximate numbers or instead measures the ability to discriminate other continuous magnitude dimensions that are often confounded with number (e.g., the total surface area of the dots or the convex hull of the dot arrays). In this study, we used hierarchical linear models (HLMs) to predict 132 adults' accuracy on each trial of a non-symbolic number comparison task from a comprehensive set of trial-level characteristics (including numerosity ratio, surface area, convex hull, and temporal and spatial variations in presentation format) and participant-level controls (including cognitive abilities such as visual-short term memory, working memory, and math ability) in order to gain a more nuanced understanding of how individuals complete this task. Our results indicate that certain trial-level characteristics of the dot arrays contribute to our ability to compare numerosities, yet numerosity ratio, the critical marker of the ANS, remains a highly significant predictor of accuracy above and beyond trial-level characteristics and across individuals with varying levels of math ability and domain-general cognitive abilities.
Collapse
Affiliation(s)
- Emily J. Braham
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Leanne Elliott
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melissa E. Libertus
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Kanjlia S, Feigenson L, Bedny M. Numerical cognition is resilient to dramatic changes in early sensory experience. Cognition 2018; 179:111-120. [PMID: 29935427 PMCID: PMC6701182 DOI: 10.1016/j.cognition.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/29/2023]
Abstract
Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States.
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| |
Collapse
|
46
|
Anobile G, Burr DC, Iaia M, Marinelli CV, Angelelli P, Turi M. Independent adaptation mechanisms for numerosity and size perception provide evidence against a common sense of magnitude. Sci Rep 2018; 8:13571. [PMID: 30206271 PMCID: PMC6134088 DOI: 10.1038/s41598-018-31893-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/09/2018] [Indexed: 01/29/2023] Open
Abstract
How numerical quantity is processed is a central issue for cognition. On the one hand the "number sense theory" claims that numerosity is perceived directly, and may represent an early precursor for acquisition of mathematical skills. On the other, the "theory of magnitude" notes that numerosity correlates with many continuous properties such as size and density, and may therefore not exist as an independent feature, but be part of a more general system of magnitude. In this study we examined interactions in sensitivity between numerosity and size perception. In a group of children, we measured psychophysically two sensory parameters: perceptual adaptation and discrimination thresholds for both size and numerosity. Neither discrimination thresholds nor adaptation strength for numerosity and size correlated across participants. This clear lack of correlation (confirmed by Bayesian analyses) suggests that numerosity and size interference effects are unlikely to reflect a shared sensory representation. We suggest these small interference effects may rather result from top-down phenomena occurring at late decisional levels rather than a primary "sense of magnitude".
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Calambrone Pisa, Italy.
| | - David C Burr
- Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Pisa, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Marika Iaia
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
| | - Chiara V Marinelli
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
- IRCSS Santa Lucia, Rome, Italy
| | - Paola Angelelli
- Department of History, Society and Human Studies, Lab. of Applied Psychology and Intervention, University of Salento, Lecce, Italy
| | - Marco Turi
- Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Pisa, Italy
- Fondazione Stella Maris Mediterraneo, Chiaromonte, Potenza, Italy
| |
Collapse
|
47
|
Guillaume M, Van Rinsveld A. Comparing Numerical Comparison Tasks: A Meta-Analysis of the Variability of the Weber Fraction Relative to the Generation Algorithm. Front Psychol 2018; 9:1694. [PMID: 30271363 PMCID: PMC6142874 DOI: 10.3389/fpsyg.2018.01694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
Since more than 15 years, researchers have been expressing their interest in evaluating the Approximate Number System (ANS) and its potential influence on cognitive skills involving number processing, such as arithmetic. Although many studies reported significant and predictive relations between ANS and arithmetic abilities, there has recently been an increasing amount of published data that failed to replicate such relationship. Inconsistencies lead many researchers to question the validity of the assessment of the ANS itself. In the current meta-analysis of over 68 experimental studies published between 2004 and 2017, we show that the mean value of the Weber fraction (w), the minimal amount of change in magnitude to detect a difference, is very heterogeneous across the literature. Within young adults, w might range from < 10 to more than 60, which is critical for its validity for research and diagnostic purposes. We illustrate here the concern that different methods controlling for non-numerical dimensions lead to substantially variable performance. Nevertheless, studies that referred to the exact same method (e.g., Panamath) showed high consistency among them, which is reassuring. We are thus encouraging researchers only to compare what is comparable and to avoid considering the Weber fraction as an abstract parameter independent from the context. Eventually, we observed that all reported correlation coefficients between the value of w and general accuracy were very high. Such result calls into question the relevance of computing and reporting at all the Weber fraction. We are thus in disfavor of the systematic use of the Weber fraction, to discourage any temptation to compare given data to some values of w reported from different tasks and generation algorithms.
Collapse
Affiliation(s)
- Mathieu Guillaume
- Cognitive Science and Assessment Institute (COSA), University of Luxembourg, Luxembourg, Luxembourg
| | - Amandine Van Rinsveld
- Centre for Research in Cognitive Neuroscience (CRCN), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
48
|
Gouet C, Gutiérrez Silva CA, Guedes B, Peña M. Cognitive and Neural Effects of a Brief Nonsymbolic Approximate Arithmetic Training in Healthy First Grade Children. Front Integr Neurosci 2018; 12:28. [PMID: 30065636 PMCID: PMC6056658 DOI: 10.3389/fnint.2018.00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022] Open
Abstract
Recent studies with children and adults have shown that the abilities of the Approximate Number System (ANS), which operates from early infancy and allows estimating the number of elements in a set without symbols, are trainable and transferable to symbolic arithmetic abilities. Here we investigated the brain correlates of these training effects, which are currently unknown. We trained two Groups of first grade children, one in performing nonsymbolic additions with dot arrays (Addition-Group) and another one in performing color comparisons of the same arrays (Color-Group). The training program was computerized, throughout seven sessions and had a pretest-posttest design. To evaluate cognitive gains, we measured math skills before and after the training. To measure the brain changes, we used electroencephalogram (EEG) recordings in the first and the last training sessions. We explored the changes in N1 and P2p, which are two electrophysiological components sensitive to nonsymbolic numeric computations. A passive Control-Group receiving no intervention also had their math skills evaluated. We found that the two training Groups had similarly gain in math skills, suggesting no specific transfer of the nonsymbolic addition training to math skills at the behavioral level. In contrast, at the brain level, we found that only in the Addition-Group the P2p amplitude significantly increased across sessions. Notably, the gain in P2p amplitude positively correlated with the gain in math abilities. Together, our results showed that first graders rapidly gained in math skills by different interventions. However, number-related brain networks seem to be particularly sensitive to nonsymbolic arithmetic training.
Collapse
Affiliation(s)
- Camilo Gouet
- Cognitive Neuroscience Laboratory, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César A Gutiérrez Silva
- Cognitive Neuroscience Laboratory, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Neuroscience, King's College of London, London, United Kingdom
| | - Bruno Guedes
- Cognitive Neuroscience Laboratory, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Peña
- Cognitive Neuroscience Laboratory, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
49
|
Aulet LS, Lourenco SF. The Developing Mental Number Line: Does Its Directionality Relate to 5- to 7-Year-Old Children's Mathematical Abilities? Front Psychol 2018; 9:1142. [PMID: 30034355 PMCID: PMC6043688 DOI: 10.3389/fpsyg.2018.01142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/14/2018] [Indexed: 01/29/2023] Open
Abstract
Spatial representations of number, such as a left-to-right oriented mental number line, are well documented in Western culture. Yet, the functional significance of such a representation remains unclear. To test the prominent hypothesis that a mental number line may support mathematical development, we examined the relation between spatial-numerical associations (SNAs) and math proficiency in 5- to 7-year-old children. We found evidence of SNAs with two tasks: a non-symbolic magnitude comparison task, and a symbolic "Where was the number?" (WTN) task. Further, we found a significant correlation between these two tasks, demonstrating convergent validity of the directional mental number line across numerical format. Although there were no significant correlations between children's SNAs on the WTN task and math ability, children's SNAs on the magnitude comparison task were negatively correlated with their performance on a measure of cross-modal arithmetic, suggesting that children with a stronger left-to-right oriented mental number line were less competent at cross-modal arithmetic, an effect that held when controlling for age and a set of general cognitive abilities. Despite some evidence for a negative relation between SNAs and math ability in adulthood, we argue that the effect here may reflect task demands specific to the magnitude comparison task, not necessarily an impediment of the mental number line to math performance. We conclude with a discussion of the different properties that characterize a mental number line and how these different properties may relate to mathematical ability.
Collapse
Affiliation(s)
- Lauren S. Aulet
- Department of Psychology, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
50
|
Toomarian EY, Hubbard EM. On the genesis of spatial-numerical associations: Evolutionary and cultural factors co-construct the mental number line. Neurosci Biobehav Rev 2018; 90:184-199. [PMID: 29684402 PMCID: PMC5993626 DOI: 10.1016/j.neubiorev.2018.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/29/2023]
Abstract
Mapping numbers onto space is a common cognitive representation that has been explored in both behavioral and neuroimaging contexts. Empirical work probing the diverse nature of these spatial-numerical associations (SNAs) has led researchers to question 1) how the human brain links numbers with space, and 2) whether this link is biologically vs. culturally determined. We review the existing literature on the development of SNAs and situate that empirical work within cognitive and neuroscientific theoretical frameworks. We propose that an evolutionarily-ancient frontal-parietal circuit broadly tuned to multiple magnitude dimensions provides the phylogenetic substrate for SNAs, while enculturation and sensorimotor experience shape their specific profiles. We then use this perspective to discuss educational implications and highlight promising avenues for future research.
Collapse
Affiliation(s)
- Elizabeth Y Toomarian
- Department of Educational Psychology, University of Wisconsin- Madison, 1025 W. Johnson St. Madison, WI, 53706, United States of America.
| | - Edward M Hubbard
- Department of Educational Psychology, University of Wisconsin- Madison, 1025 W. Johnson St. Madison, WI, 53706, United States of America
| |
Collapse
|