1
|
Xiang T, Zhu Y, Wang Y, Chen X, Zhang Z, Lai J, Zhou P, Ming R, Yue J. The dynamic regulatory network of stamens and pistils in papaya. BMC PLANT BIOLOGY 2025; 25:254. [PMID: 39994552 PMCID: PMC11853724 DOI: 10.1186/s12870-025-06242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Papaya exhibits three sex types: female (XX), male (XY), and hermaphrodite (XYh), making it an unusual trioecious model for studying sex determination. A critical aspect of papaya sex determination is the pistil abortion in male flowers. However, the regulatory networks that control the development of pistils and stamens in papaya remain incompletely understood. RESULTS In this study, we identified three organ-specific clusters involved in papaya pistils and stamens development. We found that pistil development is primarily characterized by the significant expression of auxin-related genes, while the pistil abortion genes in males is mainly associated with cytokinin, gibberellin, and auxin pathways. Additionally, we constructed expression regulatory networks for the development of female pistils, aborted pistils and stamens in male flowers, revealing key regulatory genes and signaling pathways involved in papaya organ development. Furthermore, we systematically identified 65 members of the MADS-box gene family and 10 ABCDE subfamily MADS-box genes in papaya. By constructing a phylogenetic tree of the ABCDE subfamily, we uncovered gene contraction and expansion in papaya, providing an improved understanding of the developmental mechanisms and evolutionary history of papaya floral organs. CONCLUSIONS These findings provide a robust framework for identifying candidate sex-determining genes and constructing the sex determination regulatory network in papaya, providing insights and genomic resources for papaya breeding.
Collapse
Affiliation(s)
- Tao Xiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yating Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhibin Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juan Lai
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Moraga C, Branco C, Rougemont Q, Jedlička P, Mendoza-Galindo E, Veltsos P, Hanique M, de la Vega RCR, Tannier E, Liu X, Lemaitre C, Fields PD, Cruaud C, Labadie K, Belser C, Briolay J, Santoni S, Cegan R, Linheiro R, Adam G, Filali AE, Mossion V, Boualem A, Tavares R, Chebbi A, Cordaux R, Fruchard C, Prentout D, Velt A, Spataro B, Delmotte S, Weingartner L, Toegelová H, Tulpová Z, Cápal P, Šimková H, Štorchová H, Krüger M, Abeyawardana OAJ, Taylor DR, Olson MS, Sloan DB, Karrenberg S, Delph LF, Charlesworth D, Muyle A, Giraud T, Bendahmane A, Di Genova A, Madoui MA, Hobza R, Marais GAB. The Silene latifolia genome and its giant Y chromosome. Science 2025; 387:630-636. [PMID: 39913565 PMCID: PMC11890086 DOI: 10.1126/science.adj7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
In many species with sex chromosomes, the Y is a tiny chromosome. However, the dioecious plant Silene latifolia has a giant ~550-megabase Y chromosome, which has remained unsequenced so far. We used a long- and short-read hybrid approach to obtain a high-quality male genome. Comparative analysis of the sex chromosomes with their homologs in outgroups showed that the Y is highly rearranged and degenerated. Recombination suppression between X and Y extended in several steps and triggered a massive accumulation of repeats on the Y as well as in the nonrecombining pericentromeric region of the X, leading to giant sex chromosomes. Using sex phenotype mutants, we identified candidate sex-determining genes on the Y in locations consistent with their favoring recombination suppression events 11 and 5 million years ago.
Collapse
Affiliation(s)
- Carol Moraga
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
| | - Catarina Branco
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Quentin Rougemont
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eddy Mendoza-Galindo
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Paris Veltsos
- Ecology, Evolution and Genetics Research Group, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Melissa Hanique
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Ricardo C. Rodríguez de la Vega
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Eric Tannier
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Inria Lyon Research Center, Villeurbanne, France
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claire Lemaitre
- Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes, Inria, CNRS, Rennes, France
| | - Peter D. Fields
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Jerome Briolay
- Développement de Techniques et Analyse Moléculaire de la Biodiversité (DTAMB), Université Claude Bernard Lyon 1, Campus de la Doua, Villeurbanne, France
| | - Sylvain Santoni
- Genomic Platform, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), Université de Montpellier, CIRAD, INRAE, Montpellier, France
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Raquel Linheiro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gabriele Adam
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Adil El Filali
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Vinciane Mossion
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Raquel Tavares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Amine Chebbi
- Efor, Grosspeter Tower (Spaces), Basel, Switzerland
| | - Richard Cordaux
- Évolution Génomes Comportement Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Cécile Fruchard
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amandine Velt
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Colmar, France
| | - Bruno Spataro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Stephane Delmotte
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laura Weingartner
- University of Louisville School of Medicine, Undergraduate Medical Education, Louisville, KY, USA
| | - Helena Toegelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Douglas R. Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Matthew S. Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Lynda F. Delph
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - Aline Muyle
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Alex Di Genova
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
- Center for Mathematical Modeling, UMI-CNRS 2807, Santiago, Chile
| | - Mohammed-Amin Madoui
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Gabriel A. B. Marais
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- GreenUPorto–Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
3
|
Charlesworth B, Olito C. Making sense of recent models of the "sheltering" hypothesis for recombination arrest between sex chromosomes. Evolution 2024; 78:1891-1899. [PMID: 39399984 DOI: 10.1093/evolut/qpae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
In their most extreme form, sex chromosomes exhibit a complete lack of genetic recombination along much of their length in the heterogametic sex. Some recent models explain the evolution of such suppressed recombination by the "sheltering" of deleterious mutations by chromosomal inversions that prevent recombination around a polymorphic locus controlling sex. This sheltering hypothesis is based on the following reasoning. An inversion that is associated with the male-determining allele (with male heterogamety) is present only in the heterozygous state. If such an inversion carries a lower-than-average number of deleterious mutations, it will accrue a selective advantage and will be sheltered from homozygosity for any mutations that it carries due to the enforced heterozygosity for the inversion itself. It can, therefore, become fixed among all carriers of the male-determining allele. Recent population genetics models of this process are discussed. It is shown that, except under the unlikely scenario of a high degree of recessivity of most deleterious mutations, inversions of this type that lack any other fitness effects will have, at best, a modest selective advantage; they will usually accumulate on proto-Y chromosomes at a rate close to, or less than, the neutral expectation. While the existence of deleterious mutations does not necessarily prevent the spread of Y-linked inversions, it is unlikely to provide a significant selective advantage to them.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Olito
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Cheng F, Wang X, Qian W. Pan-genome analysis of 13 Spinacia accessions reveals structural variations associated with sex chromosome evolution and domestication traits in spinach. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3102-3117. [PMID: 39095952 PMCID: PMC11501001 DOI: 10.1111/pbi.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Structural variations (SVs) are major genetic variants that can be involved in the origin, adaptation and domestication of species. However, the identification and characterization of SVs in Spinacia species are rare due to the lack of a pan-genome. Here, we report eight chromosome-scale assemblies of cultivated spinach and its two wild species. After integration with five existing assemblies, we constructed a comprehensive Spinacia pan-genome and identified 193 661 pan-SVs, which were genotyped in 452 Spinacia accessions. Our pan-SVs enabled genome-wide association study identified signals associated with sex and clarified the evolutionary direction of spinach. Most sex-linked SVs (86%) were biased to occur on the Y chromosome during the evolution of the sex-linked region, resulting in reduced Y-linked gene expression. The frequency of pan-SVs among Spinacia accessions further illustrated the contribution of these SVs to domestication, such as bolting time and seed dormancy. Furthermore, compared with SNPs, pan-SVs act as efficient variants in genomic selection (GS) because of their ability to capture missing heritability information and higher prediction accuracy. Overall, this study provides a valuable resource for spinach genomics and highlights the potential utility of pan-SV in crop improvement and breeding programmes.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Helong Zhang
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jian Wu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng Cheng
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowu Wang
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wei Qian
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
- Zhongyuan Research Center, Chinese Academy of Agricultural SciencesXinxiangChina
| |
Collapse
|
5
|
Ediriweera C, Weeks SC. Delineating the W Sex Chromosome in the Clam Shrimp, Eulimnadia texana. Cytogenet Genome Res 2024; 164:257-266. [PMID: 39467529 DOI: 10.1159/000542284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Sex chromosomes have evolved independently across various lineages, often showing convergent degradation of the sex-limited chromosome. While extensively studied in model organisms with ancient sex chromosomal systems, the evolution of early-stage sex chromosomes remains poorly understood. Eulimnadia texana, a freshwater crustacean with a unique androdioecious breeding system (ZZ, ZW, and viable WW genotypes), provides a rare opportunity to study early sex chromosome evolution. This study examines E. texana's W chromosome for evidence of a small localized non-recombining region, characterized by a transposable element (TE) "hotspot," low gene density, and low GC content. METHODS Sex-linked markers were mapped onto the W chromosome (scaffold 1). TEs in the WW genome were identified using RepeatModeler and RepeatMasker. Statistical analyses compared TE distribution between the genome and scaffold 1, which was then divided into 20 equal-sized "bins" for finer-scale statistical analyses. Gene density and GC content were analyzed across these bins. RESULTS While no significant TE accumulation was found across the entire W chromosome compared to the remaining genome, a specific region (6.6-8.8 Mb, fourth bin) showed significantly higher TE accumulation. This region also exhibited low gene density and low GC content, indicative of reduced recombination. CONCLUSION Our findings suggest that E. texana's W chromosome contains a smaller region of crossover suppression, supporting the hypothesis that it is a proto-sex chromosome in early evolutionary development. This study provides valuable insights into early sex chromosome evolution and establishes E. texana as an ideal model for further investigation of evolutionary processes driving proto-sex chromosome differentiation.
Collapse
Affiliation(s)
| | - Stephen C Weeks
- Department of Biology, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
6
|
He L, Wang Y, Wang Y, Zhang RG, Wang Y, Hörandl E, Ma T, Mao YF, Mank JE, Ming R. Allopolyploidization from two dioecious ancestors leads to recurrent evolution of sex chromosomes. Nat Commun 2024; 15:6893. [PMID: 39134553 PMCID: PMC11319354 DOI: 10.1038/s41467-024-51158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Polyploidization presents an unusual challenge for species with sex chromosomes, as it can lead to complex combinations of sex chromosomes that disrupt reproductive development. This is particularly true for allopolyploidization between species with different sex chromosome systems. Here, we assemble haplotype-resolved chromosome-level genomes of a female allotetraploid weeping willow (Salix babylonica) and a male diploid S. dunnii. We show that weeping willow arose from crosses between a female ancestor from the Salix-clade, which has XY sex chromosomes on chromosome 7, and a male ancestor from the Vetrix-clade, which has ancestral XY sex chromosomes on chromosome 15. We find that weeping willow has one pair of sex chromosomes, ZW on chromosome 15, that derived from the ancestral XY sex chromosomes in the male ancestor of the Vetrix-clade. Moreover, the ancestral 7X chromosomes from the female ancestor of the Salix-clade have reverted to autosomal inheritance. Duplicated intact ARR17-like genes on the four homologous chromosomes 19 likely have contributed to the maintenance of dioecy during polyploidization and sex chromosome turnover. Taken together, our results suggest the rapid evolution and reversion of sex chromosomes following allopolyploidization in weeping willow.
Collapse
Affiliation(s)
- Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yuàn Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yi Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yuán Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| | - Tao Ma
- Key Laboratory for Bio‑Resource and Eco‑Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yan-Fei Mao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
7
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Dornela AF, Soares FAF, Silva JC, Sattler MC, Clarindo WR. Carica papaya L. sex chromosome review and physical mapping of the serk 2, svp-like and mdar 4 sequences. Sci Rep 2024; 14:14830. [PMID: 38937542 PMCID: PMC11211501 DOI: 10.1038/s41598-024-65880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Physical mapping evidences the chromosome organization and structure. Despite the data about plant cytogenomics, physical mapping has been conducted from single-copy and/or low-copy genes for few species. Carica papaya cytogenomics has been accomplished from BAC-FISH and repeatome sequences. We aimed to map the serk 2, svp-like and mdar 4 sequences in C. papaya. The sequences were amplified and the amplicons sequenced, showing similarity in relation to serk 2, svp-like and mdar 4 genes. Carica papaya diploidy was confirmed and the mitotic chromosomes characterized. The chromosome 1 exhibited the secondary constriction pericentromeric to the centromere of the long arm. So, we concluded that it is the sex chromosomes. serk 2 was mapped in the long arm interstitial portion of the sex chromosomes, and the interphase nuclei showed two fluorescence signals. Considering these results and the sequencing data from the C. papaya sex chromosomes, svp-like and mdar 4 genes were mapped in the interstitial region of the sex chromosome long arm. Both sequences showed only one fluorescence signal in the interphase nuclei. The procedure adopted here can be reproduced for other single-copy and/or low-copy genes, allowing the construction of cytogenetic maps. In addition, we revisited the cytogenomics data about C. papaya sex chromosomes, presenting a revised point of view about the structure and evolution to these chromosomes.
Collapse
Affiliation(s)
- Adeilson Frias Dornela
- Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29.500-000, Brazil
| | - Fernanda Aparecida Ferrari Soares
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Jéssica Coutinho Silva
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Mariana Cansian Sattler
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36.570-900, Brazil.
| |
Collapse
|
9
|
Wang Y, Gong GN, Wang Y, Zhang RG, Hörandl E, Zhang ZX, Charlesworth D, He L. Gap-free X and Y chromosome assemblies of Salix arbutifolia reveal an evolutionary change from male to female heterogamety in willows, without a change in the position of the sex-determining locus. THE NEW PHYTOLOGIST 2024; 242:2872-2887. [PMID: 38581199 DOI: 10.1111/nph.19744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
In the Vetrix clade of Salix, a genus of woody flowering plants, sex determination involves chromosome 15, but an XY system has changed to a ZW system. We studied the detailed genetic changes involved. We used genome sequencing, with chromosome conformation capture (Hi-C) and PacBio HiFi reads to assemble chromosome level gap-free X and Y of Salix arbutifolia, and distinguished the haplotypes in the 15X- and 15Y-linked regions, to study the evolutionary history of the sex-linked regions (SLRs). Our sequencing revealed heteromorphism of the X and Y haplotypes of the SLR, with the X-linked region being considerably larger than the corresponding Y region, mainly due to accumulated repetitive sequences and gene duplications. The phylogenies of single-copy orthogroups within the SLRs indicate that S. arbutifolia and Salix purpurea share an ancestral SLR within a repeat-rich region near the chromosome 15 centromere. During the change in heterogamety, the X-linked region changed to a W-linked one, while the Z was derived from the Y.
Collapse
Affiliation(s)
- Yi Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100091, China
| | - Guang-Nan Gong
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuan Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073, Göttingen, Germany
| | - Zhi-Xiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100091, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
10
|
Charlesworth D, Harkess A. Why should we study plant sex chromosomes? THE PLANT CELL 2024; 36:1242-1256. [PMID: 38163640 PMCID: PMC11062472 DOI: 10.1093/plcell/koad278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024]
Abstract
Understanding plant sex chromosomes involves studying interactions between developmental and physiological genetics, genome evolution, and evolutionary ecology. We focus on areas of overlap between these. Ideas about how species with separate sexes (dioecious species, in plant terminology) can evolve are even more relevant to plants than to most animal taxa because dioecy has evolved many times from ancestral functionally hermaphroditic populations, often recently. One aim of studying plant sex chromosomes is to discover how separate males and females evolved from ancestors with no such genetic sex-determining polymorphism, and the diversity in the genetic control of maleness vs femaleness. Different systems share some interesting features, and their differences help to understand why completely sex-linked regions may evolve. In some dioecious plants, the sex-determining genome regions are physically small. In others, regions without crossing over have evolved sometimes extensive regions with properties very similar to those of the familiar animal sex chromosomes. The differences also affect the evolutionary changes possible when the environment (or pollination environment, for angiosperms) changes, as dioecy is an ecologically risky strategy for sessile organisms. Dioecious plants have repeatedly reverted to cosexuality, and hermaphroditic strains of fruit crops such as papaya and grapes are desired by plant breeders. Sex-linked regions are predicted to become enriched in genes with sex differences in expression, especially when higher expression benefits one sex function but harms the other. Such trade-offs may be important for understanding other plant developmental and physiological processes and have direct applications in plant breeding.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
11
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
12
|
Pereira Duarte R, Cancela Ramos HC, Rodrigues Xavier L, Azevedo Vimercati Pirovani A, Souza Rodrigues A, Turquetti-Moraes DK, Rodrigues da Silva Junior I, Motta Venâncio T, Silveira V, Gonzaga Pereira M. Comparative proteomic analysis of papaya bud flowers reveals metabolic signatures and pathways driving hermaphrodite development. Sci Rep 2024; 14:8867. [PMID: 38632280 PMCID: PMC11024100 DOI: 10.1038/s41598-024-59306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.
Collapse
Affiliation(s)
- Rafaela Pereira Duarte
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil.
| | - Helaine Christine Cancela Ramos
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Lucas Rodrigues Xavier
- Laboratório de Biotecnologia - LBT, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Adriana Azevedo Vimercati Pirovani
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Alex Souza Rodrigues
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Dayana Kelly Turquetti-Moraes
- Laboratório de Química e Função de Proteínas e Peptídeos - LQFPP, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Izaias Rodrigues da Silva Junior
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Thiago Motta Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos - LQFPP, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia - LBT, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Messias Gonzaga Pereira
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| |
Collapse
|
13
|
Zeng Q, Jia H, Ma Y, Xu L, Ming R, Yue J. Genome-Wide Identification and Expression Pattern Profiling of the Aquaporin Gene Family in Papaya ( Carica papaya L.). Int J Mol Sci 2023; 24:17276. [PMID: 38139107 PMCID: PMC10744249 DOI: 10.3390/ijms242417276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Aquaporins (AQPs) are mainly responsible for the transportation of water and other small molecules such as CO2 and H2O2, and they perform diverse functions in plant growth, in development, and under stress conditions. They are also active participants in cell signal transduction in plants. However, little is known about AQP diversity, biological functions, and protein characteristics in papaya. To better understand the structure and function of CpAQPs in papaya, a total of 29 CpAQPs were identified and classified into five subfamilies. Analysis of gene structure and conserved motifs revealed that CpAQPs exhibited a degree of conservation, with some differentiation among subfamilies. The predicted interaction network showed that the PIP subfamily had the strongest protein interactions within the subfamily, while the SIP subfamily showed extensive interaction with members of the PIP, TIP, NIP, and XIP subfamilies. Furthermore, the analysis of CpAQPs' promoters revealed a large number of cis-elements participating in light, hormone, and stress responses. CpAQPs exhibited different expression patterns in various tissues and under different stress conditions. Collectively, these results provided a foundation for further functional investigations of CpAQPs in ripening, as well as leaf, flower, fruit, and seed development. They also shed light on the potential roles of CpAQP genes in response to environmental factors, offering valuable insights into their biological functions in papaya.
Collapse
Affiliation(s)
- Qiuxia Zeng
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haifeng Jia
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaying Ma
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangwei Xu
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
| |
Collapse
|
14
|
Ma X, Ju S, Lin H, Huang H, Huang J, Peng D, Ming R, Lan S, Liu ZJ. Sex-Related Gene Network Revealed by Transcriptome Differentiation of Bisexual and Unisexual Flowers of Orchid Cymbidium tortisepalum. Int J Mol Sci 2023; 24:16627. [PMID: 38068950 PMCID: PMC10706266 DOI: 10.3390/ijms242316627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Despite extensive research on orchid reproductive strategies, the genetic studies of sex differentiation in the orchid family are still lacking. In this study, we compared three sexual phenotypes of Cymbidium tortisepalum bisexual flowers as well as female and male unisexual mutants. Through comparative transcriptomes, we analyzed the sex-biased differentially expressed genes (DEGs) and gene co-expression networks of sex organs (gynostemium and ovary) among them, identified the candidate genes of sex differentiation, and validated their expression by qRT-PCR. The C. tortisepalum unisexual mutants with degenerated phenotypes were compared to the bisexual plants with respect to both the flower organs and plant morphologies. Totally, 12,145, 10,789, and 14,447 genes were uniquely expressed in the female, male, and hermaphrodite sex organs, respectively. A total of 4291 sex-biased DEGs were detected among them, with 871, 2867, and 1937 DEGs in the comparisons of bisexual vs. female, bisexual vs. male, and male vs. female flowers, respectively. Two co-expressed network modules, with 81 and 419 genes were tightly correlated with female sexual traits, while two others with 265 and 135 genes were highly correlated with male sexual traits. Two female-biased hub genes (CtSDR3b and CtSDR3b-like) nested in the female modules, the homologs of maize sex determinant tasselseed2, may control the feminization of C. tortisepalum. At the same time, two male-biased hub genes (CtYAB2 and CtYAB5) nested in the male modules, the homologs of grape sex determinant VviYABBY3, may control the androphany of C. tortisepalum. This study discovered the molecular regulation networks and proposed a model for orchid sex differentiation, therefore providing for the first time the genetic basis for the sex separation in the orchid family.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Ju
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaxing Huang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Huang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Donghui Peng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3707, USA
| | - Siren Lan
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Zhang GJ, Jia KL, Wang J, Gao WJ, Li SF. Genome-wide analysis of transposable elements and satellite DNA in Humulus scandens, a dioecious plant with XX/XY 1Y 2 chromosomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1230250. [PMID: 37908838 PMCID: PMC10614002 DOI: 10.3389/fpls.2023.1230250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Transposable elements (TEs) and satellite DNAs, two major categories of repetitive sequences, are expected to accumulate in non-recombining genome regions, including sex-linked regions, and contribute to sex chromosome evolution. The dioecious plant, Humulus scandens, can be used for studying the evolution of the XX/XY1Y2 sex chromosomes. In this study, we thoroughly examined the repetitive components of male and female H. scandens using next-generation sequencing data followed by bioinformatics analysis and florescence in situ hybridization (FISH). The H. scandens genome has a high overall repetitive sequence composition, 68.30% in the female and 66.78% in the male genome, with abundant long terminal repeat (LTR) retrotransposons (RTs), including more Ty3/Gypsy than Ty1/Copia elements, particularly two Ty3/Gypsy lineages, Tekay and Retand. Most LTR-RT lineages were found dispersed across the chromosomes, though CRM and Athila elements were predominately found within the centromeres and the pericentromeric regions. The Athila elements also showed clearly higher FISH signal intensities in the Y1 and Y2 chromosomes than in the X or autosomes. Three novel satellite DNAs were specifically distributed in the centromeric and/or telomeric regions, with markedly different distributions on the X, Y1, and Y2 chromosomes. Combined with FISH using satellite DNAs to stain chromosomes during meiotic diakinesis, we determined the synapsis pattern and distinguish pseudoautosomal regions (PARs). The results indicate that the XY1Y2 sex chromosomes of H. scandens might have originated from a centric fission event. This study improves our understanding of the repetitive sequence organization of H. scandens genome and provides a basis for further analysis of their chromosome evolution process.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ke-Li Jia
- College of Life Sciences, Henan Normal University, Xinxiang, China
- SanQuan Medical College, Xinxiang Medical University, Xinxiang, China
| | - Jin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
16
|
Li N, Zhou J, Zhang W, Liu W, Wang B, She H, Mirbahar AA, Li S, Zhang Y, Gao W, Qian W, Deng C. A rapid method for assembly of single chromosome and identification of sex determination region based on single-chromosome sequencing. THE NEW PHYTOLOGIST 2023; 240:892-903. [PMID: 37533136 DOI: 10.1111/nph.19176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Abstract
The sex-determining-region (SDR) may offer the best prospects for studying sex-determining gene, recombination suppression, and chromosome heteromorphism. However, current progress of SDR identification and cloning showed following shortcomings: large near-isogenic lines need to be constructed, and a relatively large population is needed; the cost of whole-genome sequencing and assembly is high. Herein, the X/Y chromosomes of Spinacia oleracea L. subsp. turkestanica were successfully microdissected and assembled using single-chromosome sequencing. The assembly length of X and Y chromosome is c. 192.1 and 195.2 Mb, respectively. Three large inversions existed between X and Y chromosome. The SDR size of X and Y chromosome is c. 13.2 and 24.1 Mb, respectively. MSY region and six male-biased genes were identified. A Y-chromosome-specific marker in SDR was constructed and used to verify the chromosome assembly quality at cytological level via fluorescence in situ hybridization. Meanwhile, it was observed that the SDR located on long arm of Y chromosome and near the centromere. Overall, a technical system was successfully established for rapid cloning the SDR and it is also applicable to rapid assembly of specific chromosome in other plants. Furthermore, this study laid a foundation for studying the molecular mechanism of sex chromosome evolution in spinach.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Jian Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wanqing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wenjia Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Bingxin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ameer Ahmed Mirbahar
- Date Palm Research Institute, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
17
|
She H, Liu Z, Li S, Xu Z, Zhang H, Cheng F, Wu J, Wang X, Deng C, Charlesworth D, Gao W, Qian W. Evolution of the spinach sex-linked region within a rarely recombining pericentromeric region. PLANT PHYSIOLOGY 2023; 193:1263-1280. [PMID: 37403642 DOI: 10.1093/plphys/kiad389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Sex chromosomes have evolved independently in many different plant lineages. Here, we describe reference genomes for spinach (Spinacia oleracea) X and Y haplotypes by sequencing homozygous XX females and YY males. The long arm of 185-Mb chromosome 4 carries a 13-Mb X-linked region (XLR) and 24.1-Mb Y-linked region (YLR), of which 10 Mb is Y specific. We describe evidence that this reflects insertions of autosomal sequences creating a "Y duplication region" or "YDR" whose presence probably directly reduces genetic recombination in the immediately flanking regions, although both the X and Y sex-linked regions are within a large pericentromeric region of chromosome 4 that recombines rarely in meiosis of both sexes. Sequence divergence estimates using synonymous sites indicate that YDR genes started diverging from their likely autosomal progenitors about 3 MYA, around the time when the flanking YLR stopped recombining with the XLR. These flanking regions have a higher density of repetitive sequences in the YY than the XX assembly and include slightly more pseudogenes compared with the XLR, and the YLR has lost about 11% of the ancestral genes, suggesting some degeneration. Insertion of a male-determining factor would have caused Y linkage across the entire pericentromeric region, creating physically small, highly recombining, terminal pseudoautosomal regions. These findings provide a broader understanding of the origin of sex chromosomes in spinach.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
18
|
Takahashi K, Suzuki S, Kawai-Toyooka H, Yamamoto K, Hamaji T, Ootsuki R, Yamaguchi H, Kawachi M, Higashiyama T, Nozaki H. Reorganization of the ancestral sex-determining regions during the evolution of trioecy in Pleodorina starrii. Commun Biol 2023; 6:590. [PMID: 37296191 PMCID: PMC10256686 DOI: 10.1038/s42003-023-04949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The coexistence of three sexual phenotypes (male, female and bisexual) in a single species, 'trioecy', is rarely found in diploid organisms such as flowering plants and invertebrates. However, trioecy in haploid organisms has only recently been reported in a green algal species, Pleodorina starrii. Here, we generated whole-genome data of the three sex phenotypes of P. starrii to reveal a reorganization of the ancestral sex-determining regions (SDRs) in the sex chromosomes: the male and bisexual phenotypes had the same "male SDR" with paralogous gene expansions of the male-determining gene MID, whereas the female phenotype had a "female SDR" with transposition of the female-specific gene FUS1 to autosomal regions. Although the male and bisexual sex phenotypes had the identical male SDR and harbored autosomal FUS1, MID and FUS1 expression during sexual reproduction differed between them. Thus, the coexistence of three sex phenotypes in P. starrii is possible.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroko Kawai-Toyooka
- Department of Frontier Bioscience, Hosei University, Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | - Kayoko Yamamoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Takashi Hamaji
- Research and Development Initiative, Chuo University, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Natural Sciences, Faculty of Arts and Sciences, Komazawa University, Komazawa, Setagaya-ku, Tokyo, 154-8525, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
19
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
20
|
Hyden B, Zou J, Wilkerson DG, Carlson CH, Robles AR, DiFazio SP, Smart LB. Structural variation of a sex-linked region confers monoecy and implicates GATA15 as a master regulator of sex in Salix purpurea. THE NEW PHYTOLOGIST 2023; 238:2512-2523. [PMID: 36866707 DOI: 10.1111/nph.18853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 05/19/2023]
Abstract
The Salicaceae, including Populus and Salix, are dioecious perennials that utilize different sex determination systems. This family provides a useful system to better understand the evolution of dioecy and sex chromosomes. Here, a rare monoecious genotype of Salix purpurea, 94003, was self- and cross-pollinated and progeny sex ratios were used to test hypotheses on possible mechanisms of sex determination. To delimit genomic regions associated with monoecious expression, the 94003 genome sequence was assembled and DNA- and RNA-Seq of progeny inflorescences was performed. Based on alignments of progeny shotgun DNA sequences to the haplotype-resolved monoecious 94003 genome assembly and reference male and female genomes, a 1.15 Mb sex-linked region on Chr15W was confirmed to be absent in monecious plants. Inheritance of this structural variation is responsible for the loss of a male-suppressing function in what would otherwise be genetic females (ZW), resulting in monoecy (ZWH or WWH ), or lethality, if homozygous (WH WH ). We present a refined, two-gene sex determination model for Salix purpurea, mediated by ARR17 and GATA15 that is different from the single-gene ARR17-mediated system in the related genus Populus.
Collapse
Affiliation(s)
- Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Junzhu Zou
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu No. 1, Haidian District, Beijing, 100091, China
| | - Dustin G Wilkerson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Ayiana Rivera Robles
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| |
Collapse
|
21
|
Kafkas S, Ma X, Zhang X, Topçu H, Navajas-Pérez R, Wai CM, Tang H, Xu X, Khodaeiaminjan M, Güney M, Paizila A, Karcı H, Zhang X, Lin J, Lin H, Herrán RDL, Rejón CR, García-Zea JA, Robles F, Muñoz CDV, Hotz-Wagenblatt A, Min XJ, Özkan H, Motalebipour EZ, Gozel H, Çoban N, Kafkas NE, Kilian A, Huang H, Lv X, Liu K, Hu Q, Jacygrad E, Palmer W, Michelmore R, Ming R. Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. PLANT COMMUNICATIONS 2023; 4:100497. [PMID: 36435969 DOI: 10.1016/j.xplc.2022.100497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 05/11/2023]
Abstract
Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.
Collapse
Affiliation(s)
- Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey.
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hayat Topçu
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haibao Tang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuming Xu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mortaza Khodaeiaminjan
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Murat Güney
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Harun Karcı
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Carmelo Ruiz Rejón
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | | | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Coral Del Val Muñoz
- Department of Computer Science, University of Granada, Granada, Spain; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center, Omics IT and Data Management Core Facility, Heidelberg, Germany
| | - Xiangjia Jack Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | | | - Hatice Gozel
- Pistachio Research Institute, Şahinbey, Gaziantep 27060, Turkey
| | - Nergiz Çoban
- Pistachio Research Institute, Şahinbey, Gaziantep 27060, Turkey
| | - Nesibe Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Andrej Kilian
- Diversity Arrays Technology, University of Canberra, Canberra, ACT, Australia
| | - HuaXing Huang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ewelina Jacygrad
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - William Palmer
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Richard Michelmore
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
22
|
Masuda K, Akagi T. Evolution of sex in crops: recurrent scrap and rebuild. BREEDING SCIENCE 2023; 73:95-107. [PMID: 37404348 PMCID: PMC10316312 DOI: 10.1270/jsbbs.22082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/20/2022] [Indexed: 07/06/2023]
Abstract
Sexuality is the main strategy for maintaining genetic diversity within a species. In flowering plants (angiosperms), sexuality is derived from ancestral hermaphroditism and multiple sexualities can be expressed in an individual. The mechanisms conferring chromosomal sex determination in plants (or dioecy) have been studied for over a century by both biologists and agricultural scientists, given the importance of this field for crop cultivation and breeding. Despite extensive research, the sex determining gene(s) in plants had not been identified until recently. In this review, we dissect plant sex evolution and determining systems, with a focus on crop species. We introduced classic studies with theoretical, genetic, and cytogenic approaches, as well as more recent research using advanced molecular and genomic techniques. Plants have undergone very frequent transitions into, and out of, dioecy. Although only a few sex determinants have been identified in plants, an integrative viewpoint on their evolutionary trends suggests that recurrent neofunctionalization events are potentially common, in a "scrap and (re)build" cycle. We also discuss the potential association between crop domestication and transitions in sexual systems. We focus on the contribution of duplication events, which are particularly frequent in plant taxa, as a trigger for the creation of new sexual systems.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
23
|
Charlesworth D. Why and how do Y chromosome stop recombining? J Evol Biol 2023; 36:632-636. [PMID: 36683363 DOI: 10.1111/jeb.14137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023]
|
24
|
Long X, Charlesworth D, Qi J, Wu R, Chen M, Wang Z, Xu L, Fu H, Zhang X, Chen X, He L, Zheng L, Huang Z, Zhou Q. Independent Evolution of Sex Chromosomes and Male Pregnancy-Related Genes in Two Seahorse Species. Mol Biol Evol 2022; 40:6964685. [PMID: 36578180 PMCID: PMC9851323 DOI: 10.1093/molbev/msac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Unlike birds and mammals, many teleosts have homomorphic sex chromosomes, and changes in the chromosome carrying the sex-determining locus, termed "turnovers", are common. Recent turnovers allow studies of several interesting questions. One question is whether the new sex-determining regions evolve to become completely non-recombining, and if so, how and why. Another is whether (as predicted) evolutionary changes that benefit one sex accumulate in the newly sex-linked region. To study these questions, we analyzed the genome sequences of two seahorse species of the Syngnathidae, a fish group in which many species evolved a unique structure, the male brood pouch. We find that both seahorse species have XY sex chromosome systems, but their sex chromosome pairs are not homologs, implying that at least one turnover event has occurred. The Y-linked regions occupy 63.9% and 95.1% of the entire sex chromosome of the two species and do not exhibit extensive sequence divergence with their X-linked homologs. We find evidence for occasional recombination between the extant sex chromosomes that may account for their homomorphism. We argue that these Y-linked regions did not evolve by recombination suppression after the turnover, but by the ancestral nature of the low crossover rates in these chromosome regions. With such an ancestral crossover landscape, a turnover can instantly create an extensive Y-linked region. Finally, we test for adaptive evolution of male pouch-related genes after they became Y-linked in the seahorse.
Collapse
Affiliation(s)
- Xin Long
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China,Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou 311100, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| | - Jianfei Qi
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ruiqiong Wu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinxin Chen
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Libin He
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | | | | | - Qi Zhou
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
25
|
Zerpa-Catanho D, Clough SJ, Ming R. Characterization and analysis of the promoter region of monodehydroascorbate reductase 4 (CpMDAR4) in papaya. PLANT REPRODUCTION 2022; 35:233-264. [PMID: 35920937 DOI: 10.1007/s00497-022-00447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Differential spatial and temporal expression patterns due to regulatory cis-elements and two different isoforms are detected among CpMDAR4 alleles in papaya. The aim of this research was to study the effects of cis-element differences between the X, Y and Yh alleles on the expression of CpMDAR4, a potential candidate gene for sex differentiation in papaya, using a transcriptional reporter system in a model species Arabidopsis thaliana. Possible effects of a retrotransposon insertion in the Y and Yh alleles on the transcription and expression of CpMDAR4 alleles in papaya flowers were also examined. When comparing promoters and cis-regulatory elements among genes in the non-recombining region of the sex chromosomes, paired genes exhibited differences. Our results showed that differences in the promoter sequences of the CpMDAR4 alleles drove the expression of a reporter gene to different flower tissues in Arabidopsis. β-glucuronidase staining analysis of T2 and T3 lines for constructs containing 5' deletions of native Y and Yh allele promoters showed the loss of specific expression of the reporter gene in the anthers, confirming the existence and location of cis-regulatory element POLLEN1LELAT52. The expression analysis of CpMDAR4 alleles in papaya flowers also showed that all alleles are actively expressed in different flower tissues, with the existence of a shorter truncated isoform, with unknown function, for the Y and Yh alleles due to an LTR-RT insertion in the Y and Yh chromosomes. The observed expression patterns in Arabidopsis thaliana flowers and the expression patterns of CpMDAR4 alleles in papaya flowers suggest that MDAR4 might have a role on development of reproductive organs in papaya, and that it constitutes an important candidate for sex differentiation.
Collapse
Affiliation(s)
| | - Steven J Clough
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
- United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Zhang S, Wu Z, Ma D, Zhai J, Han X, Jiang Z, Liu S, Xu J, Jiao P, Li Z. Chromosome-scale assemblies of the male and female Populus euphratica genomes reveal the molecular basis of sex determination and sexual dimorphism. Commun Biol 2022; 5:1186. [PMCID: PMC9636151 DOI: 10.1038/s42003-022-04145-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Reference-quality genomes of both sexes are essential for studying sex determination and sex-chromosome evolution, as their gene contents and expression profiles differ. Here, we present independent chromosome-level genome assemblies for the female (XX) and male (XY) genomes of desert poplar (Populus euphratica), resolving a 22.7-Mb X and 24.8-Mb Y chromosome. We also identified a relatively complete 761-kb sex-linked region (SLR) in the peritelomeric region on chromosome 14 (Y). Within the SLR, recombination around the partial repeats for the feminizing factor ARR17 (ARABIDOPSIS RESPONSE REGULATOR 17) was potentially suppressed by flanking palindromic arms and the dense accumulation of retrotransposons. The inverted small segments S1 and S2 of ARR17 exhibited relaxed selective pressure and triggered sex determination by generating 24-nt small interfering RNAs that induce male-specific hyper-methylation at the promoter of the autosomal targeted ARR17. We also detected two male-specific fusion genes encoding proteins with NB-ARC domains at the breakpoint region of an inversion in the SLR that may be responsible for the observed sexual dimorphism in immune responses. Our results show that the SLR appears to follow proposed evolutionary dynamics for sex chromosomes and advance our understanding of sex determination and the evolution of sex chromosomes in Populus. Reference-quality genomes of both sexes of the dioecious tree species, Populus euphratica, provide further insight into the evolution of Populus sex chromosomes and highlight male-specific fusion genes that may contribute to sexual dimorphism.
Collapse
Affiliation(s)
- Shanhe Zhang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhihua Wu
- grid.453534.00000 0001 2219 2654College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - De Ma
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Juntuan Zhai
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Xiaoli Han
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhenbo Jiang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Jingdong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Peipei Jiao
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhijun Li
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| |
Collapse
|
27
|
Gong G, Xiong Y, Xiao S, Li XY, Huang P, Liao Q, Han Q, Lin Q, Dan C, Zhou L, Ren F, Zhou Q, Gui JF, Mei J. Origin and chromatin remodeling of young X/Y sex chromosomes in catfish with sexual plasticity. Natl Sci Rev 2022; 10:nwac239. [PMID: 36846302 PMCID: PMC9945428 DOI: 10.1093/nsr/nwac239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022] Open
Abstract
Assembly of a complete Y chromosome is a significant challenge in animals with an XX/XY sex-determination system. Recently, we created YY-supermale yellow catfish by crossing XY males with sex-reversed XY females, providing a valuable model for Y-chromosome assembly and evolution. Here, we assembled highly homomorphic Y and X chromosomes by sequencing genomes of the YY supermale and XX female in yellow catfish, revealing their nucleotide divergences with only less than 1% and with the same gene compositions. The sex-determining region (SDR) was identified to locate within a physical distance of 0.3 Mb by FST scanning. Strikingly, the incipient sex chromosomes were revealed to originate via autosome-autosome fusion and were characterized by a highly rearranged region with an SDR downstream of the fusion site. We found that the Y chromosome was at a very early stage of differentiation, as no clear evidence of evolutionary strata and classical structure features of recombination suppression for a rather late stage of Y-chromosome evolution were observed. Significantly, a number of sex-antagonistic mutations and the accumulation of repetitive elements were discovered in the SDR, which might be the main driver of the initial establishment of recombination suppression between young X and Y chromosomes. Moreover, distinct three-dimensional chromatin organizations of the Y and X chromosomes were identified in the YY supermales and XX females, as the X chromosome exhibited denser chromatin structure than the Y chromosome, while they respectively have significantly spatial interactions with female- and male-related genes compared with other autosomes. The chromatin configuration of the sex chromosomes as well as the nucleus spatial organization of the XX neomale were remodeled after sex reversal and similar to those in YY supermales, and a male-specific loop containing the SDR was found in the open chromatin region. Our results elucidate the origin of young sex chromosomes and the chromatin remodeling configuration in the catfish sexual plasticity.
Collapse
Affiliation(s)
- Gaorui Gong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Xiong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shijun Xiao
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing 314000, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Peipei Huang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Liao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Han
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaohong Lin
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Ren
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Jie Mei
- Corresponding author. E-mail:
| |
Collapse
|
28
|
Hearn KE, Koch EL, Stankowski S, Butlin RK, Faria R, Johannesson K, Westram AM. Differing associations between sex determination and sex‐linked inversions in two ecotypes of
Littorina saxatilis. Evol Lett 2022; 6:358-374. [PMID: 36254259 PMCID: PMC9554762 DOI: 10.1002/evl3.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Sexual antagonism is a common hypothesis for driving the evolution of sex chromosomes, whereby recombination suppression is favored between sexually antagonistic loci and the sex‐determining locus to maintain beneficial combinations of alleles. This results in the formation of a sex‐determining region. Chromosomal inversions may contribute to recombination suppression but their precise role in sex chromosome evolution remains unclear. Because local adaptation is frequently facilitated through the suppression of recombination between adaptive loci by chromosomal inversions, there is potential for inversions that cover sex‐determining regions to be involved in local adaptation as well, particularly if habitat variation creates environment‐dependent sexual antagonism. With these processes in mind, we investigated sex determination in a well‐studied example of local adaptation within a species: the intertidal snail, Littorina saxatilis. Using SNP data from a Swedish hybrid zone, we find novel evidence for a female‐heterogametic sex determination system that is restricted to one ecotype. Our results suggest that four putative chromosomal inversions, two previously described and two newly discovered, span the putative sex chromosome pair. We determine their differing associations with sex, which suggest distinct strata of differing ages. The same inversions are found in the second ecotype but do not show any sex association. The striking disparity in inversion‐sex associations between ecotypes that are connected by gene flow across a habitat transition that is just a few meters wide indicates a difference in selective regime that has produced a distinct barrier to the spread of the newly discovered sex‐determining region between ecotypes. Such sex chromosome‐environment interactions have not previously been uncovered in L. saxatilis and are known in few other organisms. A combination of both sex‐specific selection and divergent natural selection is required to explain these highly unusual patterns.
Collapse
Affiliation(s)
- Katherine E. Hearn
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
| | - Eva L. Koch
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- Department of Zoology University of Cambridge Cambridge CB2 3EJ United Kingdom
| | - Sean Stankowski
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- ISTA (Institute of Science and Technology Austria) Klosterneuburg 3400 Austria
| | - Roger K. Butlin
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- Department of Marine Sciences University of Gothenburg Strömstad SE‐45296 Sweden
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado Campus de Vairão, Universidade do Porto Vairão 4485‐661 Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO Campus de Vairão, Universidade do Porto Vairão 4485‐661 Portugal
| | - Kerstin Johannesson
- Department of Marine Sciences University of Gothenburg Strömstad SE‐45296 Sweden
| | - Anja M. Westram
- ISTA (Institute of Science and Technology Austria) Klosterneuburg 3400 Austria
- Faculty of Biosciences and Aquaculture Nord University Bodø 8026 Norway
| |
Collapse
|
29
|
Xia Z, Dai X, Fan W, Liu C, Zhang M, Bian P, Zhou Y, Li L, Zhu B, Liu S, Li Z, Wang X, Yu M, Xiang Z, Jiang Y, Zhao A. Chromosome-level Genomes Reveal the Genetic Basis of Descending Dysploidy and Sex Determination in Morus Plants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1119-1137. [PMID: 36055564 DOI: 10.1016/j.gpb.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Multiple plant lineages have independently evolved sex chromosomes and variable karyotypes to maintain their sessile lifestyles through constant biological innovation. Morus notabilis, a dioecious mulberry species, has the fewest chromosomes among Morus spp., but the genetic basis of sex determination and karyotype evolution in this species has not been identified. In this study, three high-quality genome assemblies were generated for Morus spp. [including dioecious M. notabilis (male and female) and Morus yunnanensis (female)] with genome sizes of 301-329 Mb and were grouped into six pseudochromosomes. Using a combination of genomic approaches, we found that the putative ancestral karyotype of Morus species was close to 14 protochromosomes, and that several chromosome fusion events resulted in descending dysploidy (2n = 2x = 12). We also characterized a ∼ 6.2-Mb sex-determining region on chromosome 3. Four potential male-specific genes, a partially duplicatedDNA helicase gene (named MSDH) and three Ty3_Gypsy long terminal repeat retrotransposons (named MSTG1/2/3), were identified in the Y-linked area and considered to be strong candidate genes for sex determination or differentiation. Population genomic analysis showed that Guangdong accessions in China were genetically similar to Japanese accessions of mulberry. In addition, genomic areas containing selective sweeps that distinguish domesticated mulberry from wild populations in terms of flowering and disease resistance were identified. Our findings provide an important genetic resource for sex identification research and molecular breeding in mulberry.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Meirong Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuping Zhou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Baozhong Zhu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Shuman Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi 661100, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Maode Yu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
30
|
She H, Xu Z, Zhang H, Wu J, Wang X, Liu Z, Qian W. Remarkable Divergence of the Sex-Linked Region between Two Wild Spinach Progenitors, Spinacia turkestanica and Spinacia tetrandra. BIOLOGY 2022; 11:1138. [PMID: 36009765 PMCID: PMC9404990 DOI: 10.3390/biology11081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The sex-linked region (SLR) plays an important role in determining the sex of a plant. The SLR of the Y chromosome, composed of a 14.1-Mb inversion and a 10-Mb Y-duplication region (YDR), was deciphered in Spinacia oleracea previously. However, our understanding of the SLR in its wild relatives, S. turkestanica and S. tetrandra, remains limited. In this study, we used 63 resequencing data from the three Spinacia species to infer the evolution of the SLR among the Spinacia species. In the SLR, all the cultivated spinach and S. turkestanica accessions were clustered into two distinct categories with both sexes, while the S. tetrandra accessions of both sexes were grouped. This suggests that S. oleracea shared a similar SLR with S. turkestanica, but not with S. tetrandra, which was further confirmed based on the population structure and principal component analysis. Furthermore, we identified 3910 fully sex-linked SNPs in S. oleracea and 92.82% of them were available in S. turkestanica, while none of the SNPs were adopted in S. tetrandra. Genome coverage in males and females supported the hypothesis that the YDR increasingly expanded during its evolution. Otherwise, we identified 13 sex-linked transposable element insertion polymorphisms within the inversion in both S. oleracea and S. turkestanica, demonstrating that the transposable element insertions might have occurred before the recombination suppression event of the inversion. The SLR was conserved compared with the pseudoautosomal region given that the genetic hitchhiking process occurred in the SLR during its evolution. Our findings will significantly advance our understanding of the characteristics and evolution of the SLR in Spinacia species.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiyuan Liu
- Correspondence: (Z.L.); (W.Q.); Tel.: +86-010-62194559 (W.Q.)
| | - Wei Qian
- Correspondence: (Z.L.); (W.Q.); Tel.: +86-010-62194559 (W.Q.)
| |
Collapse
|
31
|
Cauret CMS, Mortimer SME, Roberti MC, Ashman TL, Liston A. Chromosome-scale assembly with a phased sex-determining region resolves features of early Z and W chromosome differentiation in a wild octoploid strawberry. G3 (BETHESDA, MD.) 2022; 12:6603112. [PMID: 35666193 PMCID: PMC9339316 DOI: 10.1093/g3journal/jkac139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
When sex chromosomes stop recombining, they start to accumulate differences. The sex-limited chromosome (Y or W) especially is expected to degenerate via the loss of nucleotide sequence and the accumulation of repetitive sequences. However, how early signs of degeneration can be detected in a new sex chromosome is still unclear. The sex-determining region of the octoploid strawberries is young, small, and dynamic. Using PacBio HiFi reads, we obtained a chromosome-scale assembly of a female (ZW) Fragaria chiloensis plant carrying the youngest and largest of the known sex-determining region on the W in strawberries. We fully characterized the previously incomplete sex-determining region, confirming its gene content, genomic location, and evolutionary history. Resolution of gaps in the previous characterization of the sex-determining region added 10 kb of sequence including a noncanonical long terminal repeat-retrotransposon; whereas the Z sequence revealed a Harbinger transposable element adjoining the sex-determining region insertion site. Limited genetic differentiation of the sex chromosomes coupled with structural variation may indicate an early stage of W degeneration. The sex chromosomes have a similar percentage of repeats but differ in their repeat distribution. Differences in the pattern of repeats (transposable element polymorphism) apparently precede sex chromosome differentiation, thus potentially contributing to recombination cessation as opposed to being a consequence of it.
Collapse
Affiliation(s)
- Caroline M S Cauret
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sebastian M E Mortimer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marcelina C Roberti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
32
|
SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nat Genet 2022; 54:715-724. [PMID: 35551309 DOI: 10.1038/s41588-022-01068-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022]
Abstract
Transgenic papaya is widely publicized for controlling papaya ringspot virus. However, the impact of particle bombardment on the genome remains unknown. The transgenic SunUp and its progenitor Sunset genomes were assembled into 351.5 and 350.3 Mb in nine chromosomes, respectively. We identified a 1.64 Mb insertion containing three transgenic insertions in SunUp chromosome 5, consisting of 52 nuclear-plastid, 21 nuclear-mitochondrial and 1 nuclear genomic fragments. A 591.9 kb fragment in chromosome 5 was translocated into the 1.64 Mb insertion. We assembled a gapless 9.8 Mb hermaphrodite-specific region of the Yh chromosome and its 6.0 Mb X counterpart. Resequencing 86 genomes revealed three distinct groups, validating their geographic origin and breeding history. We identified 147 selective sweeps and defined the essential role of zeta-carotene desaturase in carotenoid accumulation during domestication. Our findings elucidated the impact of particle bombardment and improved our understanding of sex chromosomes and domestication to expedite papaya improvement.
Collapse
|
33
|
Carey SB, Lovell JT, Jenkins J, Leebens-Mack J, Schmutz J, Wilson MA, Harkess A. Representing sex chromosomes in genome assemblies. CELL GENOMICS 2022; 2. [PMID: 35720975 PMCID: PMC9205529 DOI: 10.1016/j.xgen.2022.100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sex chromosomes have evolved hundreds of independent times across eukaryotes. As genome sequencing, assembly, and scaffolding techniques rapidly improve, it is now feasible to build fully phased sex chromosome assemblies. Despite technological advances enabling phased assembly of whole chromosomes, there are currently no standards for representing sex chromosomes when publicly releasing a genome. Furthermore, most computational analysis tools are unable to efficiently investigate their unique biology relative to autosomes. We discuss a diversity of sex chromosome systems and consider the challenges of representing sex chromosome pairs in genome assemblies. By addressing these issues now as technologies for full phasing of chromosomal assemblies are maturing, we can collectively ensure that future genome analysis toolkits can be broadly applied to all eukaryotes with diverse types of sex chromosome systems. Here we provide best practice guidelines for presenting a genome assembly that contains sex chromosomes. These guidelines can also be applied to other non-recombining genomic regions, such as S-loci in plants and mating-type loci in fungi and algae.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.,US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa A Wilson
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
34
|
Charlesworth D. Some thoughts about the words we use for thinking about sex chromosome evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210314. [PMID: 35306893 PMCID: PMC8935297 DOI: 10.1098/rstb.2021.0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sex chromosomes are familiar to most biologists since they first learned about genetics. However, research over the past 100 years has revealed that different organisms have evolved sex-determining systems independently. The differences in the ages of systems, and in how they evolved, both affect whether sex chromosomes have evolved. However, the diversity means that the terminology used tends to emphasize either the similarities or the differences, sometimes causing misunderstandings. In this article, I discuss some concepts where special care is needed with terminology. The following four terms regularly create problems: ‘sex chromosome’, ‘master sex-determining gene’, ‘evolutionary strata’ and ‘genetic degeneration’. There is no generally correct or wrong use of these words, but efforts are necessary to make clear how they are to be understood in specific situations. I briefly outline some widely accepted ideas about sex chromosomes, and then discuss these ‘problem terms’, highlighting some examples where careful use of the words helps bring to light current uncertainties and interesting questions for future work. This article is part of the theme issue ‘Sex determination and sex chromosome evolution in land plants’.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| |
Collapse
|
35
|
Muyle A, Marais GAB, Bačovský V, Hobza R, Lenormand T. Dosage compensation evolution in plants: theories, controversies and mechanisms. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210222. [PMID: 35306896 PMCID: PMC8935305 DOI: 10.1098/rstb.2021.0222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a minority of flowering plants, separate sexes are genetically determined by sex chromosomes. The Y chromosome has a non-recombining region that degenerates, causing a reduced expression of Y genes. In some species, the lower Y expression is accompanied by dosage compensation (DC), a mechanism that re-equalizes male and female expression and/or brings XY male expression back to its ancestral level. Here, we review work on DC in plants, which started as early as the late 1960s with cytological approaches. The use of transcriptomics fired a controversy as to whether DC existed in plants. Further work revealed that various plants exhibit partial DC, including a few species with young and homomorphic sex chromosomes. We are starting to understand the mechanisms responsible for DC in some plants, but in most species, we lack the data to differentiate between global and gene-by-gene DC. Also, it is unknown why some species evolve many dosage compensated genes while others do not. Finally, the forces that drive DC evolution remain mysterious, both in plants and animals. We review the multiple evolutionary theories that have been proposed to explain DC patterns in eukaryotes with XY or ZW sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France
| | - Gabriel A B Marais
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Thomas Lenormand
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
36
|
Käfer J, Méndez M, Mousset S. Labile sex expression in angiosperm species with sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210216. [PMID: 35306891 PMCID: PMC8935303 DOI: 10.1098/rstb.2021.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
Here, we review the literature on sexual lability in dioecious angiosperm species with well-studied sex chromosomes. We distinguish three types of departures from strict dioecy, concerning either a minority of flowers in some individuals (leakiness) or the entire individual, which can constantly be bisexual or change sex. We found that for only four of the 22 species studied, reports of lability are lacking. The occurrence of lability is only weakly related to sex chromosome characteristics (number of sex-linked genes, age of the non-recombining region). These results contradict the naive idea that lability is an indication of the absence or the recent evolution of sex chromosomes, and thereby contribute to a growing consensus that sex chromosomes do not necessarily fix sex determination once and for all. We discuss some implications of these findings for the evolution of sex chromosomes, and suggest that more species with well-characterized lability should be studied with genomic data and tools. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, 69622 Villeurbanne, France
- CESAB–FRB, 34000 Montpellier, France
| | - Marcos Méndez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Sylvain Mousset
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, 69622 Villeurbanne, France
| |
Collapse
|
37
|
Gong W, Filatov DA. Evolution of the sex-determining region in Ginkgo biloba. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210229. [PMID: 35306884 PMCID: PMC8935300 DOI: 10.1098/rstb.2021.0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Sex chromosomes or sex-determining regions (SDR) have been discovered in many dioecious plant species, including the iconic 'living fossil' Ginkgo biloba, though the location and size of the SDR in G. biloba remain contradictory. Here we resolve these controversies and analyse the evolution of the SDR in this species. Based on transcriptome sequencing data from four genetic crosses we reconstruct male- and female-specific genetic maps and locate the SDR to the middle of chromosome 2. Integration of the genetic maps with the genome sequence reveals that recombination in and around the SDR is suppressed in a region of about 50 Mb in both males and females. However, occasional recombination does occur except a small, less than 5 Mb long region that does not recombine in males. Based on synonymous divergence between homologous X- and Y-linked genes in this region, we infer that the Ginkgo SDR is fairly old-at least of Cretaceous origin. The analysis of substitution rates and gene expression reveals only slight Y-degeneration. These results are consistent with findings in other dioecious plants with homomorphic sex chromosomes, where the SDR is typically small and evolves in a region with pre-existing reduced recombination, surrounded by long actively recombining pseudoautosomal regions. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Wei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Dmitry A. Filatov
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
38
|
Ma X, Yu L, Fatima M, Wadlington WH, Hulse-Kemp AM, Zhang X, Zhang S, Xu X, Wang J, Huang H, Lin J, Deng B, Liao Z, Yang Z, Ma Y, Tang H, Van Deynze A, Ming R. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species. Genome Biol 2022; 23:75. [PMID: 35255946 PMCID: PMC8902716 DOI: 10.1186/s13059-022-02633-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spinach (Spinacia oleracea L.) is a dioecious species with an XY sex chromosome system, but its Y chromosome has not been fully characterized. Our knowledge about the history of its domestication and improvement remains limited. Results A high-quality YY genome of spinach is assembled into 952 Mb in six pseudo-chromosomes. By a combination of genetic mapping, Genome-Wide Association Studies, and genomic analysis, we characterize a 17.42-Mb sex determination region (SDR) on chromosome 1. The sex chromosomes of spinach evolved when an insertion containing sex determination genes occurred, followed by a large genomic inversion about 1.98 Mya. A subsequent burst of SDR-specific repeats (0.1–0.15 Mya) explains the large size of this SDR. We identify a Y-specific gene, NRT1/PTR 6.4 which resides in this insertion, as a strong candidate for the sex determination or differentiation factor. Resequencing of 112 spinach genomes reveals a severe domestication bottleneck approximately 10.87 Kya, which dates the domestication of spinach 7000 years earlier than the archeological record. We demonstrate that a strong selection signal associated with internode elongation and leaf area expansion is associated with domestication of edibility traits in spinach. We find that several strong genomic introgressions from the wild species Spinacia turkestanica and Spinacia tetrandra harbor desirable alleles of genes related to downy mildew resistance, frost resistance, leaf morphology, and flowering-time shift, which likely contribute to spinach improvement. Conclusions Analysis of the YY genome uncovers evolutionary forces shaping nascent sex chromosome evolution in spinach. Our findings provide novel insights about the domestication and improvement of spinach. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02633-x.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li'ang Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - William H Wadlington
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amanda M Hulse-Kemp
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.,USDA-ARS, Genomics and Bioinformatics Research Unit, North Carolina, 27695, Raleigh, USA
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengcheng Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xindan Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaxing Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenyang Liao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenhui Yang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhong Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
39
|
Masuda K, Ikeda Y, Matsuura T, Kawakatsu T, Tao R, Kubo Y, Ushijima K, Henry IM, Akagi T. Reinvention of hermaphroditism via activation of a RADIALIS-like gene in hexaploid persimmon. NATURE PLANTS 2022; 8:217-224. [PMID: 35301445 DOI: 10.1038/s41477-022-01107-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/10/2022] [Indexed: 05/29/2023]
Abstract
In flowering plants, different lineages have independently transitioned from the ancestral hermaphroditic state into and out of various sexual systems1. Polyploidizations are often associated with this plasticity in sexual systems2,3. Persimmons (the genus Diospyros) have evolved dioecy via lineage-specific palaeoploidizations. More recently, hexaploid D. kaki has established monoecy and also exhibits reversions from male to hermaphrodite flowers in response to natural environmental signals (natural hermaphroditism, NH), or to artificial cytokinin treatment (artificial hermaphroditism, AH). We sought to identify the molecular pathways underlying these polyploid-specific reversions to hermaphroditism. Co-expression network analyses identified regulatory pathways specific to NH or AH transitions. Surprisingly, the two pathways appeared to be antagonistic, with abscisic acid and cytokinin signalling for NH and AH, respectively. Among the genes common to both pathways leading to hermaphroditic flowers, we identified a small-Myb RADIALIS-like gene, named DkRAD, which is specifically activated in hexaploid D. kaki. Consistently, ectopic overexpression of DkRAD in two model plants resulted in hypergrowth of the gynoecium. These results suggest that production of hermaphrodite flowers via polyploidization depends on DkRAD activation, which is not associated with a loss-of-function within the existing sex determination pathway, but rather represents a new path to (or reinvention of) hermaphroditism.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- JST-PRESTO, Saitama, Japan.
| |
Collapse
|
40
|
Yu L, Ma X, Wadlington W, Ming R. Identification of structural variation and polymorphisms of a sex co-segregating scaffold in spinach. PLANT REPRODUCTION 2022; 35:19-30. [PMID: 34319458 DOI: 10.1007/s00497-021-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Spinach is a common vegetable, and dioecy is maintained by a pair of XY sex chromosomes. Due to limited genomic resources and its highly repetitive genome, limited studies were conducted to investigate the genomic landscape of the region near sex-determining loci. In this study, we screened the structure variations (SVs) between Y-linked contigs and a 1.78-Mb X scaffold (Super_scaffold 66), which enabled the development of 12 sex co-segregating DNA markers. These markers were tested in one F1 mapping population and 40 spinach accessions, which comprised 692 individual plants with the strong sex linkage pattern. In addition, we found that Super_scaffold 66 was highly repetitive along with the enriched LTR-RTs insertions and decreased microsatellite distribution compared with the rest genome, which matches extremely low gene density featured by only nine annotated genes. Synteny analysis between Y contigs and Superscaffold_66 revealed a 340-Kb accumulative Y contig (non-continuous) and a 500-Kb X counterpart along with SVs and wide-spread tandem duplications. Among the nine genes, one ABC transporter gene revealed noticeable SVs between Y contig and X counterpart, as an approximate 5-Kb recent Gypsy LTR-RT insertion in the Y-linked allele, but not the X allele. The gene paucity, SVs, and sex-linked polymorphisms attributed to the recombination suppression. We proposed that Super_scaffold 66 is part of the non-recombining region containing the sex determination genes. The spread of 12 sex co-segregating markers from this 1.78 Mb genomic region indicated the existence and expansion of sex determination region during progression of the Y chromosome.
Collapse
Affiliation(s)
- Li'ang Yu
- Department of Plant Biology, University of Illinois At Urbana-Champaign, 1201 West Gregory Drive, Urbana, IL, 61801-3838, USA
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - William Wadlington
- Department of Plant Biology, University of Illinois At Urbana-Champaign, 1201 West Gregory Drive, Urbana, IL, 61801-3838, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois At Urbana-Champaign, 1201 West Gregory Drive, Urbana, IL, 61801-3838, USA.
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
41
|
Comparative Transcriptome Analysis Reveals Sex-Biased Expression of Hormone-Related Genes at an Early Stage of Sex Differentiation in Red Bayberry (Morella rubra). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular mechanism of sex development and differentiation in the economically important dioecious fruit tree, red bayberry (Morella rubra), was revealed using next-generation transcriptome sequencing (NGS), and comparative analyses were used to identify differentially expressed genes (DEGs) in female and male flower buds. A total of 7,029 of these DEGs were identified at two early development stages. KEGG pathway enrichment analysis revealed that plant hormone signal transduction was significantly overrepresented, and 91 genes related to hormones were identified. An analysis of 7,029 DEGs revealed 161 hormone-related genes, with the 42 related to auxin and 26 related to ethylene being the most highly represented. A total of 62 genes were significantly up-regulated in females and 29 were in males, with 18 of them specifically expressed in females and 10 in males. A total of 415 transcription factors were identified, with 129 genes up-regulated in females and 53 in males. Moreover, 38 had female-specific expression and 18 had male-specific expression. Using weighted gene co-expression network analysis (WGCNA), two modules were found to be associated with sexual type. In the module coded light-green, there were five genes related to hormones, one to flower development and ten transcription factors with four genes specifically expressed in the males and four in females. The hub gene in the light-green module is MR0TCONS_00017483.1 (ACO), which is involved in ethylene biosynthesis and had male-specific expression. Among the transcription factors, three of the four male-specific expressed genes involved in flavonoid biosynthesis, including the MYB gene MR1TCONS_00020658.1 and two BHLH genes, MR6G001563.1 and MR8G020751.1, played important roles in male floral differentiation. In the dark-cyan module, six hormone-related genes, five transcription factors and three flower development genes were identified with the hub gene MR1G019545.1 (ETR1), which participates in the ethylene signaling pathway, and MR4G023618.1, which encodes the C3H zinc finger transcription factor. These results indicate that ethylene is the key hormone that interacts with other hormones and transcription factors to regulate sex differentiation in the red bayberry, which also provides new insights into the mechanism of sex determination and differentiation in the red bayberry.
Collapse
|
42
|
Chaudhary P, Sharma PC. Distribution of simple sequence repeats, transcription factors, and differentially expressed genes in the NGS-based transcriptome of male and female seabuckthorn ( Hippophae salicifolia). J Biomol Struct Dyn 2022; 41:2504-2517. [PMID: 35120412 DOI: 10.1080/07391102.2022.2034669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Seabuckthorn (Hippophae salicifolia) is a perennial, multipurpose wonder plant, popular for its immense medicinal, nutritional, and therapeutic properties. However, due to the lack of whole-genome-based studies, the molecular mechanism governing distinct sexual phenotypes is still not clear. We employed the high-throughput NGS Illumina NovaSeq paired-end technology to generate whole transcriptome profiles of male and female plants of H. salicifolia. In total, 3.2 million raw short reads were generated with an average length of 150 bp, including 50911358 reads from the male leaf tissue samples and 45850364 reads from the female leaf tissue samples. Clustering of the high-quality reads yielded de novo short read assembly of 50259 transcripts of >100 bp length. The final transcripts were assigned Gene Ontology (GO) terms. The digital expression of genes was studied using the DESeq2 of R package that identified 7180 differentially expressed genes (DEGs) between the male and female plant samples. Further, 10,850 simple sequence repeats, and 8,351 transcription factors, distributed in more than 85 transcription families, were also mined from the final assembled transcriptome. Next, COG and KEGG pathway analyses were performed to assign biological functional terms to the DEGs. The findings of the present study will provide a valuable resource for gene expression discovery and other functional genomics studies aiming towards the selection of candidate genes for the development of sex-specific markers in seabuckthorn and other closely related species.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parneeta Chaudhary
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
43
|
Zhou P, Zhang X, Ma X, Yue J, Liao Z, Ming R. Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya. HORTICULTURE RESEARCH 2022; 9:uhab065. [PMID: 35048102 PMCID: PMC8935930 DOI: 10.1093/hr/uhab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Morphological, genic and epigenetic differences often exist in separate sexes of dioecious and trioecious plants. However, the connections and relationships among them in different breeding systems are still unclear. Papaya has three sex types, which is genetically determined and epigenetically regulated, and was chosen as a model to study sex differentiation. Bisulfite sequencing of genomic DNA extracted from early-stage flowers revealed sex-specific genomic methylation landscapes and seasonally methylome reprogramming processes in dioecious and gynodioecious papaya grown in spring and summer. Extensive methylation of sex-determining region (SDR) was the distinguishing epigenetic characteristics of nascent XY sex chromosomes in papaya. Seasonal methylome reprogramming of early-stage flowers in both dioecy and gynodioecy systems were detected, resulting from transcriptional expression pattern alterations of methylation-modification-related and chromatin-remodeling-related genes, particularly from those genes involved in active demethylation. Genes involved in phytohormone signal transduction pathway in male flowers have played an important role in the formation of male-specific characteristics. These findings enhanced the understanding of the genetic and epigenetic contributions to sex differentiation and the complexity of sex chromosome evolution in trioecious plants.
Collapse
Affiliation(s)
- Ping Zhou
- Fruit Research Institute,Fujian Academy of Agricultural Sciences,Fuzhou 350013,Fujian, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinyi Ma
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingjing Yue
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhenyang Liao
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Gene regulation network analyses of pistil development in papaya. BMC Genomics 2022; 23:8. [PMID: 34983382 PMCID: PMC8729085 DOI: 10.1186/s12864-021-08197-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The pistil is an essential part of flowers that functions in the differentiation of the sexes and reproduction in plants. The stigma on the pistil can accept pollen to allow fertilization and seed development. Papaya (Carica papaya L.) is a dioecious plant, where female flowers exhibit normal pistil, while the male flowers exhibit aborted pistil at a late stage of pistil development. RESULTS The developmental stages of papaya pistil were analyzed after first dividing it into slices representing the primordium stage 1 (S1), the pre-meiotic stages S2, post-meiotic stage S3, and the mitotic stage S4. The SS scoring algorithm analysis of genes preferentially expressed at different stages revealed differentially expressed genes between male and female flowers. A transcription factor regulatory network for each stage based on the genes that are differentially expressed between male and female flowers was constructed. Some transcription factors related to pistil development were revealed based on the analysis of regulatory networks such as CpAGL11, CpHEC2, and CpSUPL. Based on the specific expression of genes, constructed a gene regulatory subnetwork with CpAGL11-CpSUPL-CpHEC2 functioning as the core. Analysis of the functionally enriched terms in this network reveals several differentially expressed genes related to auxin/ brassinosteroid signal transduction in the plant hormone signal transduction pathway. At the same time, significant differences in the expression of auxin and brassinosteroid synthesis-related genes between male and female flowers at different developmental stages were detected. CONCLUSIONS The pistil abortion of papaya might be caused by the lack of expression or decreased expression of some transcription factors and hormone-related genes, affecting hormone signal transduction or hormone biosynthesis. Analysis of aborted and normally developing pistil in papaya provided new insights into the molecular mechanism of pistil development and sex differentiation in dioecious papaya.
Collapse
|
45
|
Underwood CJ, Vijverberg K, Rigola D, Okamoto S, Oplaat C, Camp RHMOD, Radoeva T, Schauer SE, Fierens J, Jansen K, Mansveld S, Busscher M, Xiong W, Datema E, Nijbroek K, Blom EJ, Bicknell R, Catanach A, Erasmuson S, Winefield C, van Tunen AJ, Prins M, Schranz ME, van Dijk PJ. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat Genet 2022; 54:84-93. [PMID: 34992267 DOI: 10.1038/s41588-021-00984-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/03/2021] [Indexed: 01/21/2023]
Abstract
Apomixis, the clonal formation of seeds, is a rare yet widely distributed trait in flowering plants. We have isolated the PARTHENOGENESIS (PAR) gene from apomictic dandelion that triggers embryo development in unfertilized egg cells. PAR encodes a K2-2 zinc finger, EAR-domain protein. Unlike the recessive sexual alleles, the dominant PAR allele is expressed in egg cells and has a miniature inverted-repeat transposable element (MITE) transposon insertion in the promoter. The MITE-containing promoter can invoke a homologous gene from sexual lettuce to complement dandelion LOSS OF PARTHENOGENESIS mutants. A similar MITE is also present in the promoter of the PAR gene in apomictic forms of hawkweed, suggesting a case of parallel evolution. Heterologous expression of dandelion PAR in lettuce egg cells induced haploid embryo-like structures in the absence of fertilization. Sexual PAR alleles are expressed in pollen, suggesting that the gene product releases a block on embryogenesis after fertilization in sexual species while in apomictic species PAR expression triggers embryogenesis in the absence of fertilization.
Collapse
Affiliation(s)
- Charles J Underwood
- Keygene N.V., Wageningen, the Netherlands
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kitty Vijverberg
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
- Naturalis Biodiversity Center, Radboud University, Nijmegen, the Netherlands
| | | | - Shunsuke Okamoto
- Keygene N.V., Wageningen, the Netherlands
- Takii & Co. Ltd, Plant Breeding and Experiment Station, Konan Shiga, Japan
| | - Carla Oplaat
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
- National Reference Centre of Plant Health, National Plant Protection Organization, Wageningen, the Netherlands
| | | | | | | | | | - Kim Jansen
- Keygene N.V., Wageningen, the Netherlands
| | | | - Marco Busscher
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Wei Xiong
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | | | | | | | - Ross Bicknell
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | - Andrew Catanach
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | - Sylvia Erasmuson
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | | | | | | | - M Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands.
| | | |
Collapse
|
46
|
Chen JR, Ueno H, Matsumura H, Urasaki N, Lee CY, Chen FC, Chin SW, Liu CC, Chiu CT, Tarora K, Li JY, Lee CY, Ku HM. Genomic characterization of a rare Carica papaya X chromosome mutant reveals a candidate monodehydroascorbate reductase 4 gene involved in all-hermaphrodite phenomenon. Mol Genet Genomics 2021; 296:1323-1335. [PMID: 34609588 DOI: 10.1007/s00438-021-01822-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/11/2021] [Indexed: 11/27/2022]
Abstract
Sex form is one of the most important characteristics in papaya cultivation in which hermaphrodite is the preferable form. Self-pollination of H*-TSS No.7, an inbred line derived from a rare X chromosome mutant SR*, produced all-hermaphrodite progeny. The recessive lethal allele controlling the all-hermaphrodite phenomenon was proposed to be the recessive Germination suppressor (gs) locus. This study employed next-generation sequencing technology and genome comparison to identify the candidate Gs gene. One specific gene, monodehydroascorbate reductase 4 (MDAR4) harboring a unique polymorphic 3 bp deletion in H*-TSS No.7 was identified. The function of MDAR4 is known to be involved in the hydrogen peroxide (H2O2) scavenging pathway and is associated with seed germination. Furthermore, MDAR4 showed higher expression in the imbibed seeds than that in the dry seeds indicating its potential role in the seed germination. Perhaps this is the very first report providing the evidences that MDAR4 is the candidate of Gs locus in H*-TSS No.7. In addition, Gs allele-specific markers were developed which would be facilitated for breeding all-hermaphrodite lines.
Collapse
Affiliation(s)
- Jen-Ren Chen
- Taiwan Seed Improvement and Propagation Station, No 6 Xingzhong St, Xinshe Dist, Taichung, 426, Taiwan
| | - Hiroki Ueno
- Vegetable and Floriculture Science, The National Agriculture and Food Research Organization, 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Hideo Matsumura
- Gene Research Center, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Naoya Urasaki
- Okinawa Prefectural Agriculture Research Center, Itoman, Okinawa, 901-0336, Japan
| | - Chen-Yu Lee
- Department of Plant Industry, National Pingtung University of Science and Technology, No 1, Shuefu Rd, Neipu, Pingtung, 912, Taiwan
| | - Fure-Chyi Chen
- Department of Plant Industry, National Pingtung University of Science and Technology, No 1, Shuefu Rd, Neipu, Pingtung, 912, Taiwan
| | - Shih-Wen Chin
- Department of Plant Industry, National Pingtung University of Science and Technology, No 1, Shuefu Rd, Neipu, Pingtung, 912, Taiwan
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, No 145 Xingda Rd, South Dist, Taichung, 402, Taiwan
| | - Chan-Tai Chiu
- Taiwan Seed Improvement and Propagation Station, No 6 Xingzhong St, Xinshe Dist, Taichung, 426, Taiwan
| | - Kazuhiko Tarora
- Okinawa Prefectural Agriculture Research Center, Itoman, Okinawa, 901-0336, Japan
| | - Jing-Yi Li
- Dashu District, Known-You Seed Co. Ltd, No 114-6, Zhuliao Road, Kaohsiung, 840, Taiwan
| | - Chieh Ying Lee
- Dashu District, Known-You Seed Co. Ltd, No 114-6, Zhuliao Road, Kaohsiung, 840, Taiwan
| | - Hsin-Mei Ku
- Agronomy Department, National Chung Hsing University, No 145 Xingda Rd, South Dist, Taichung, 402, Taiwan.
| |
Collapse
|
47
|
Hallingbäck HR, Pucholt P, Ingvarsson PK, Rönnberg-Wästljung AC, Berlin S. Genome-wide association mapping uncovers sex-associated copy number variation markers and female hemizygous regions on the W chromosome in Salix viminalis. BMC Genomics 2021; 22:710. [PMID: 34600471 PMCID: PMC8487499 DOI: 10.1186/s12864-021-08021-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/14/2021] [Indexed: 01/24/2023] Open
Abstract
Background Sex chromosomes are in some species largely undifferentiated (homomorphic) with restricted sex determination regions. Homomorphic but different sex chromosomes are found in the closely related genera Populus and Salix indicating flexible sex determination systems, ideal for studies of processes involved in sex chromosome evolution. We have performed genome-wide association studies of sex and analysed sex chromosomes in a population of 265 wild collected Salix viminalis accessions and studied the sex determining locus. Results A total of 19,592 markers were used in association analyses using both Fisher’s exact tests and a single-marker mixed linear model, which resulted in 48 and 41 sex-associated (SA) markers respectively. Across all 48 SA markers, females were much more often heterozygous than males, which is expected if females were the heterogametic sex. The majority of the SA markers were, based on positions in the S. purpurea genome, located on chromosome 15, previously demonstrated to be the sex chromosome. Interestingly, when mapping the genotyping-by-sequencing sequence tag harbouring the two SA markers with the highest significance to the S. viminalis genomic scaffolds, five regions of very high similarity were found: three on a scaffold that represents a part of chromosome 15, one on a scaffold that represents a part of chromosome 9 and one on a scaffold not anchored to the genome. Based on segregation differences of the alleles at the two marker positions and on differences in PCR amplification between females and males we conclude that females had multiple copies of this DNA fragment (chromosome 9 and 15), whereas males only had one (chromosome 9). We therefore postulate that the female specific sequences have been copied from chromosome 9 and inserted on chromosome 15, subsequently developing into a hemizygous W chromosome linked region. Conclusions Our results support that sex determination in S. viminalis is controlled by one locus on chromosome 15. The segregation patterns observed at the SA markers furthermore confirm that S. viminalis females are the heterogametic sex. We also identified a translocation from chromosome 9 to the W chromosome. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08021-2.
Collapse
Affiliation(s)
- Henrik R Hallingbäck
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden.,Present Address: Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, SE-751 83, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden
| | - Ann Christin Rönnberg-Wästljung
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden.
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden
| |
Collapse
|
48
|
Roy SW. Digest: Three sexes from two loci in one genome: A haploid alga expands the diversity of trioecious species. Evolution 2021; 75:3002-3003. [PMID: 34486115 DOI: 10.1111/evo.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022]
Abstract
Multicellular eukaryotes exhibit a remarkable diversity of sexual systems; however, trioecy, the coexistence of male, female, and cosexual or hermaphrodite individuals in a single species, is remarkably rare. Takahashi et al. (2021) report the first known instance of trioecy in a haploid organism. In contrast to other known cases of trioecy, the authors report evidence for genetic control of all three sexes by two loci. These results complicate models for sexual system turnover and expand the known diversity of trioecy species in several ways.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, California, 94117
| |
Collapse
|
49
|
Prentout D, Stajner N, Cerenak A, Tricou T, Brochier-Armanet C, Jakse J, Käfer J, Marais GAB. Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. THE NEW PHYTOLOGIST 2021; 231:1599-1611. [PMID: 33978992 DOI: 10.1111/nph.17456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Natasa Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Andreja Cerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, Zalec, SI-3310, Slovenia
| | - Theo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Celine Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
- LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 1349-017, Portugal
| |
Collapse
|
50
|
Charlesworth D. The timing of genetic degeneration of sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200093. [PMID: 34247501 DOI: 10.1098/rstb.2020.0093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic degeneration is an extraordinary feature of sex chromosomes, with the loss of functions of Y-linked genes in species with XY systems, and W-linked genes in ZW systems, eventually affecting almost all genes. Although degeneration is familiar to most biologists, important aspects are not yet well understood, including how quickly a Y or W chromosome can become completely degenerated. I review the current understanding of the time-course of degeneration. Degeneration starts after crossing over between the sex chromosome pair stops, and theoretical models predict an initially fast degeneration rate and a later much slower one. It has become possible to estimate the two quantities that the models suggest are the most important in determining degeneration rates-the size of the sex-linked region, and the time when recombination became suppressed (which can be estimated using Y-X or W-Z sequence divergence). However, quantifying degeneration is still difficult. I review evidence on gene losses (based on coverage analysis) or loss of function (by classifying coding sequences into functional alleles and pseudogenes). I also review evidence about whether small genome regions degenerate, or only large ones, whether selective constraints on the genes in a sex-linked region also strongly affect degeneration rates, and about how long it takes before all (or almost all) genes are lost. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| |
Collapse
|