1
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Yao J, Hua X, Huo W, Xiao L, Wang Y, Tang Q, Valdivia CR, Valdivia HH, Dong W, Xiao L. The Effect of Acidic Residues on the Binding between Opicalcin1 and Ryanodine Receptor from the Structure-Functional Analysis. JOURNAL OF NATURAL PRODUCTS 2024; 87:104-112. [PMID: 38128916 PMCID: PMC10825818 DOI: 10.1021/acs.jnatprod.3c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Calcin is a group ligand with high affinity and specificity for the ryanodine receptors (RyRs). Little is known about the effect of its acidic residues on the spacial structure as well as the interaction with RyRs. We screened the opicalcin1 acidic mutants and investigated the effect of mutation on activity. The results indicated that all acidic mutants maintained the structural features, but their surface charge distribution underwent significant changes. Molecular docking and dynamics simulations were used to analyze the interaction between opicalcin1 mutants and RyRs, which demonstrated that all opicalcin1 mutants effectively bound to the channel domain of RyR1. This stable binding induced a pronounced asymmetry in the structure of the RyR tetramer, exhibiting a high degree of structural dissimilarity. [3H]Ryanodine binding to RyR1 was enhanced in D2A and D15A, which was similar to opicalcin1, but that effect was suppressed in E12A and E29A and reversed for the DE-4A, thereby inhibiting ryanodine binding. Opicalcin1 and DE-4A also exhibited the ability to form stable docking structures with RyR2. Acidic residues play a crucial role in the structure of calcin and its functional interaction with RyRs that is beneficial for the calcin optimization to develop more active peptide lead compounds for RyR-related diseases.
Collapse
Affiliation(s)
- Jinchi Yao
- School
of Life Sciences, Liaoning Normal University, Dalian116081, China
- Department
of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical
University), Shanghai 200433, China
| | - Xiaoyu Hua
- Department
of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical
University), Shanghai 200433, China
| | - Wenjing Huo
- The
305 Hospital of PLA, Beijing 100017, China
| | - Li Xiao
- Department
of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53188, United States
- Department
of Forensic Toxicological Analysis, West China School of Basic Medical
Sciences and Forensic Medicine, Sichuan
University, Chengdu 610017, China
| | - Yongfang Wang
- Department
of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical
University), Shanghai 200433, China
| | - Qinglong Tang
- Central
Medical District of Chinese, PLA General Hospital, Beijing 100120, China
| | - Carmen R. Valdivia
- Department
of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53188, United States
| | - Héctor H. Valdivia
- Department
of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53188, United States
| | - Weibing Dong
- School
of Life Sciences, Liaoning Normal University, Dalian116081, China
| | - Liang Xiao
- Department
of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical
University), Shanghai 200433, China
| |
Collapse
|
3
|
Xiao X, Luo X, Huang C, Feng X, Wu M, Lu M, Kuang J, Peng S, Guo Y, Zhang Z, Hu Z, Zhou X, Chen M, Liu Z. Transcriptome analysis reveals the peptide toxins diversity of Macrothele palpator venom. Int J Biol Macromol 2023; 253:126577. [PMID: 37648132 DOI: 10.1016/j.ijbiomac.2023.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Spider venom is a large pharmacological repertoire of different bioactive peptide toxins. However, obtaining crude venom from some spiders is challenging. Thus, studying individual toxins through venom purification is a daunting task. In this study, we constructed the cDNA library and transcriptomic sequencing from the Macrothele palpator venom glands. Subsequently, 718 high-quality expressed sequence tags (ESTs) were identified, and grouped into three categories, including 449 toxin-like (62.53 %), 136 cellular component (18.94 %) and 133 non-matched (18.52 %) based on the gene function annotation. Additionally, 112 non-redundant toxin-like peptides were classified into 13 families (families A-M) based on their sequence homology and cysteine framework. Bioinformatics analysis revealed a high sequence similarity between families A-J and the toxins from Macrothele gigas in the NR database. In contrast, families K-M had a generally low sequence homology with known spider peptide toxins and unpredictable biological functions. Taken together, this study adds many new members to the spider toxin superfamily and provides a basis for identifying various potential biological tools in M. palpator venom.
Collapse
Affiliation(s)
- Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xiaoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Cuiling Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Minjuan Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jiating Kuang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyi Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yingmei Guo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zixuan Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua College, Huaihua, Hunan 418008, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
4
|
Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res 2023; 197:106978. [PMID: 37923027 DOI: 10.1016/j.phrs.2023.106978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Dangui He
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macao.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Robinson K, Culley D, Waring S, Lamb GD, Easton C, Casarotto MG, Dulhunty AF. Peptide mimetic compounds can activate or inhibit cardiac and skeletal ryanodine receptors. Life Sci 2020; 260:118234. [PMID: 32791148 DOI: 10.1016/j.lfs.2020.118234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
Abstract
AIMS Our aim was to characterise the actions of novel BIT compounds with structures based on peptides and toxins that bind to significant regulatory sites on ryanodine receptor (RyR) Ca2+ release channels. RyRs, located in sarcoplasmic reticulum (SR) Ca2+ store membranes of striated muscle, are essential for muscle contraction. Although severe sometimes-deadly myopathies occur when the channels become hyperactive following genetic or acquired changes, specific inhibitors of RyRs are rare. MAIN METHODS The effect of BIT compounds was determined by spectrophotometric analysis of Ca2+ release from isolated SR vesicles, analysis of single RyR channel activity in artificial lipid bilayers and contraction of intact and skinned skeletal muscle fibres. KEY FINDINGS The inhibitory compounds reduced: (a) Ca2+ release from SR vesicles with IC50s of 1.1-2.5 μM, competing with activation by parent peptides and toxins; (b) single RyR ion channel activity with IC50s of 0.5-1.5 μM; (c) skinned fibre contraction. In contrast, activating BIT compounds increased Ca2+ release with an IC50 of 5.0 μM and channel activity with AC50s of 2 to 12 nM and enhanced skinned fibre contraction. Sub-conductance activity dominated channel activity with both inhibitors and activators. Effects of all compounds on skeletal and cardiac RyRs were similar and reversible. Competition experiments suggest that the BIT compounds bind to the regulatory helical domains of the RyRs that impact on channel gating mechanisms through long-range allosteric interactions. SIGNIFICANCE The BIT compounds are strong modulators of RyR activity and provide structural templates for novel research tools and drugs to combat muscle disease.
Collapse
Affiliation(s)
- Ken Robinson
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Dane Culley
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sam Waring
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Graham D Lamb
- Physiology, Anatomy and Microbiology, Biochemistry and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Christopher Easton
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
6
|
Evans ERJ, McIntyre L, Northfield TD, Daly NL, Wilson DT. Small Molecules in the Venom of the Scorpion Hormurus waigiensis. Biomedicines 2020; 8:E259. [PMID: 32751897 PMCID: PMC7459668 DOI: 10.3390/biomedicines8080259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present in the venom have received comparatively little attention. Small molecules can have important functions within venoms; for example, in some spider species the main toxic components of the venom are acylpolyamines. Other molecules can have auxiliary effects that facilitate envenomation, such as purines with hypotensive properties utilised by snakes. In this study, we investigated some non-peptide small molecule constituents of Hormurus waigiensis venom using LC/MS, reversed-phase HPLC, and NMR spectroscopy. We identified adenosine, adenosine monophosphate (AMP), and citric acid within the venom, with low quantities of the amino acids glutamic acid and aspartic acid also being present. Purine nucleosides such as adenosine play important auxiliary functions in snake venoms when injected alongside other venom toxins, and they may have a similar role within H. waigiensis venom. Further research on these and other small molecules in scorpion venoms may elucidate their roles in prey capture and predator defence, and gaining a greater understanding of how scorpion venom components act in combination could allow for the development of improved first aid.
Collapse
Affiliation(s)
- Edward R. J. Evans
- Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, QLD 4878, Australia; (E.R.J.E.); (N.L.D.)
| | - Lachlan McIntyre
- Independent Researcher, P.O. Box 78, Bamaga, QLD 4876, Australia;
| | - Tobin D. Northfield
- Department of Entomology, Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA;
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, QLD 4878, Australia; (E.R.J.E.); (N.L.D.)
| | - David T. Wilson
- Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, QLD 4878, Australia; (E.R.J.E.); (N.L.D.)
| |
Collapse
|
7
|
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion Venom: Detriments and Benefits. Biomedicines 2020; 8:biomedicines8050118. [PMID: 32408604 PMCID: PMC7277529 DOI: 10.3390/biomedicines8050118] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| | - Julius M. Knerr
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Lídia Argemi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Medical School, Federal University of Roraima, Boa Vista, Roraima 69310-000, Brazil
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| |
Collapse
|
8
|
Housley DM, Pinyon JL, von Jonquieres G, Perera CJ, Smout M, Liddell MJ, Jennings EA, Wilson D, Housley GD. Australian Scorpion Hormurus waigiensis Venom Fractions Show Broad Bioactivity Through Modulation of Bio-Impedance and Cytosolic Calcium. Biomolecules 2020; 10:E617. [PMID: 32316246 PMCID: PMC7226344 DOI: 10.3390/biom10040617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Scorpion venoms are a rich source of bioactive molecules, but characterisation of toxin peptides affecting cytosolic Ca2+, central to cell signalling and cell death, is limited. We undertook a functional screening of the venom of the Australian scorpion Hormurus waigiensis to determine the breadth of Ca2+ mobilisation. A human embryonic kidney (HEK293) cell line stably expressing the genetically encoded Ca2+ reporter GCaMP5G and the rabbit type 1 ryanodine receptor (RyR1) was developed as a biosensor. Size-exclusion Fast Protein Liquid Chromatography separated the venom into 53 fractions, constituting 12 chromatographic peaks. Liquid chromatography mass spectroscopy identified 182 distinct molecules with 3 to 63 components per peak. The molecular weights varied from 258 Da-13.6 kDa, with 53% under 1 kDa. The majority of the venom chromatographic peaks (tested as six venom pools) were found to reversibly modulate cell monolayer bioimpedance, detected using the xCELLigence platform (ACEA Biosciences). Confocal Ca2+ imaging showed 9/14 peak samples, with molecules spanning the molecular size range, increased cytosolic Ca2+ mobilization. H. waigiensis venom Ca2+ activity was correlated with changes in bio-impedance, reflecting multi-modal toxin actions on cell physiology across the venom proteome.
Collapse
Affiliation(s)
- David M. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
- Department of Otolaryngology, Sunshine Coast University Hospital, Sunshine Coast, QLD 4575, Australia
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Jeremy L. Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
| | - Chamini J. Perera
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (M.S.); (D.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4878, Australia
| | - Michael J. Liddell
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Ernest A. Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (M.S.); (D.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4878, Australia
| | - David Wilson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (M.S.); (D.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4878, Australia
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (D.M.H.); (J.L.P.); (G.v.J.); (C.J.P.)
| |
Collapse
|
9
|
Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. Scorpion venomics: a 2019 overview. Expert Rev Proteomics 2019; 17:67-83. [DOI: 10.1080/14789450.2020.1705158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jimena I. Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
10
|
Kazemi SM, Sabatier JM. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules 2019; 24:molecules24142670. [PMID: 31340554 PMCID: PMC6680535 DOI: 10.3390/molecules24142670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpions, a characteristic group of arthropods, are among the earliest diverging arachnids, dating back almost 440 million years. One of the many interesting aspects of scorpions is that they have venom arsenals for capturing prey and defending against predators, which may play a critical role in their evolutionary success. Unfortunately, however, scorpion envenomation represents a serious health problem in several countries, including Iran. Iran is acknowledged as an area with a high richness of scorpion species and families. The diversity of the scorpion fauna in Iran is the subject of this review, in which we report a total of 78 species and subspecies in 19 genera and four families. We also list some of the toxins or genes studied from five species, including Androctonus crassicauda, Hottentotta zagrosensis, Mesobuthus phillipsi, Odontobuthus doriae, and Hemiscorpius lepturus, in the Buthidae and Hemiscorpiidae families. Lastly, we review the diverse functions of typical toxins from the Iranian scorpion species, including their medical applications.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, No 12, Somayyeh 14 Avenue, 3715688415 Qom, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille Cedex 15, France
| |
Collapse
|
11
|
Chakraborty AD, Gonano LA, Munro ML, Smith LJ, Thekkedam C, Staudacher V, Gamble AB, Macquaide N, Dulhunty AF, Jones PP. Activation of RyR2 by class I kinase inhibitors. Br J Pharmacol 2019; 176:773-786. [PMID: 30588601 DOI: 10.1111/bph.14562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/26/2018] [Accepted: 12/09/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Kinase inhibitors are a common treatment for cancer. Class I kinase inhibitors that target the ATP-binding pocket are particularly prevalent. Many of these compounds are cardiotoxic and can cause arrhythmias. Spontaneous release of Ca2+ via cardiac ryanodine receptors (RyR2), through a process termed store overload-induced Ca2+ release (SOICR), is a common mechanism underlying arrhythmia. We explored whether class I kinase inhibitors could modify the activity of RyR2 and trigger SOICR to determine if this contributes to the cardiotoxic nature of these compounds. EXPERIMENTAL APPROACH The impact of class I and II kinase inhibitors on SOICR was studied in HEK293 cells and ventricular myocytes using single-cell Ca2+ imaging. A specific effect on RyR2 was confirmed using single channel recordings. Ventricular myocytes were also used to determine if drug-induced changes in SOICR could be reversed using anti-SOICR agents. KEY RESULTS Class I kinase inhibitors increased the propensity of SOICR. Single channel recording showed that this was due to a specific effect on RyR2. Class II kinase inhibitors decreased the activity of RyR2 at the single channel level but had little effect on SOICR. The promotion of SOICR mediated by class I kinase inhibitors could be reversed using the anti-SOICR agent VK-II-86. CONCLUSIONS AND IMPLICATIONS Part of the cardiotoxicity of class I kinase inhibitors can be assigned to their effect on RyR2 and increase in SOICR. Compounds with anti-SOICR activity may represent an improved treatment option for patients.
Collapse
Affiliation(s)
- A D Chakraborty
- Department of Physiology, School of Biomedical Sciences, and HeartOtago, University of Otago, Dunedin, New Zealand
| | - L A Gonano
- Department of Physiology, School of Biomedical Sciences, and HeartOtago, University of Otago, Dunedin, New Zealand.,Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M L Munro
- Department of Physiology, School of Biomedical Sciences, and HeartOtago, University of Otago, Dunedin, New Zealand
| | - L J Smith
- Department of Physiology, School of Biomedical Sciences, and HeartOtago, University of Otago, Dunedin, New Zealand
| | - C Thekkedam
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - V Staudacher
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - A B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - N Macquaide
- Institute of Cardiovascular and Medical Sciences and School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - A F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - P P Jones
- Department of Physiology, School of Biomedical Sciences, and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Tobassum S, Tahir HM, Arshad M, Zahid MT, Ali S, Ahsan MM. Nature and applications of scorpion venom: an overview. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1530681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Saadia Tobassum
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Muhammad Arshad
- Department of Zoology, University of Education Lower Mall Campus, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
13
|
Shi W, He P, Zeng XC, Wu W, Chen X. Inhibitory Effect of an Acidic Peptide on the Activity of an Antimicrobial Peptide from the Scorpion Mesobuthus martensii Karsch. Molecules 2018; 23:molecules23123314. [PMID: 30558111 PMCID: PMC6321396 DOI: 10.3390/molecules23123314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
Highly acidic peptides with no disulfide bridges are widely present in the scorpion venoms; however, none of them has been functionally characterized so far. Here, we cloned the full-length cDNA of a short-chain highly acidic peptide (referred to as HAP-1) from a cDNA library made from the venom glands of the Chinese scorpion Mesobuthus martensii Karsch. HAP-1 contains 19 amino acid residues with a predicted IP value of 4.25. Acidic amino residues account for 33.3% of the total residues in the molecule of HAP-1. HAP-1 shows 76⁻98% identities to some scorpion venom peptides that have not yet been functionally characterized. Secondary structure prediction showed that HAP-1 contains a beta-sheet region (residues 9⁻17), and two coiled coil regions (residues 1⁻8 and 18⁻19) located at the N-terminal and C-terminal regions of the peptide, respectively. Antimicrobial assay showed that HAP-1 does not have any effect on the growth of the bacterium Staphylococcus aureus AB94004. However, it potently inhibits the antimicrobial activity of a 13-mer peptide from M. martensii Karsch against Staphylococcus aureus AB94004. This finding is the first characterization of the function of such highly acidic peptides from scorpions.
Collapse
Affiliation(s)
- Wanxia Shi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Pengchen He
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Weiwei Wu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|
14
|
Santibáñez-López CE, Kriebel R, Ballesteros JA, Rush N, Witter Z, Williams J, Janies DA, Sharma PP. Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions. PeerJ 2018; 6:e5902. [PMID: 30479892 PMCID: PMC6240337 DOI: 10.7717/peerj.5902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Scorpions have evolved a variety of toxins with a plethora of biological targets, but characterizing their evolution has been limited by the lack of a comprehensive phylogenetic hypothesis of scorpion relationships grounded in modern, genome-scale datasets. Disagreements over scorpion higher-level systematics have also incurred challenges to previous interpretations of venom families as ancestral or derived. To redress these gaps, we assessed the phylogenomic relationships of scorpions using the most comprehensive taxonomic sampling to date. We surveyed genomic resources for the incidence of calcins (a type of calcium channel toxin), which were previously known only from 16 scorpion species. Here, we show that calcins are diverse, but phylogenetically restricted only to parvorder Iurida, one of the two basal branches of scorpions. The other branch of scorpions, Buthida, bear the related LKTx toxins (absent in Iurida), but lack calcins entirely. Analysis of sequences and molecular models demonstrates remarkable phylogenetic inertia within both calcins and LKTx genes. These results provide the first synapomorphies (shared derived traits) for the recently redefined clades Buthida and Iurida, constituting the only known case of such traits defined from the morphology of molecules.
Collapse
Affiliation(s)
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Jesús A. Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel Rush
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Zachary Witter
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - John Williams
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Romero-Gutiérrez MT, Santibáñez-López CE, Jiménez-Vargas JM, Batista CVF, Ortiz E, Possani LD. Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi. Toxins (Basel) 2018; 10:E359. [PMID: 30189638 PMCID: PMC6162517 DOI: 10.3390/toxins10090359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, Serradigitus gertschi, of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species. In accordance with sequence similarity, the transcripts were classified as potentially coding for 37 ion channel toxins; 17 host defense peptides; 28 enzymes, including phospholipases, hyaluronidases, metalloproteases, and serine proteases; nine protease inhibitor-like peptides; 10 peptides of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein superfamily; seven La1-like peptides; and 11 sequences classified as "other venom components". A mass fingerprint performed by mass spectrometry identified 204 components with molecular masses varying from 444.26 Da to 12,432.80 Da, plus several higher molecular weight proteins whose precise masses were not determined. The LC-MS/MS analysis of a tryptic digestion of the soluble venom resulted in the de novo determination of 16,840 peptide sequences, 24 of which matched sequences predicted from the translated transcriptome. The database presented here increases our general knowledge of the biodiversity of venom components from neglected non-buthid scorpions.
Collapse
Affiliation(s)
- Maria Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Carlos Eduardo Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
- Department of Integrative Biology, University of Wisconsin⁻Madison, Madison, WI 53706, USA.
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Cesar Vicente Ferreira Batista
- Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
16
|
The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon 2018; 151:47-62. [DOI: 10.1016/j.toxicon.2018.06.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
|
17
|
Ortiz E, Possani LD. Scorpion toxins to unravel the conundrum of ion channel structure and functioning. Toxicon 2018; 150:17-27. [DOI: 10.1016/j.toxicon.2018.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/24/2018] [Accepted: 04/29/2018] [Indexed: 01/11/2023]
|
18
|
Romero-Gutierrez T, Peguero-Sanchez E, Cevallos MA, Batista CVF, Ortiz E, Possani LD. A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies. Toxins (Basel) 2017; 9:E399. [PMID: 29231872 PMCID: PMC5744119 DOI: 10.3390/toxins9120399] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023] Open
Abstract
This communication reports a further examination of venom gland transcripts and venom composition of the Mexican scorpion Thorellius atrox using RNA-seq and tandem mass spectrometry. The RNA-seq, which was performed with the Illumina protocol, yielded more than 20,000 assembled transcripts. Following a database search and annotation strategy, 160 transcripts were identified, potentially coding for venom components. A novel sequence was identified that potentially codes for a peptide with similarity to spider ω-agatoxins, which act on voltage-gated calcium channels, not known before to exist in scorpion venoms. Analogous transcripts were found in other scorpion species. They could represent members of a new scorpion toxin family, here named omegascorpins. The mass fingerprint by LC-MS identified 135 individual venom components, five of which matched with the theoretical masses of putative peptides translated from the transcriptome. The LC-MS/MS de novo sequencing allowed to reconstruct and identify 42 proteins encoded by assembled transcripts, thus validating the transcriptome analysis. Earlier studies conducted with this scorpion venom permitted the identification of only twenty putative venom components. The present work performed with more powerful and modern omic technologies demonstrates the capacity of accomplishing a deeper characterization of scorpion venom components and the identification of novel molecules with potential applications in biomedicine and the study of ion channel physiology.
Collapse
Affiliation(s)
- Teresa Romero-Gutierrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Esteban Peguero-Sanchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Cesar V F Batista
- Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| |
Collapse
|
19
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
20
|
Richardson SJ, Steele GA, Gallant EM, Lam A, Schwartz CE, Board PG, Casarotto MG, Beard NA, Dulhunty AF. Association of FK506 binding proteins with RyR channels - effect of CLIC2 binding on sub-conductance opening and FKBP binding. J Cell Sci 2017; 130:3588-3600. [PMID: 28851804 DOI: 10.1242/jcs.204461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptor (RyR) Ca2+ channels are central to striated muscle function and influence signalling in neurons and other cell types. Beneficially low RyR activity and maximum conductance opening may be stabilised when RyRs bind to FK506 binding proteins (FKBPs) and destabilised by FKBP dissociation, with submaximal opening during RyR hyperactivity associated with myopathies and neurological disorders. However, the correlation with submaximal opening is debated and quantitative evidence is lacking. Here, we have measured altered FKBP binding to RyRs and submaximal activity with addition of wild-type (WT) CLIC2, an inhibitory RyR ligand, or its H101Q mutant that hyperactivates RyRs, which probably causes cardiac and intellectual abnormalities. The proportion of sub-conductance opening increases with WT and H101Q CLIC2 and is correlated with reduced FKBP-RyR association. The sub-conductance opening reduces RyR currents in the presence of WT CLIC2. In contrast, sub-conductance openings contribute to excess RyR 'leak' with H101Q CLIC2. There are significant FKBP and RyR isoform-specific actions of CLIC2, rapamycin and FK506 on FKBP-RyR association. The results show that FKBPs do influence RyR gating and would contribute to excess Ca2+ release in this CLIC2 RyR channelopathy.
Collapse
Affiliation(s)
- Spencer J Richardson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Gregory A Steele
- Capital Pathology Laboratory, 70 Kent St, Deakin, ACT 2600, Australia
| | - Esther M Gallant
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Alexander Lam
- Neurosurgery, Royal Perth Hospital, 197 Wellington St, Perth, WA 6000, Australia
| | - Charles E Schwartz
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Philip G Board
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Marco G Casarotto
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Nicole A Beard
- Cardiac Physiology Department, Health Research Institute, Faculty of Education Science and Mathematics, University of Canberra, Bruce, ACT 2617, Australia
| | - Angela F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| |
Collapse
|
21
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon 2017; 125:123-130. [DOI: 10.1016/j.toxicon.2016.11.261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 11/23/2022]
|
23
|
Wang X, Gao B, Zhu S. Exon Shuffling and Origin of Scorpion Venom Biodiversity. Toxins (Basel) 2016; 9:toxins9010010. [PMID: 28035955 PMCID: PMC5308243 DOI: 10.3390/toxins9010010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 12/01/2022] Open
Abstract
Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.
Collapse
Affiliation(s)
- Xueli Wang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
24
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
25
|
Cremonez CM, Maiti M, Peigneur S, Cassoli JS, Dutra AAA, Waelkens E, Lescrinier E, Herdewijn P, de Lima ME, Pimenta AMC, Arantes EC, Tytgat J. Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins. Toxins (Basel) 2016; 8:toxins8100288. [PMID: 27706049 PMCID: PMC5086648 DOI: 10.3390/toxins8100288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
To date, several families of peptide toxins specifically interacting with ion channels in scorpion venom have been described. One of these families comprise peptide toxins (called KTxs), known to modulate potassium channels. Thus far, 202 KTxs have been reported, belonging to several subfamilies of KTxs (called α, β, γ, κ, δ, and λ-KTxs). Here we report on a previously described orphan toxin from Tityus serrulatus venom, named Ts11. We carried out an in-depth structure-function analysis combining 3D structure elucidation of Ts11 and electrophysiological characterization of the toxin. The Ts11 structure is highlighted by an Inhibitor Cystine Knot (ICK) type scaffold, completely devoid of the classical secondary structure elements (α-helix and/or β-strand). This has, to the best of our knowledge, never been described before for scorpion toxins and therefore represents a novel, 6th type of structural fold for these scorpion peptides. On the basis of their preferred interaction with voltage-gated K channels, as compared to all the other targets tested, it can be postulated that Ts11 is the first member of a new subfamily, designated as ε-KTx.
Collapse
Affiliation(s)
- Caroline M Cremonez
- Laboratório de Toxinas Animais, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-903, São Paulo, Brasil.
| | - Mohitosh Maiti
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Steve Peigneur
- Toxicology & Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, P.O. Box 922, Leuven 3000, Belgium.
| | - Juliana Silva Cassoli
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Alexandre A A Dutra
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven (KU Leuven), P.O. Box 922, Leuven 3000, Belgium.
| | - Maria Elena de Lima
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Adriano M C Pimenta
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brasil.
| | - Eliane C Arantes
- Laboratório de Toxinas Animais, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-903, São Paulo, Brasil.
| | - Jan Tytgat
- Toxicology & Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, P.O. Box 922, Leuven 3000, Belgium.
| |
Collapse
|
26
|
Rong M, Liu J, Zhang M, Wang G, Zhao G, Wang G, Zhang Y, Hu K, Lai R. A sodium channel inhibitor ISTX-I with a novel structure provides a new hint at the evolutionary link between two toxin folds. Sci Rep 2016; 6:29691. [PMID: 27407029 PMCID: PMC4942781 DOI: 10.1038/srep29691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
Members of arachnida, such as spiders and scorpions, commonly produce venom with specialized venom glands, paralyzing their prey with neurotoxins that specifically target ion channels. Two well-studied motifs, the disulfide-directed hairpin (DDH) and the inhibitor cystine knot motif (ICK), are both found in scorpion and spider toxins. As arachnids, ticks inject a neurotoxin-containing cocktail from their salivary glands into the host to acquire a blood meal, but peptide toxins acting on ion channels have not been observed in ticks. Here, a new neurotoxin (ISTX-I) that acts on sodium channels was identified from the hard tick Ixodes scapularis and characterized. ISTX-I exhibits a potent inhibitory function with an IC50 of 1.6 μM for sodium channel Nav1.7 but not other sodium channel subtypes. ISTX-I adopts a novel structural fold and is distinct from the canonical ICK motif. Analysis of the ISTX-I, DDH and ICK motifs reveals that the new ISTX-I motif might be an intermediate scaffold between DDH and ICK, and ISTX-I is a clue to the evolutionary link between the DDH and ICK motifs. These results provide a glimpse into the convergent evolution of neurotoxins from predatory and blood-sucking arthropods.
Collapse
Affiliation(s)
- Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Kunming Yunnan 650223, China
| | - Jiangxin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meilin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Kunming Yunnan 650223, China
| | - Gan Wang
- Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Gang Zhao
- Yunnan Academy of Grassland and Animal Science, Xiaoshao, Kunming 650212, China
| | - Guodong Wang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Kunming Yunnan 650223, China.,Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
27
|
Luna-Ramírez K, Quintero-Hernández V, Juárez-González VR, Possani LD. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS One 2015; 10:e0127883. [PMID: 26020943 PMCID: PMC4447460 DOI: 10.1371/journal.pone.0127883] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative bioactive compounds that could be used to seed research into new pharmacological compounds and increase our understanding of the function of different ion channels.
Collapse
Affiliation(s)
- Karen Luna-Ramírez
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
28
|
Chen J, Xu Y, San M, Cao Z, Li W, Wu Y, Chen Z. Cloning and Genomic Characterization of a Natural Insecticidal Peptide LaIT1 with Unique DDH Structural Fold. J Biochem Mol Toxicol 2015; 29:207-12. [DOI: 10.1002/jbt.21686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/14/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jing Chen
- Department of Biochemistry and Molecular Biology; Institute of Basic Medical Sciences; Hubei University of Medicine; Hubei People's Republic of China
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Hubei People's Republic of China
| | - Yue Xu
- Department of Biochemistry and Molecular Biology; Institute of Basic Medical Sciences; Hubei University of Medicine; Hubei People's Republic of China
| | - Mingkui San
- Department of Biochemistry and Molecular Biology; Institute of Basic Medical Sciences; Hubei University of Medicine; Hubei People's Republic of China
| | - Zhijian Cao
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Hubei People's Republic of China
| | - Wenxin Li
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Hubei People's Republic of China
| | - Yingliang Wu
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Hubei People's Republic of China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology; Institute of Basic Medical Sciences; Hubei University of Medicine; Hubei People's Republic of China
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Hubei People's Republic of China
| |
Collapse
|
29
|
Quintero-Hernández V, Ramírez-Carreto S, Romero-Gutiérrez MT, Valdez-Velázquez LL, Becerril B, Possani LD, Ortiz E. Transcriptome analysis of scorpion species belonging to the Vaejovis genus. PLoS One 2015; 10:e0117188. [PMID: 25659089 PMCID: PMC4319844 DOI: 10.1371/journal.pone.0117188] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/24/2022] Open
Abstract
Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist's attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family.
Collapse
Affiliation(s)
- Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Santos Ramírez-Carreto
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - María Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | | | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| |
Collapse
|
30
|
Park HG, Kyung SS, Lee KS, Kim BY, Choi YS, Yoon HJ, Kwon HW, Je YH, Jin BR. Dual function of a bee (Apis cerana) inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:247-53. [PMID: 25106915 DOI: 10.1016/j.dci.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/27/2023]
Abstract
Inhibitor cysteine knot (ICK) peptides exhibit ion channel blocking, insecticidal, and antimicrobial activities, but currently, no functional roles for bee-derived ICK peptides have been identified. In this study, a bee (Apis cerana) ICK peptide (AcICK) that acts as an antifungal peptide and as an insecticidal venom toxin was identified. AcICK contains an ICK fold that is expressed in the epidermis, fat body, or venom gland and is present as a 6.6-kDa peptide in bee venom. Recombinant AcICK peptide (expressed in baculovirus-infected insect cells) bound directly to Beauveria bassiana and Fusarium graminearum, but not to Escherichia coli or Bacillus thuringiensis. Consistent with these findings, AcICK showed antifungal activity, indicating that AcICK acts as an antifungal peptide. Furthermore, AcICK expression is induced in the fat body and epidermis after injection with B. bassiana. These results provide insight into the role of AcICK during the innate immune response following fungal infection. Additionally, we show that AcICK has insecticidal activity. Our results demonstrate a functional role for AcICK in bees: AcICK acts as an antifungal peptide in innate immune reactions in the body and as an insecticidal toxin in venom. The finding that the AcICK peptide functions with different mechanisms of action in the body and in venom highlights the two-pronged strategy that is possible with the bee ICK peptide.
Collapse
Affiliation(s)
- Hee Geun Park
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Seung Su Kyung
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Yong Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Suwon, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Suwon, Republic of Korea
| | - Hyung Wook Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea.
| |
Collapse
|
31
|
Yang Y, Zeng XC, Zhang L, Nie Y, Shi W, Liu Y. Androcin, a novel type of cysteine-rich venom peptide fromAndroctonus bicolor, induces akinesia and anxiety-like symptoms in mice. IUBMB Life 2014; 66:277-85. [DOI: 10.1002/iub.1261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Yao Nie
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Wanxia Shi
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Yichen Liu
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| |
Collapse
|
32
|
Cao Z, Di Z, Wu Y, Li W. Overview of scorpion species from China and their toxins. Toxins (Basel) 2014; 6:796-815. [PMID: 24577583 PMCID: PMC3968362 DOI: 10.3390/toxins6030796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/29/2022] Open
Abstract
Scorpions are one of the most ancient groups of terrestrial animals. They have maintained a steady morphology over more than 400 million years of evolution. Their venom arsenals for capturing prey and defending against predators may play a critical role in their ancient and conservative appearance. In the current review, we present the scorpion fauna of China: 53 species covering five families and 12 genera. We also systematically list toxins or genes from Chinese scorpion species, involving eight species covering four families. Furthermore, we review the diverse functions of typical toxins from Chinese scorpion species, involving Na+ channel modulators, K+ channel blockers, antimicrobial peptides and protease inhibitors. Using scorpion species and their toxins from China as an example, we build the bridge between scorpion species and their toxins, which helps us to understand the molecular and functional diversity of scorpion venom arsenal, the dynamic and functional evolution of scorpion toxins, and the potential relationships of scorpion species and their toxins.
Collapse
Affiliation(s)
- Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiyong Di
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
33
|
Sunagar K, Undheim EAB, Chan AHC, Koludarov I, Muñoz-Gómez SA, Antunes A, Fry BG. Evolution stings: the origin and diversification of scorpion toxin peptide scaffolds. Toxins (Basel) 2013; 5:2456-87. [PMID: 24351712 PMCID: PMC3873696 DOI: 10.3390/toxins5122456] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent’s worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged peptides and antimicrobial peptides (AMP). We have thus demonstrated that even neglected lineages of scorpions are a rich pool of novel biochemical components, which have evolved over millions of years to target specific ion channels in prey animals, and as a result, possess tremendous implications in therapeutics.
Collapse
Affiliation(s)
- Kartik Sunagar
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal; E-Mails: (K.S.); (A.A.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Eivind A. B. Undheim
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: (E.A.B.U.); (A.H.C.C.); (I.K.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Angelo H. C. Chan
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: (E.A.B.U.); (A.H.C.C.); (I.K.)
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: (E.A.B.U.); (A.H.C.C.); (I.K.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sergio A. Muñoz-Gómez
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada; E-Mail:
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal; E-Mails: (K.S.); (A.A.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: (E.A.B.U.); (A.H.C.C.); (I.K.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-400-193-182
| |
Collapse
|