1
|
Zhuang B, Ramodiharilafy R, Aleksandrov A, Liebl U, Vos MH. Mechanism of ultrafast flavin photoreduction in the active site of flavoenzyme LSD1 histone demethylase. Chem Sci 2024; 16:338-344. [PMID: 39620080 PMCID: PMC11603641 DOI: 10.1039/d4sc06857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
Photoreduction of oxidized flavins has a functional role in photocatalytic and photoreceptor flavoproteins. In flavoproteins without light-dependent physiological functions, ultrafast, reversible flavin photoreduction is supposedly photoprotective by nature, and holds potential for nonnatural photocatalytic applications. In this work, we combine protein mutagenesis, ultrafast spectroscopy, molecular dynamics simulations and quantum mechanics calculations to investigate the nonfunctional flavin photoreduction in a flavoenzyme, lysine-specific demethylase 1 (LSD1) which is pivotal in DNA transcription. LSD1 harbors an oxidized flavin adenine dinucleotide (FAD) cofactor and multiple electron-donating residues in the active site. Upon photoexcitation, the FAD cofactor is photoreduced in <200 fs by electron transfer (ET) from nearby residue(s), and the charge pairs recombine in ca. 2 ps. Site-directed mutagenesis pinpoints a specific tryptophan residue, W751, as the primary electron donor, whereas a tyrosine residue, Y761, despite being located closer to the flavin ring, does not effectively contribute to the process. Based on a hybrid quantum-classical computational approach, we characterize the W751-FAD and Y761-FAD charge-transfer states (CTW751 and CTY761, respectively), as well as the FAD locally excited state (LEFAD), and demonstrate that the coupling between LEFAD and CTW751 is larger than those involving CTY761 by an order of magnitude, rationalizing the experimental observations. More generally, this work highlights the role of the intrinsic protein environment and details of donor-acceptor molecular configurations on the dynamics of short-range ET involving a flavin cofactor and amino acid residue(s).
Collapse
Affiliation(s)
- Bo Zhuang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Rivo Ramodiharilafy
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Ursula Liebl
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| |
Collapse
|
2
|
Zhuang B, Vos MH, Aleksandrov A. Photochemical and Molecular Dynamics Studies of Halide Binding in Flavoenzyme Glucose Oxidase. Chembiochem 2022; 23:e202200227. [PMID: 35876386 DOI: 10.1002/cbic.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Glucose oxidase (GOX), a characteristic flavoprotein oxidase with widespread industrial applications, binds fluoride (F - ) and chloride (Cl - ). We investigated binding properties of halide inhibitors of GOX through time-resolved spectral characterization of flavin-related photochemical processes and molecular dynamic simulations. Cl - and F - bind differently to the protein active site and have substantial but opposite effects on the population and decay of the flavin excited state. Cl - binds closer to the flavin, whose excited-state decays in <100 fs due to anion-π interactions. Such interactions appear absent in F - binding, which, however, significantly increases the active-site rigidity leading to more homogeneous, picosecond fluorescence decay kinetics. These findings are discussed in relation to the mechanism of halide inhibition of GOX by occupying the accommodation site of catalytic intermediates and increasing the active-site rigidity.
Collapse
Affiliation(s)
- Bo Zhuang
- Ecole Polytechnique, LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, FRANCE
| | - Marten H Vos
- CNRS UMR7645, Laboratory of Optics and Biosciences, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, FRANCE
| | - Alexey Aleksandrov
- Ecole Polytechnique, Laboratory of Optics and Biosciences, Department of Biology, rue du Saclay, 91128, Palaiseau, FRANCE
| |
Collapse
|
3
|
Zhuang B, Liebl U, Vos MH. Flavoprotein Photochemistry: Fundamental Processes and Photocatalytic Perspectives. J Phys Chem B 2022; 126:3199-3207. [PMID: 35442696 DOI: 10.1021/acs.jpcb.2c00969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Flavins are highly versatile redox-active and colored cofactors in a large variety of proteins. These do include photoenzymes and photoreceptors, although the vast majority performs non-light-driven physiological functions. Nevertheless, electron transfer between flavins and specific nearby amino acid residues (in particular tyrosine, tryptophan, and presumably histidine and arginine) takes place upon excitation of flavin in many flavoproteins. For oxidized flavoproteins these reactions potentially have a photoprotective role. In this Perspective, we outline work on the characterization of early reaction intermediates not only in the relatively well-studied resting oxidized forms but also in the fully reduced and the intrinsically unstable semireduced forms, where ultrafast photooxidation of flavin was recently demonstrated. Along different lines, flavoprotein-based novel photocatalysts for biotechnological applications are presently emerging, employing both substrate photooxidation and photoreduction strategies. Deep insight into the fundamental flavin photochemical reactions may help in guiding and optimizing their development and in the exploration of novel photocatalytic approaches.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| |
Collapse
|
4
|
Ultrafast photooxidation of protein-bound anionic flavin radicals. Proc Natl Acad Sci U S A 2022; 119:2118924119. [PMID: 35181610 PMCID: PMC8872763 DOI: 10.1073/pnas.2118924119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Flavoproteins are colored proteins involved in a large variety of biochemical reactions. They can perform photochemical reactions, which are increasingly exploited for bioengineering new protein-derived photocatalysts. In particular, light-induced reduction of the resting oxidized state of the flavin by close-lying amino acids or substrates is extensively studied. Here, we demonstrate that the reverse and previously unknown reaction photooxidation of the anionic semireduced flavin radical, a short-lived reaction intermediate in many biochemical reactions, efficiently occurs in flavoprotein oxidases. We anticipate that this finding will allow photoreduction of external reactants and lead to exploration of novel photocatalytic pathways. The photophysical properties of anionic semireduced flavin radicals are largely unknown despite their importance in numerous biochemical reactions. Here, we studied the photoproducts of these intrinsically unstable species in five different flavoprotein oxidases where they can be stabilized, including the well-characterized glucose oxidase. Using ultrafast absorption and fluorescence spectroscopy, we unexpectedly found that photoexcitation systematically results in the oxidation of protein-bound anionic flavin radicals on a time scale of less than ∼100 fs. The thus generated photoproducts decay back in the remarkably narrow 10- to 20-ps time range. Based on molecular dynamics and quantum mechanics computations, positively charged active-site histidine and arginine residues are proposed to be the electron acceptor candidates. Altogether, we established that, in addition to the commonly known and extensively studied photoreduction of oxidized flavins in flavoproteins, the reverse process (i.e., the photooxidation of anionic flavin radicals) can also occur. We propose that this process may constitute an excited-state deactivation pathway for protein-bound anionic flavin radicals in general. This hitherto undocumented photochemical reaction in flavoproteins further extends the family of flavin photocycles.
Collapse
|
5
|
Dozova N, Lacombat F, Lombard M, Hamdane D, Plaza P. Ultrafast dynamics of fully reduced flavin in catalytic structures of thymidylate synthase ThyX. Phys Chem Chem Phys 2021; 23:22692-22702. [PMID: 34605505 DOI: 10.1039/d1cp03379d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thymidylate is a vital DNA precursor synthesized by thymidylate synthases. ThyX is a flavin-dependent thymidylate synthase found in several human pathogens and absent in humans, which makes it a potential target for antimicrobial drugs. This enzyme methylates the 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate (dTMP) using a reduced flavin adenine dinucleotide (FADH-) as prosthetic group and (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2THF) as a methylene donor. Recently, it was shown that ThyX-catalyzed reaction is a complex process wherein FADH- promotes both methylene transfer and reduction of the transferred methylene into a methyl group. Here, we studied the dynamic and photophysics of FADH- bound to ThyX, in several substrate-binding states (no substrate, in the presence of dUMP or folate or both) by femtosecond transient absorption spectroscopy. This methodology provides valuable information about the ground-state configuration of the isoalloxazine moiety of FADH- and the rigidity of its local environment, through spectra shape and excited-state lifetime parameters. In the absence of substrate, the environment of FADH- in ThyX is only mildly more constrained than that of free FADH- in solution. The addition of dUMP however narrows the distribution of ground-state configurations and increases the constraints on the butterfly bending motion in the excited state. Folate binding results in the selection of new ground-state configurations, presumably located at a greater distance from the conical intersection where excited-state decay occurs. When both substrates are present, the ground-state configuration appears on the contrary rather limited to a geometry close to the conical intersection, which explains the relatively fast excited-state decay (100 ps on the average), even if the environment of the isoalloxazine is densely packed. Hence, although the environment of the flavin is dramatically constrained, FADH- retains a dynamic necessary to shuttle carbon from folate to dUMP. Our study demonstrates the high sensitivity of FADH- photophysics to the constraints exerted by its immediate surroundings.
Collapse
Affiliation(s)
- Nadia Dozova
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Fabien Lacombat
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Sorbonne Université, 75005 Paris, France.
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Sorbonne Université, 75005 Paris, France.
| | - Pascal Plaza
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
6
|
Photochemical processes in flavo-enzymes as a probe for active site dynamics: TrmFO of Thermus thermophilus. Photochem Photobiol Sci 2021; 20:663-670. [PMID: 33977512 DOI: 10.1007/s43630-021-00052-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Quenching of flavin fluorescence by electron transfer from neighboring aromatic residues is ubiquitous in flavoproteins. Apart from constituting a functional process in specific light-active systems, time-resolved spectral characterization of the process can more generally be employed as a probe for the active site configuration and dynamics. In the C51A variant of the bacterial RNA-transforming flavoenzyme TrmFO from the bacterium Thermus thermophilus, fluorescence is very short-lived (~ 1 ps), and close-by Tyr343 is known to act as the main quencher, as confirmed here by the very similar dynamics observed in protein variants with modified other potential quenchers, Trp283 and Trp214. When Tyr343 is modified to redox-inactive phenylalanine, slower and highly multiphasic kinetics are observed on the picosecond-nanosecond timescale, reflecting heterogeneous electron donor-acceptor configurations. We demonstrate that Trp214, which is located on a potentially functional flexible loop, contributes to electron donor quenching in this variant. Contrasting with observations in other nucleic acid-transforming enzymes, these kinetics are strikingly temperature-independent. This indicates (a) near-barrierless electron transfer reactions and (b) no exchange between different configurations on the timescale up to at least 2 ns, despite the presumed flexibility of Trp214. Results of extensive molecular dynamics simulations are presented to explain this unexpected finding in terms of slowly exchanging protein configurations.
Collapse
|
7
|
Sorigué D, Hadjidemetriou K, Blangy S, Gotthard G, Bonvalet A, Coquelle N, Samire P, Aleksandrov A, Antonucci L, Benachir A, Boutet S, Byrdin M, Cammarata M, Carbajo S, Cuiné S, Doak RB, Foucar L, Gorel A, Grünbein M, Hartmann E, Hienerwadel R, Hilpert M, Kloos M, Lane TJ, Légeret B, Legrand P, Li-Beisson Y, Moulin SLY, Nurizzo D, Peltier G, Schirò G, Shoeman RL, Sliwa M, Solinas X, Zhuang B, Barends TRM, Colletier JP, Joffre M, Royant A, Berthomieu C, Weik M, Domratcheva T, Brettel K, Vos MH, Schlichting I, Arnoux P, Müller P, Beisson F. Mechanism and dynamics of fatty acid photodecarboxylase. Science 2021; 372:372/6538/eabd5687. [PMID: 33833098 DOI: 10.1126/science.abd5687] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Fatty acid photodecarboxylase (FAP) is a photoenzyme with potential green chemistry applications. By combining static, time-resolved, and cryotrapping spectroscopy and crystallography as well as computation, we characterized Chlorella variabilis FAP reaction intermediates on time scales from subpicoseconds to milliseconds. High-resolution crystal structures from synchrotron and free electron laser x-ray sources highlighted an unusual bent shape of the oxidized flavin chromophore. We demonstrate that decarboxylation occurs directly upon reduction of the excited flavin by the fatty acid substrate. Along with flavin reoxidation by the alkyl radical intermediate, a major fraction of the cleaved carbon dioxide unexpectedly transformed in 100 nanoseconds, most likely into bicarbonate. This reaction is orders of magnitude faster than in solution. Two strictly conserved residues, R451 and C432, are essential for substrate stabilization and functional charge transfer.
Collapse
Affiliation(s)
- D Sorigué
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - K Hadjidemetriou
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - S Blangy
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - G Gotthard
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - A Bonvalet
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - N Coquelle
- Large-Scale Structures Group, Institut Laue Langevin, 38042 Grenoble Cedex 9, France
| | - P Samire
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - A Aleksandrov
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - L Antonucci
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - A Benachir
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - S Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Byrdin
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - M Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, F-Rennes, France.
| | - S Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S Cuiné
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - R B Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - L Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - A Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - E Hartmann
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - R Hienerwadel
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - M Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - T J Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - B Légeret
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - P Legrand
- Synchrotron SOLEIL. L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Y Li-Beisson
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - S L Y Moulin
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - D Nurizzo
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - G Peltier
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - G Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - R L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000 Lille, France
| | - X Solinas
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - B Zhuang
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - T R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - J-P Colletier
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - M Joffre
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - A Royant
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France.,European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - C Berthomieu
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| | - M Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - T Domratcheva
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. .,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - K Brettel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - M H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - I Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - P Arnoux
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| | - P Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - F Beisson
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
8
|
Zhuang B, Seo D, Aleksandrov A, Vos MH. Characterization of Light-Induced, Short-Lived Interacting Radicals in the Active Site of Flavoprotein Ferredoxin-NADP + Oxidoreductase. J Am Chem Soc 2021; 143:2757-2768. [PMID: 33591179 DOI: 10.1021/jacs.0c09627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radicals of flavin adenine dinucleotide (FAD), as well as tyrosine and tryptophan, are widely involved as key reactive intermediates during electron-transfer (ET) reactions in flavoproteins. Due to the high reactivity of these species and their corresponding short lifetime, characterization of these intermediates in functional processes of flavoproteins is usually challenging but can be achieved by ultrafast spectroscopic studies of light-activatable flavoproteins. In ferredoxin-NADP+ oxidoreductase from Bacillus subtilis (BsFNR), fluorescence of the FAD cofactor that very closely interacts with a neighboring tyrosine residue (Tyr50) is strongly quenched. Here we study short-lived photoproducts of this enzyme and its variants, with Tyr50 replaced by tryptophan or glycine. Using time-resolved fluorescence and absorption spectroscopies, we show that, upon the excitation of WT BsFNR, ultrafast ET from Tyr50 to the excited FAD cofactor occurs in ∼260 fs, an order of magnitude faster than the decay by charge recombination, facilitating the characterization of the reaction intermediates in the charge-separated state with respect to other recently studied systems. These studies are corroborated by experiments on the Y50W mutant protein, which yield photoproducts qualitatively similar to those observed in other tryptophan-bearing flavoproteins. By combining the experimental results with molecular dynamics simulations and quantum mechanics calculations, we investigate in detail the effects of protein environment and relaxations on the spectral properties of those radical intermediates and demonstrate that the spectral features of radical anionic FAD are highly sensitive to its environment, and in particular to the dynamics and nature of the counterions formed in the photoproducts. Altogether, comprehensive characterizations are provided for important radical intermediates that are generally involved in functional processes of flavoproteins.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, 920-1192 Kanazawa, Ishikawa, Japan
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
9
|
Giuliani G, Melaccio F, Gozem S, Cappelli A, Olivucci M. QM/MM Investigation of the Spectroscopic Properties of the Fluorophore of Bacterial Luciferase. J Chem Theory Comput 2021; 17:605-613. [PMID: 33449693 PMCID: PMC9220819 DOI: 10.1021/acs.jctc.0c01078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We employ replica-exchange molecular dynamics (REMD) and a hybrid ab initio multiconfigurational quantum mechanics/molecular mechanics (QM/MM) approach to model the absorption and fluorescence properties of bacterial luciferin-luciferase. Specifically, we employ complete active space perturbation theory (CASPT2) and study the effect of active space, basis set, and IPEA shift on the computed energies. We discuss the effect of the protein environment on the fluorophore's excited-state potential energy surface and the role that the protein plays in enhancing the fluorescence quantum yield in bacterial bioluminescence.
Collapse
Affiliation(s)
- Germano Giuliani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federico Melaccio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Andrea Cappelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowing Green, Ohio 43403, United States
| |
Collapse
|
10
|
Kekic T, Fulgosi H, Vojta L, Bertoša B. Molecular basis of ferredoxin:NADP(+) reductase interactions with FNR binding domains from TROL and Tic62 proteins. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ding BW, Eremeeva EV, Vysotski ES, Liu YJ. Luminescence Activity Decreases When v-coelenterazine Replaces Coelenterazine in Calcium-Regulated Photoprotein-A Theoretical and Experimental Study. Photochem Photobiol 2020; 96:1047-1060. [PMID: 32416626 DOI: 10.1111/php.13280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 11/27/2022]
Abstract
Calcium-regulated photoproteins are found in at least five phyla of organisms. The light emitted by those photoproteins can be tuned by mutating the photoprotein and/or by modifying the substrate coelenterazine (CTZ). Thirty years ago, Shimomura observed that the luminescence activity of aequorin was dramatically reduced when the substrate CTZ was replaced by its analog v-CTZ. The latter is formed by adding a phenyl ring to the π-conjugated moiety of CTZ. The decrease in luminescence activity has not been understood until now. In this paper, through combined quantum mechanics and molecular mechanics calculations as well as molecular dynamics simulations, we discovered the reason for this observation. Modification of the substrate changes the conformation of nearby aromatic residues and enhances the π-π stacking interactions between the conjugated moiety of v-CTZ and the residues, which weakens the charge transfer to form light emitter and leads to a lower luminescence activity. The microenvironments of CTZ in obelin and in aequorin are very similar, so we predicted that the luminescence activity of obelin will also dramatically decrease when CTZ is replaced by v-CTZ. This prediction has received strong evidence from currently theoretical calculations and has been verified by experiments.
Collapse
Affiliation(s)
- Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Su D, Smitherman C, Gadda G. A Metastable Photoinduced Protein–Flavin Adduct in Choline Oxidase, an Enzyme Not Involved in Light-Dependent Processes. J Phys Chem B 2020; 124:3936-3943. [DOI: 10.1021/acs.jpcb.0c02633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Karadi K, Kapetanaki SM, Raics K, Pecsi I, Kapronczai R, Fekete Z, Iuliano JN, Collado JT, Gil AA, Orban J, Nyitrai M, Greetham GM, Vos MH, Tonge PJ, Meech SR, Lukacs A. Functional dynamics of a single tryptophan residue in a BLUF protein revealed by fluorescence spectroscopy. Sci Rep 2020; 10:2061. [PMID: 32029866 PMCID: PMC7005313 DOI: 10.1038/s41598-020-59073-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 11/17/2022] Open
Abstract
Blue Light Using Flavin (BLUF) domains are increasingly being adopted for use in optogenetic constructs. Despite this, much remains to be resolved on the mechanism of their activation. The advent of unnatural amino acid mutagenesis opens up a new toolbox for the study of protein structural dynamics. The tryptophan analogue, 7-aza-Trp (7AW) was incorporated in the BLUF domain of the Activation of Photopigment and pucA (AppA) photoreceptor in order to investigate the functional dynamics of the crucial W104 residue during photoactivation of the protein. The 7-aza modification to Trp makes selective excitation possible using 310 nm excitation and 380 nm emission, separating the signals of interest from other Trp and Tyr residues. We used Förster energy transfer (FRET) between 7AW and the flavin to estimate the distance between Trp and flavin in both the light- and dark-adapted states in solution. Nanosecond fluorescence anisotropy decay and picosecond fluorescence lifetime measurements for the flavin revealed a rather dynamic picture for the tryptophan residue. In the dark-adapted state, the major population of W104 is pointing away from the flavin and can move freely, in contrast to previous results reported in the literature. Upon blue-light excitation, the dominant tryptophan population is reorganized, moves closer to the flavin occupying a rigidly bound state participating in the hydrogen-bond network around the flavin molecule.
Collapse
Affiliation(s)
- Kristof Karadi
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, 7624, Pécs, Hungary
| | - Sofia M Kapetanaki
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, 7624, Pécs, Hungary
| | - Katalin Raics
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Ildiko Pecsi
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Robert Kapronczai
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | | | - Agnieszka A Gil
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Jozsef Orban
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Miklos Nyitrai
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, 7624, Pécs, Hungary
| | - Greg M Greetham
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, Cedex, France
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary. .,Szentagothai Research Center, University of Pécs, 7624, Pécs, Hungary.
| |
Collapse
|
14
|
Dozova N, Lacombat F, Bou-Nader C, Hamdane D, Plaza P. Ultrafast photoinduced flavin dynamics in the unusual active site of the tRNA methyltransferase TrmFO. Phys Chem Chem Phys 2019; 21:8743-8756. [PMID: 30968076 DOI: 10.1039/c8cp06072j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flavoproteins often stabilize their flavin coenzyme by stacking interactions involving the isoalloxazine moiety of the flavin and an aromatic residue from the apoprotein. The bacterial FAD and folate-dependent tRNA methyltransferase TrmFO has the unique property of stabilizing its FAD coenzyme by an unusual H-bond-assisted π-π stacking interaction, involving a conserved tyrosine (Y346 in Bacillus subtilis TrmFO, BsTrmFO), the isoalloxazine of FAD and the backbone of a catalytic cysteine (C53). Here, the interaction between FAD and Y346 has been investigated by measuring the photoinduced flavin dynamics of BsTrmFO in the wild-type (WT) protein, C53A and several Y346 mutants by ultrafast transient absorption spectroscopy. In C53A, the excited FAD very rapidly (0.43 ps) abstracts an electron from Y346, yielding the FAD˙-/Y346OH˙+ radical pair, while relaxation of the local environment (1.3 ps) of the excited flavin produces a slight Stokes shift of its stimulated emission band. The radical pair then decays via charge recombination, mostly in 3-4 ps, without any deprotonation of the Y346OH˙+ radical. Presumably, the H-bond between Y346 and the amide group of C53 increases the pKa of Y346OH˙+ and slows down its deprotonation. The dynamics of WT BsTrmFO shows additional slow decay components (43 and 700 ps), absent in the C53A mutant, assigned to excited FADox populations not undergoing fast photoreduction. Their presence is likely due to a more flexible structure of the WT protein, favored by the presence of C53. Interestingly, mutations of Y346 canceling its electron donating character lead to multiple slower quenching channels in the ps-ns regime. These channels are proposed to be due to electron abstraction either (i) from the adenine moiety of FAD, a distribution of the isoalloxazine-adenine distance in the absence of Y346 explaining the multiexponential decay, or (ii) from the W286 residue, possibly accounting for one of the decays. This work supports the idea that H-bond-assisted π-π stacking controls TrmFO's active site dynamics, required for competent orientation of the reactive centers during catalysis.
Collapse
Affiliation(s)
- Nadia Dozova
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
15
|
Salman M, Villamil Franco C, Ramodiharilafy R, Liebl U, Vos MH. Interaction of the Full-Length Heme-Based CO Sensor Protein RcoM-2 with Ligands. Biochemistry 2019; 58:4028-4034. [PMID: 31502443 DOI: 10.1021/acs.biochem.9b00623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heme-based and CO-responsive RcoM transcriptional regulators from Burkholderia xenovorans are known to display an extremely high affinity for CO while being insensitive to O2. We have quantitatively characterized the heme-CO interaction in full-length RcoM-2 and compared it with the isolated heme domain RcoMH-2 to establish the origin of these characteristics. Whereas the CO binding rates are similar to those of other heme-based sensor proteins, the dissociation rates are two to three orders of magnitude lower. The latter property is tuned by the yield of CO escape from the heme pocket after disruption of the heme-CO bond, as determined by ultrafast spectroscopy. For the full-length protein this yield is ∼0.5%, and for the isolated heme domain it is even lower, associated with correspondingly faster CO rebinding kinetics, leading to Kd values of 4 and 0.25 nM, respectively. These differences imply that the presence of the DNA-binding domain influences the ligand-binding properties of the heme domain, thus abolishing the observed quasi-irreversibility of CO binding to the isolated heme domain. RcoM-2 binds target DNA with high affinity (Kd < 2 nM) when CO is bound to the heme, and the presence of DNA also influences the heme-CO rebinding kinetics. The functional implications of our findings are discussed.
Collapse
Affiliation(s)
- Mayla Salman
- LOB, CNRS, INSERM, Ecole Polytechnique , Institut Polytechnique de Paris , 91128 Palaiseau , France
| | - Carolina Villamil Franco
- LOB, CNRS, INSERM, Ecole Polytechnique , Institut Polytechnique de Paris , 91128 Palaiseau , France
| | - Rivo Ramodiharilafy
- LOB, CNRS, INSERM, Ecole Polytechnique , Institut Polytechnique de Paris , 91128 Palaiseau , France
| | - Ursula Liebl
- LOB, CNRS, INSERM, Ecole Polytechnique , Institut Polytechnique de Paris , 91128 Palaiseau , France
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique , Institut Polytechnique de Paris , 91128 Palaiseau , France
| |
Collapse
|
16
|
Aleksandrov A. A Molecular Mechanics Model for Flavins. J Comput Chem 2019; 40:2834-2842. [DOI: 10.1002/jcc.26061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 08/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique IP Paris, 91128 Palaiseau France
| |
Collapse
|
17
|
Nag L, Lukacs A, Vos MH. Short-Lived Radical Intermediates in the Photochemistry of Glucose Oxidase. Chemphyschem 2019; 20:1793-1798. [PMID: 31081986 DOI: 10.1002/cphc.201900329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Indexed: 11/07/2022]
Abstract
Glucose oxidase is a flavoprotein that is relatively well-studied as a physico-chemical model system. The flavin cofactor is surrounded by several aromatic acid residues that can act as direct and indirect electron donors to photoexcited flavin. Yet, the identity of the photochemical product states is not well established. We present a detailed full spectral reinvestigation of this issue using femtosecond fluorescence and absorption spectroscopy. Based on a recent characterization of the unstable tyrosine cation radical TyrOH•+ , we now propose that the primary photoproduct involves this species, which was previously not considered. Formation of this product is followed by competing charge recombination and radical pair stabilization reactions that involve proton transfer and radical transfer to tryptophan. A minimal kinetic model is proposed, including a fraction of TyrOH.+ that is stabilized up to the tens of picoseconds timescale, suggesting a potential role of this species as intermediate in biochemical electron transfer reactions.
Collapse
Affiliation(s)
- Lipsa Nag
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Hungary
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
18
|
Ye S, Tan J, Tian K, Li C, Zhang J, Luo Y. Directly monitoring the active sites of charge transfer in heterocycles in situ and in real time. Chem Commun (Camb) 2019; 55:541-544. [PMID: 30556076 DOI: 10.1039/c8cc08452a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coherent degenerate infrared-infrared-visible sum frequency generation vibrational spectroscopy provides a powerful label-free sensitive probe for charge transfer active sites in heterocyclic molecules in situ and in real time.
Collapse
Affiliation(s)
- Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center for Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
19
|
Myllykallio H, Sournia P, Heliou A, Liebl U. Unique Features and Anti-microbial Targeting of Folate- and Flavin-Dependent Methyltransferases Required for Accurate Maintenance of Genetic Information. Front Microbiol 2018; 9:918. [PMID: 29867829 PMCID: PMC5954106 DOI: 10.3389/fmicb.2018.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Comparative genome analyses have led to the discovery and characterization of novel flavin- and folate-dependent methyltransferases that mainly function in DNA precursor synthesis and post-transcriptional RNA modification by forming (ribo) thymidylate and its derivatives. Here we discuss the recent literature on the novel mechanistic features of these enzymes sometimes referred to as “uracil methyltransferases,” albeit we prefer to refer to them as (ribo) thymidylate synthases. These enzyme families attest to the convergent evolution of nucleic acid methylation. Special focus is given to describing the unique characteristics of these flavin- and folate-dependent enzymes that have emerged as new models for studying the non-canonical roles of reduced flavin co-factors (FADH2) in relaying carbon atoms between enzyme substrates. This ancient enzymatic methylation mechanism with a very wide phylogenetic distribution may be more commonly used for biological methylation reactions than previously anticipated. This notion is exemplified by the recent discovery of additional substrates for these enzymes. Moreover, similar reaction mechanisms can be reversed by demethylases, which remove methyl groups e.g., from human histones. Future work is now required to address whether the use of different methyl donors facilitates the regulation of distinct methylation reactions in the cell. It will also be of great interest to address whether the low activity flavin-dependent thymidylate synthases ThyX represent ancestral enzymes that were eventually replaced by the more active thymidylate synthases of the ThyA family to facilitate the maintenance of larger genomes in fast-growing microbes. Moreover, we discuss the recent efforts from several laboratories to identify selective anti-microbial compounds that target flavin-dependent thymidylate synthase ThyX. Altogether we underline how the discovery of the alternative flavoproteins required for methylation of DNA and/or RNA nucleotides, in addition to providing novel targets for antibiotics, has provided new insight into microbial physiology and virulence.
Collapse
Affiliation(s)
- Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Pierre Sournia
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Alice Heliou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France.,Laboratoire d'Informatique de l'École Polytechnique, Ecole Polytechnique, Centre National de la Recherche Scientifique, Université Paris-Saclay, Palaiseau, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
20
|
Karunaratne K, Luedtke N, Quinn DM, Kohen A. Flavin-dependent thymidylate synthase: N5 of flavin as a Methylene carrier. Arch Biochem Biophys 2017; 632:11-19. [PMID: 28821425 DOI: 10.1016/j.abb.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
Thymidylate is synthesized de novo in all living organisms for replication of genomes. The chemical transformation is reductive methylation of deoxyuridylate at C5 to form deoxythymidylate. All eukaryotes including humans complete this well-understood transformation with thymidylate synthase utilizing 6R-N5-N10-methylene-5,6,7,8-tetrahydrofolate as both a source of methylene and a reducing hydride. In 2002, flavin-dependent thymidylate synthase was discovered as a new pathway for de novo thymidylate synthesis. The flavin-dependent catalytic mechanism is different than thymidylate synthase because it requires flavin as a reducing agent and methylene transporter. This catalytic mechanism is not well-understood, but since it is known to be very different from thymidylate synthase, there is potential for mechanism-based inhibitors that can selectively inhibit the flavin-dependent enzyme to target many human pathogens with low host toxicity.
Collapse
Affiliation(s)
| | - Nicholas Luedtke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel M Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Nag L, Sournia P, Myllykallio H, Liebl U, Vos MH. Identification of the TyrOH •+ Radical Cation in the Flavoenzyme TrmFO. J Am Chem Soc 2017; 139:11500-11505. [PMID: 28745052 DOI: 10.1021/jacs.7b04586] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tyrosine (TyrOH) and tryptophan radicals play important roles as intermediates in biochemical charge-transfer reactions. Tryptophanyl radicals have been observed both in their protonated cation form and in their unprotonated neutral form, but to date, tyrosyl radicals have only been observed in their unprotonated form. With a genetically modified form of the flavoenzyme TrmFO as a suitable model system and using ultrafast fluorescence and absorption spectroscopy, we characterize its protonated precursor TyrOH•+, and we show this species to have a distinct visible absorption band and a transition moment that we suggest to lie close to the phenol symmetry axis. TyrOH•+ is formed in ∼1 ps by electron transfer to excited flavin and decays in ∼3 ps by charge recombination. These findings imply that TyrOH oxidation does not necessarily induce its concerted deprotonation. Our results will allow disentangling of photoproduct states in flavoproteins in often-encountered complex situations and more generally are important for understanding redox chains relying on tyrosyl intermediates.
Collapse
Affiliation(s)
- Lipsa Nag
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Pierre Sournia
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Hannu Myllykallio
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Ursula Liebl
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| |
Collapse
|
22
|
Luo Y, Liu YJ. Bioluminophore and Flavin Mononucleotide Fluorescence Quenching of Bacterial Bioluminescence-A Theoretical Study. Chemistry 2016; 22:16243-16249. [PMID: 27665749 DOI: 10.1002/chem.201603314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 02/02/2023]
Abstract
Bacterial bioluminescence with continuous glow has been applied to the fields of environmental toxin monitoring, drug screening, and in vivo imaging. Nonetheless, the chemical form of the bacterial bioluminophore is still a bone of contention. Flavin mononucleotide (FMN), one of the light-emitting products, and 4a-hydroxy-5-hydro flavin mononucleotide (HFOH), an intermediate of the chemical reactions, have both been assumed candidates for the light emitter because they have similar molecular structures and fluorescence wavelengths. The latter is preferred in experiments and was assigned in our previous density functional study. HFOH displays weak fluorescence in solutions, but exhibits strong bioluminescence in the bacterial luciferase. FMN shows the opposite behavior; its fluorescence is quenched when it is bound to the luciferase. This is the first example of flavin fluorescence quenching observed in bioluminescent systems and is merely an observation, both the quenching mechanism and quencher are still unclear. Based on theoretical analysis of high-level quantum mechanics (QM), combined QM and molecular mechanics (QM/MM), and molecular dynamics (MD), this paper confirms that HFOH in its first singlet excited state is the bioluminophore of bacterial bioluminescence. More importantly, the computational results indicate that Tyr110 in the luciferase quenches the FMN fluorescence via an electron-transfer mechanism.
Collapse
Affiliation(s)
- Yanling Luo
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
23
|
Krumova S, Todinova S, Tileva M, Bouzhir-Sima L, Vos MH, Liebl U, Taneva SG. Thermal stability and binding energetics of thymidylate synthase ThyX. Int J Biol Macromol 2016; 91:560-7. [PMID: 27268384 DOI: 10.1016/j.ijbiomac.2016.05.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
The bacterial thymidylate synthase ThyX is a multisubstrate flavoenzyme that takes part in the de novo synthesis of thymidylate in a variety of microorganisms. Herein we study the effect of FAD and dUMP binding on the thermal stability of wild type (WT) ThyX from the mesophilic Paramecium bursaria chlorella virus-1 (PBCV-1) and from the thermophilic bacterium Thermotoga maritima (TmThyX), and from two variants of TmThyX, Y91F and S88W, using differential scanning calorimetry. The energetics underlying these processes was characterized by isothermal titration calorimetry. The PBCV-1 protein is significantly less stable against the thermal challenge than the TmThyX WT. FAD exerted stabilizing effect greater for PBCV-1 than for TmThyX and for both mutants, whereas binding of dUMP to FAD-loaded proteins stabilized further only TmThyX. Different thermodynamic signatures describe the FAD binding to the WT ThyX proteins. While TmThyX binds FAD with a low μM binding affinity in a process characterized by a favorable entropy change, the assembly of PBCV-1 with FAD is governed by a large enthalpy change opposed by an unfavorable entropy change resulting in a relatively strong nM binding. An enthalpy-driven formation of a high affinity ternary ThyX/FAD/dUMP complex was observed only for TmThyX.
Collapse
Affiliation(s)
- Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Milena Tileva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | | | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| | - Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria.
| |
Collapse
|
24
|
Gozem S, Mirzakulova E, Schapiro I, Melaccio F, Glusac KD, Olivucci M. A Conical Intersection Controls the Deactivation of the Bacterial Luciferase Fluorophore. Angew Chem Int Ed Engl 2014; 53:9870-5. [DOI: 10.1002/anie.201404011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 01/24/2023]
|
25
|
Gozem S, Mirzakulova E, Schapiro I, Melaccio F, Glusac KD, Olivucci M. A Conical Intersection Controls the Deactivation of the Bacterial Luciferase Fluorophore. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Substrate interaction dynamics and oxygen control in the active site of thymidylate synthase ThyX. Biochem J 2014; 459:37-45. [PMID: 24422556 DOI: 10.1042/bj20131567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymidylate synthase ThyX, required for DNA synthesis in many pathogenic bacteria, is considered a promising antimicrobial target. It binds FAD and three substrates, producing dTMP (2'-deoxythymidine-5'-monophosphate) from dUMP (2'-deoxyuridine-5'-monophosphate). However, ThyX proteins also act as NADPH oxidase by reacting directly with O2. In the present study we investigated the dynamic interplay between the substrates and their role in competing with this wasteful and potentially harmful oxidase reaction in catalytically efficient ThyX from Paramecium bursaria Chlorella virus-1. dUMP binding accelerates the O2-insensitive half-reaction between NADPH and FAD by over four orders of magnitude to ~30 s-1. Thus, although dUMP does not have a direct role in FAD reduction, any turnover with molecular O2 requires its presence. Inversely, NADPH accommodation accelerates dUMP binding ~3-fold and apparently precedes dUMP binding under physiological conditions. In the oxidative half-reaction, excess CH2H4folate (N5,N10-methylene-5,6,7,8-tetrahydrofolate) was found to re-oxidize FADH2 within 1 ms, thus very efficiently competing with FADH2 oxidation by O2 (1.5 s-1 under aerobic conditions). The resulting reaction scheme points out how the interplay between the fast reactions with the native substrates, although not rate-limiting for overall catalysis, avoids NADPH oxidase activity in aerobic micro-organisms, including many pathogens. These observations also explain why ThyX proteins are also present in aerobic micro-organisms.
Collapse
|