1
|
Acosta S, Carela M, Garcia-Gonzalez A, Gines M, Vicens L, Cruet R, Massey SE. DNA Repair Is Associated with Information Content in Bacteria, Archaea, and DNA Viruses. J Hered 2015; 106:644-59. [PMID: 26320243 DOI: 10.1093/jhered/esv055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/07/2015] [Indexed: 11/13/2022] Open
Abstract
The concept of a "proteomic constraint" proposes that DNA repair capacity is positively correlated with the information content of a genome, which can be approximated to the size of the proteome (P). This in turn implies that DNA repair genes are more likely to be present in genomes with larger values of P. This stands in contrast to the common assumption that informational genes have a core function and so are evenly distributed across organisms. We examined the presence/absence of 18 DNA repair genes in bacterial genomes. A positive relationship between gene presence and P was observed for 17 genes in the total dataset, and 16 genes when only nonintracellular bacteria were examined. A marked reduction of DNA repair genes was observed in intracellular bacteria, consistent with their reduced value of P. We also examined archaeal and DNA virus genomes, and show that the presence of DNA repair genes is likewise related to a larger value of P. In addition, the products of the bacterial genes mutY, vsr, and ndk, involved in the correction of GC/AT mutations, are strongly associated with reduced genome GC content. We therefore propose that a reduction in information content leads to a loss of DNA repair genes and indirectly to a reduction in genome GC content in bacteria by exposure to the underlying AT mutation bias. The reduction in P may also indirectly lead to the increase in substitution rates observed in intracellular bacteria via loss of DNA repair genes.
Collapse
Affiliation(s)
- Sharlene Acosta
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Miguelina Carela
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Aurian Garcia-Gonzalez
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Mariela Gines
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Luis Vicens
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Ricardo Cruet
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey)
| | - Steven E Massey
- From the Department of Biology, University of Puerto Rico-Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico (Acosta, Carela, Garcia-Gonzalez, Gines, Vicens, Cruet, and Massey).
| |
Collapse
|
2
|
Massey SE. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Life (Basel) 2015; 5:1301-32. [PMID: 25919033 PMCID: PMC4500140 DOI: 10.3390/life5021301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023] Open
Abstract
The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of "neutral emergence". The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these "pseudaptations", and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an "unfreezing" of the codon - amino acid mapping that defines the genetic code, consistent with Crick's Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content between organisms, a selective pressure in the evolution of sexual reproduction, and differences in translational fidelity. Lastly, the utility of the concept of an informational constraint to other diverse fields of research is explored.
Collapse
Affiliation(s)
- Steven E Massey
- Biology Department, PO Box 23360, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA.
| |
Collapse
|
3
|
Hill AE, Plyler ZE, Tiwari H, Patki A, Tully JP, McAtee CW, Moseley LA, Sorscher EJ. Longevity and plasticity of CFTR provide an argument for noncanonical SNP organization in hominid DNA. PLoS One 2014; 9:e109186. [PMID: 25350658 PMCID: PMC4211684 DOI: 10.1371/journal.pone.0109186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/09/2014] [Indexed: 12/03/2022] Open
Abstract
Like many other ancient genes, the cystic fibrosis transmembrane conductance regulator (CFTR) has survived for hundreds of millions of years. In this report, we consider whether such prodigious longevity of an individual gene – as opposed to an entire genome or species – should be considered surprising in the face of eons of relentless DNA replication errors, mutagenesis, and other causes of sequence polymorphism. The conventions that modern human SNP patterns result either from purifying selection or random (neutral) drift were not well supported, since extant models account rather poorly for the known plasticity and function (or the established SNP distributions) found in a multitude of genes such as CFTR. Instead, our analysis can be taken as a polemic indicating that SNPs in CFTR and many other mammalian genes may have been generated—and continue to accrue—in a fundamentally more organized manner than would otherwise have been expected. The resulting viewpoint contradicts earlier claims of ‘directional’ or ‘intelligent design-type’ SNP formation, and has important implications regarding the pace of DNA adaptation, the genesis of conserved non-coding DNA, and the extent to which eukaryotic SNP formation should be viewed as adaptive.
Collapse
Affiliation(s)
- Aubrey E. Hill
- Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zackery E. Plyler
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hemant Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joel P. Tully
- Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christopher W. McAtee
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Leah A. Moseley
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eric J. Sorscher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|