1
|
Yan Q, Li Z, Sun R, Jin H, Ma L, Li C. Promoted expression of a lipase for its application in EPA/DHA enrichment and mechanistic insights into its substrate specificity. Int J Biol Macromol 2025; 296:139628. [PMID: 39798747 DOI: 10.1016/j.ijbiomac.2025.139628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200% in the secretion level and the volumetric activity. Its application in EPA/DHA enrichment from fish oil was thereafter obtained with merits of low temperature and much less time, yielding an increase of ~31% in their total percentage. To gain mechanistic insights into its substrate chain-length specificity, we performed molecular dynamics simulation and revealed the substrate-dependent significant yet divergent conformational shifts of predominantly distal surface-exposed regions, suggesting a predominant long-range modulation mechanism. Together, this work provided in-depth insights into substrate specificity of lipase K80 and an alternate engineering site, the C-terminal KKL motif, for its expression optimization in P. pastoris, as well as extended toolboxes of EPA/DHA enrichment and application scopes of lipase K80.
Collapse
Affiliation(s)
- Qinfang Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Zhaoyang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Rongjing Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Hanmei Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Linxin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Chunhua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
2
|
Chen A. Enhancing freeze-thaw tolerance in baker's yeast: strategies and perspectives. Food Sci Biotechnol 2024; 33:2953-2969. [PMID: 39220313 PMCID: PMC11364746 DOI: 10.1007/s10068-024-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024] Open
Abstract
Frozen dough technology is important in modern bakery operations, facilitating the transportation of dough at low temperatures to downstream sales points. However, the freeze-thaw process imposes significant stress on baker's yeast, resulting in diminished viability and fermentation capacity. Understanding the mechanisms underlying freeze-thaw stress is essential for mitigating its adverse effects on yeast performance. This review delves into the intricate mechanisms underlying freeze-thaw stress, focusing specifically on Saccharomyces cerevisiae, the primary yeast used in baking, and presents a wide range of biotechnological approaches to enhance freeze-thaw resistance in S. cerevisiae. Strategies include manipulating intracellular metabolites, altering membrane composition, managing antioxidant defenses, mediating aquaporin expression, and employing adaptive evolutionary and breeding techniques. Addressing challenges and strategies associated with freeze-thaw stress, this review provides valuable insights for future research endeavors, aiming to enhance the freeze-thaw tolerance of baker's yeast and contribute to the advancement of bakery science.
Collapse
Affiliation(s)
- Anqi Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
3
|
Takagi H. Molecular mechanisms and highly functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1017-1037. [PMID: 33836532 DOI: 10.1093/bbb/zbab022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
In response to environmental stress, microorganisms adapt to drastic changes while exerting cellular functions by controlling gene expression, metabolic pathways, enzyme activities, and protein-protein interactions. Microbial cells that undergo a fermentation process are subjected to stresses, such as high temperature, freezing, drying, changes in pH and osmotic pressure, and organic solvents. Combinations of these stresses that continue over long terms often inhibit cells' growth and lead to their death, markedly limiting the useful functions of microorganisms (eg their fermentation ability). Thus, high stress tolerance of cells is required to improve productivity and add value to fermented/brewed foods and biofuels. This review focuses on stress tolerance mechanisms, including l-proline/l-arginine metabolism, ubiquitin system, and transcription factors, and the functional development of the yeast Saccharomyces cerevisiae, which has been used not only in basic science as a model of higher eukaryotes but also in fermentation processes for making alcoholic beverages, food products, and bioethanol.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
4
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
5
|
Cabrera E, Welch LC, Robinson MR, Sturgeon CM, Crow MM, Segarra VA. Cryopreservation and the Freeze-Thaw Stress Response in Yeast. Genes (Basel) 2020; 11:genes11080835. [PMID: 32707778 PMCID: PMC7463829 DOI: 10.3390/genes11080835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/31/2023] Open
Abstract
The ability of yeast to survive freezing and thawing is most frequently considered in the context of cryopreservation, a practical step in both industrial and research applications of these organisms. However, it also relates to an evolved ability to withstand freeze-thaw stress that is integrated with a larger network of survival responses. These responses vary between different strains and species of yeast according to the environments to which they are adapted, and the basis of this adaptation appears to be both conditioned and genetic in origin. This review article briefly touches upon common yeast cryopreservation methods and describes in detail what is known about the biochemical and genetic determinants of cell viability following freeze-thaw stress. While we focus on the budding yeast Saccharomyces cerevisiae, in which the freeze-thaw stress response is best understood, we also highlight the emerging diversity of yeast freeze-thaw responses as a manifestation of biodiversity among these organisms.
Collapse
|
6
|
Sharma S, Ahmed M, Akhter Y. Fungal acetyltransferases structures, mechanisms and inhibitors: A review. Int J Biol Macromol 2019; 157:626-640. [PMID: 31786301 DOI: 10.1016/j.ijbiomac.2019.11.214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Acetylation of proteins is vital and mediate many processes within the cells like protein interactions, intercellular localization, protein stability, transcriptional regulation, enzyme activity and many more. Acetylation, an evolutionarily conserved process, attracted more attention due to its key regulatory role in many cellular processes and its effect on proteome and metabolome. In eukaryotes, protein acetylation also contribute to the epigenetic regulation of gene expression. Acetylation involves the transfer of acetyl group from donor acetyl coenzyme A to a suitable acceptor molecule and the reaction is catalyzed by acetyltransferase enzymes. The review focuses on current understanding of different acetyltransferase families: their discovery, structure and catalytic mechanism in fungal species. Fungal acetyltransferases use divergent catalytic mechanisms and carry out catalysis in a substrate-specific manner. The studies have explored different fungal acetyltransferases in relation to secondary metabolite production and the fungal pathogenesis. Although, the functions and catalytic mechanism of acetyltransferases are well known, however further enhanced knowledge may improve their utilization in various applications of biotechnology.
Collapse
Affiliation(s)
- Shikha Sharma
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh 176206, India
| | - Mushtaq Ahmed
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh 176206, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
7
|
Ohashi M, Nasuno R, Watanabe D, Takagi H. Stable N-acetyltransferase Mpr1 improves ethanol productivity in the sake yeast Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2019; 46:1039-1045. [DOI: 10.1007/s10295-019-02177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
Abstract
Abstract
N-Acetyltransferase Mpr1 was originally discovered as an enzyme that detoxifies l-azetidine-2-carboxylate through its N-acetylation in the yeast Saccharomyces cerevisiae Σ1278b. Mpr1 protects yeast cells from oxidative stresses possibly by activating a novel l-arginine biosynthesis. We recently constructed a stable variant of Mpr1 (N203K) by a rational design based on the structure of the wild-type Mpr1 (WT). Here, we examined the effects of N203K on ethanol fermentation of the sake yeast S. cerevisiae strain lacking the MPR1 gene. When N203K was expressed in the diploid Japanese sake strain, its fermentation performance was improved compared to WT. In a laboratory-scale brewing, a sake strain expressing N203K produced more ethanol than WT. N203K also affected the contents of flavor compounds and organic acids. These results suggest that the stable Mpr1 variant contributes to the construction of new industrial yeast strains with improved fermentation ability and diversity of taste and flavor.
Collapse
Affiliation(s)
- Masataka Ohashi
- Nara Prefecture Institute of Industrial Development 129-1 Kashiwagi-cho 630-8031 Nara Nara Japan
| | - Ryo Nasuno
- 0000 0000 9227 2257 grid.260493.a Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama 630-0192 Ikoma Nara Japan
| | - Daisuke Watanabe
- 0000 0000 9227 2257 grid.260493.a Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama 630-0192 Ikoma Nara Japan
| | - Hiroshi Takagi
- 0000 0000 9227 2257 grid.260493.a Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama 630-0192 Ikoma Nara Japan
| |
Collapse
|
8
|
Takagi H. Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Biosci Biotechnol Biochem 2019; 83:1449-1462. [PMID: 30712454 DOI: 10.1080/09168451.2019.1576500] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In yeast, amino acid metabolism and its regulatory mechanisms vary under different growth environments by regulating anabolic and catabolic processes, including uptake and export, and the metabolic styles form a complicated but robust network. There is also crosstalk with various metabolic pathways, products and signal molecules. The elucidation of metabolic regulatory mechanisms and physiological roles is important fundamental research for understanding life phenomenon. In terms of industrial application, the control of amino acid composition and content is expected to contribute to an improvement in productivity, and to add to the value of fermented foods, alcoholic beverages, bioethanol, and other valuable compounds (proteins and amino acids, etc.). This review article mainly describes our research in constructing yeast strains with high functionality, focused on the metabolic regulatory mechanisms and physiological roles of "functional amino acids", such as l-proline, l-arginine, l-leucine, l-valine, l-cysteine, and l-methionine, found in yeast.
Collapse
Affiliation(s)
- Hiroshi Takagi
- a Division of Biological Science, Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
9
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
10
|
Wu D, Zhu H, Chu J, Wu J. N-acetyltransferase co-expression increases α-glucosidase expression level in Pichia pastoris. J Biotechnol 2019; 289:26-30. [PMID: 30428383 DOI: 10.1016/j.jbiotec.2018.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 11/27/2022]
Abstract
Pichia pastoris is subjected to strong oxidative stress in the methanol induction phase. The oxidative stress inflicts severe injury to yeast cells, which causes cell death and reduces protein expression ability. N-acetyltransferase in Saccharomyces cerevisiae can protect yeast cells from damage caused by decreasing reactive oxygen species (ROS) in oxidative pressure environments such as ethanol treatment, freeze-thawing, or heat shock. In this study, N-acetyltransferase from P. pastoris (PpMpr1) was overexpressed for the first time to improve the anti-oxidative stress ability to protect cells from strong ROS damage during the methanol induction phase. Cell viability of the PpMpr1 overexpression strain increased significantly, while biomass was increased by 22.7% at high dissolved oxygen (DO). At the same time, the heterologous α-glucosidase (AGL) expression level at 25% DO was increased by 21.5%. The AGL degradation was greatly relieved in the fermentation supernatant of the PpMpr1 overexpression strain. This study shows that PpMpr1 has a great potential for improvement of anti-oxidative stress ability in P. pastoris and provides a promising recombinant microorganism for industrial production of proteins.
Collapse
Affiliation(s)
- Dan Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Haifeng Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
11
|
Yang H, Male M, Li Y, Wang N, Zhao C, Jin S, Hu J, Chen Z, Ye Z, Xu H. Efficacy of Hydroxy-L-proline (HYP) analogs in the treatment of primary hyperoxaluria in Drosophila Melanogaster. BMC Nephrol 2018; 19:167. [PMID: 29980178 PMCID: PMC6035412 DOI: 10.1186/s12882-018-0980-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Background Substrate reduction therapy with analogs reduces the accumulation of substrates by inhibiting the metabolic pathways involved in their biosynthesis, providing new treatment options for patients with primary hyperoxalurias (PHs) that often progress to end-stage renal disease (ESRD). This research aims to evaluate the inhibition efficacy of Hydroxy-L-proline (HYP) analogs against calcium oxalate (CaOx) crystal formation in the Drosophila Melanogaster (D. Melanogaster) by comparing them with Pyridoxine (Vitamin B6). Methods Three stocks of Drosophila Melanogaster (W118, CG3926 RNAi, and Act5C-GAL4/CyO) were utilized. Two stocks (CG3926 RNAi and Act5C-GAL4 /CyO) were crossed to generate the Act5C > dAGXT RNAi recombinant line (F1 generation) of D. Melanogaster which was used to compare the efficacy of Hydroxy-L-proline (HYP) analogs inhibiting CaOx crystal formation with Vitamin B6 as the traditional therapy for primary hyperoxaluria. Results Nephrolithiasis model was successfully constructed by downregulating the function of the dAGXT gene in D. Melanogaster (P-Value = 0.0045). Furthermore, the efficacy of Hydroxy-L-proline (HYP) analogs against CaOx crystal formation was demonstrated in vivo using D. Melanogaster model; the results showed that these L-Proline analogs were better in inhibiting stone formation at very low concentrations than Vitamin B6 (IC50 = 0.6 and 1.8% for standard and dietary salt growth medium respectively) compared to N-acetyl-L-Hydroxyproline (IC50 = 0.1% for both standard and dietary salt growth medium) and Baclofen (IC50 = 0.06 and 0.1% for standard and dietary salt growth medium respectively). Analysis of variance (ANOVA) also showed that Hydroxy-L-proline (HYP) analogs were better alternatives for CaOx inhibition at very low concentration especially when both genetics and environmental factors are intertwined (p < 0.0008) for the dietary salt growth medium and (P < 0.063) for standard growth medium. Conclusion Addition of Hydroxy-L-Proline analogs to growth medium resulted in the reduction of CaOx crystals formation. These analogs show promise as potential inhibitors for oxalate reduction in Primary Hyperoxaluria.
Collapse
Affiliation(s)
- Huan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Musa Male
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- College of Life Sciences, Hubei University, Wuhan, China
| | - Ning Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Zhao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Jin
- College of Life Sciences, Hubei University, Wuhan, China
| | - Juncheng Hu
- College of Life Sciences, Hubei University, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China. .,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
陈 璇, 许 晓, 吴 昕, 李 转, 赵 望. [Role of SMU.2055 gene in cariogenic capacity of Streptococcus mutans]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:786-791. [PMID: 28669953 PMCID: PMC6744141 DOI: 10.3969/j.issn.1673-4254.2017.06.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To construct a SMU.2055-dificient mutant strain of Streptococcus mutans (S. mutans) and evaluate its cariogenic capacity in comparison with wild-type S. mutans. METHODS The SMU.2055-dificient mutant strain of S. mutans was constructed using homologous recombination technique and observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorbance at 600 nm and pH values of the wild-type and mutant strains were monitored to evaluate their growth and acid production. After acid adaption, the two strains were challenged with acid shock and their survival rates were determined. RESULTS PCR and sequence analyses verified the successful construction of the SMU.2055-dificient mutant strain. Observation with SEM revealed obvious changes in the morphology of the mutant strain, which showed reduced irregular substances between the individual bacteria as compared with the wild-type strain. TEM revealed major alterations in the cellular architecture of the mutant strain with blurry cell membrane and disruption of the membrane integrity. The growth capacity of the mutant strain decreased in both normal and acidic conditions but its acid production capacity remained unaffected. CONCLUSION SMU.2055 gene is associated with morphology maintenance, growth capacity and acid resistance of S. mutans but is not related to the acid production capacity of the bacterium.
Collapse
Affiliation(s)
- 璇 陈
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 口腔医学院,广东 广州 5105152 College of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - 晓虎 许
- 深圳市龙华新区中心医院口腔科,广东 深圳 518110Department of Stomatology, Longhua New District Central Hospital, Shenzhen 518110, China
| | - 昕彧 吴
- 南方医科大学附属广东省口腔医院,广东 广州 510282Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou 510282, China
| | - 转玲 李
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 口腔医学院,广东 广州 5105152 College of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - 望泓 赵
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 口腔医学院,广东 广州 5105152 College of Stomatology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
陈 璇, 许 晓, 吴 昕, 李 转, 赵 望. [Role of SMU.2055 gene in cariogenic capacity of Streptococcus mutans]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:786-791. [PMID: 28669953 PMCID: PMC6744141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 09/03/2024]
Abstract
OBJECTIVE To construct a SMU.2055-dificient mutant strain of Streptococcus mutans (S. mutans) and evaluate its cariogenic capacity in comparison with wild-type S. mutans. METHODS The SMU.2055-dificient mutant strain of S. mutans was constructed using homologous recombination technique and observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorbance at 600 nm and pH values of the wild-type and mutant strains were monitored to evaluate their growth and acid production. After acid adaption, the two strains were challenged with acid shock and their survival rates were determined. RESULTS PCR and sequence analyses verified the successful construction of the SMU.2055-dificient mutant strain. Observation with SEM revealed obvious changes in the morphology of the mutant strain, which showed reduced irregular substances between the individual bacteria as compared with the wild-type strain. TEM revealed major alterations in the cellular architecture of the mutant strain with blurry cell membrane and disruption of the membrane integrity. The growth capacity of the mutant strain decreased in both normal and acidic conditions but its acid production capacity remained unaffected. CONCLUSION SMU.2055 gene is associated with morphology maintenance, growth capacity and acid resistance of S. mutans but is not related to the acid production capacity of the bacterium.
Collapse
Affiliation(s)
- 璇 陈
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 口腔医学院,广东 广州 5105152 College of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - 晓虎 许
- 深圳市龙华新区中心医院口腔科,广东 深圳 518110Department of Stomatology, Longhua New District Central Hospital, Shenzhen 518110, China
| | - 昕彧 吴
- 南方医科大学附属广东省口腔医院,广东 广州 510282Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou 510282, China
| | - 转玲 李
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 口腔医学院,广东 广州 5105152 College of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - 望泓 赵
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 口腔医学院,广东 广州 5105152 College of Stomatology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Nugroho RH, Yoshikawa K, Matsuda F, Shimizu H. Positive effects of proline addition on the central metabolism of wild-type and lactic acid-producing Saccharomyces cerevisiae strains. Bioprocess Biosyst Eng 2016; 39:1711-6. [PMID: 27350544 DOI: 10.1007/s00449-016-1646-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/20/2016] [Indexed: 01/10/2023]
Abstract
In Saccharomyces cerevisiae, proline is a stress protectant interacting with other substrate uptake systems against oxidative stress under low pH conditions. In this study, we performed metabolomics analysis to investigate the response associated with an increase in cell growth rates and maximum densities when cells were treated with proline under normal and acid stress conditions. Metabolome data show that concentrations of components of central metabolism are increased in proline-treated S. cerevisiae. No consumption of proline was observed, suggesting that proline does not act as a nutrient but regulates metabolic state and growth of cells. Treatment of lactic acid-producing yeast with proline during lactic acid bio-production improved growth rate and increased the final concentration of lactic acid.
Collapse
Affiliation(s)
- Riyanto Heru Nugroho
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Salah Ud-Din AIM, Tikhomirova A, Roujeinikova A. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT). Int J Mol Sci 2016; 17:E1018. [PMID: 27367672 PMCID: PMC4964394 DOI: 10.3390/ijms17071018] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Alexandra Tikhomirova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
16
|
Nasuno R, Hirase S, Norifune S, Watanabe D, Takagi H. Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of L-arginine synthesis in yeast. J Biochem 2015; 159:271-7. [PMID: 26454877 DOI: 10.1093/jb/mvv101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/05/2015] [Indexed: 11/15/2022] Open
Abstract
Previously, N-Acetyltransferase Mpr1 was suggested to be involved in a novel pathway of L-arginine biosynthesis in yeast. Our recent crystallographic analysis demonstrated that the overall structure of Mpr1 is a typical folding among proteins in the Gcn5-related N-acetyltransferase superfamily, and also provided clues to the design of mutations for improvement of the enzymatic functions. Here, we constructed new stable variants, Asn203Lys- and Asn203Arg-Mpr1, which exhibited 2.4-fold and 2.2-fold longer activity half-lives than wild-type Mpr1, respectively, by structure-based molecular design. The replacement of Asn203 with a basic amino acid was suggested to stabilize α-helix 2, which is important for the Mpr1 structure, probably by neutralizing its dipole. In addition, the combination of two amino acid substitutions at positions 65 and 203 in Mpr1, Phe65Leu, which was previously isolated by the screening from PCR random mutagenesis library of MPR1, and Asn203Lys or Asn203Arg, led to further stabilization of Mpr1. Our growth assay suggests that overexpression of the stable Mpr1 variants increase L-arginine synthesis in yeast cells. Our finding is the first report on the rational engineering of Mpr1 for thermostabilization and could be useful in the construction of new yeast strains with higher L-arginine synthetic activity and also improved fermentation ability.
Collapse
Affiliation(s)
- Ryo Nasuno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Saeka Hirase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Saki Norifune
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
17
|
Xiaodan C, Xiurong Z, Xinyu W, Chunyan Z, Wanghong Z. [Crystal structure of SMU.2055 protein from Streptococcus mutans and its small molecule inhibitors design and selection]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2015; 33:182-186. [PMID: 26189238 PMCID: PMC7040987 DOI: 10.7518/hxkq.2015.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/20/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. METHODS The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. RESULTS The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. CONCLUSION Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.
Collapse
|
18
|
Nugroho RH, Yoshikawa K, Shimizu H. Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 2015; 120:396-404. [PMID: 25795572 DOI: 10.1016/j.jbiosc.2015.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
Acid stress has been reported to inhibit cell growth and decrease productivity during bio-production processes. In this study, a metabolomics approach was conducted to understand the effect of lactic acid induced stress on metabolite pools in Saccharomyces cerevisiae. Cells were cultured with lactic acid as the acidulant, with or without initial pH control, i.e., at pH 6 or pH 2.5, respectively. Under conditions of low pH, lactic acid led to a decrease in the intracellular pH and specific growth rate; however, these parameters remained unaltered in the cultures with pH control. Capillary electrophoresis-mass spectrometry followed by a statistical principal component analysis was used to identify the metabolites and measure the increased concentrations of ATP, glutathione and proline during severe acid stress. Addition of proline to the acidified cultures improved the specific growth rates. We hypothesized that addition of proline protected the cells from acid stress by combating acid-induced oxidative stress. Lactic acid diffusion into the cell resulted in intracellular acidification, which elicited an oxidative stress response and resulted in increased glutathione levels.
Collapse
Affiliation(s)
- Riyanto Heru Nugroho
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
19
|
Gournas C, Evangelidis T, Athanasopoulos A, Mikros E, Sophianopoulou V. The Aspergillus nidulans proline permease as a model for understanding the factors determining substrate binding and specificity of fungal amino acid transporters. J Biol Chem 2015; 290:6141-55. [PMID: 25572393 DOI: 10.1074/jbc.m114.612069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly(56), Thr(57)), TMS3 (Glu(138)), and TMS6 (Phe(248)), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycine, displaying a specificity profile impressively similar to that of Put4p. Our results support a model where residues in these positions determine specificity by interacting with the substrates, acting as gating elements, altering the flexibility of the substrate binding core, or affecting conformational changes of the transport cycle.
Collapse
Affiliation(s)
- Christos Gournas
- From the Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, NCSR "Demokritos," Agia Paraskevi, 15310 Athens and
| | - Thomas Evangelidis
- the School of Pharmacy, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Alexandros Athanasopoulos
- From the Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, NCSR "Demokritos," Agia Paraskevi, 15310 Athens and
| | - Emmanuel Mikros
- the School of Pharmacy, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Vicky Sophianopoulou
- From the Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, NCSR "Demokritos," Agia Paraskevi, 15310 Athens and
| |
Collapse
|
20
|
Podobnik M, Siddiqui N, Rebolj K, Nambi S, Merzel F, Visweswariah SS. Allostery and conformational dynamics in cAMP-binding acyltransferases. J Biol Chem 2014; 289:16588-600. [PMID: 24748621 DOI: 10.1074/jbc.m114.560086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein.
Collapse
Affiliation(s)
| | - Nida Siddiqui
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Katja Rebolj
- From the Laboratory for Molecular Biology and Nanobiotechnology and
| | - Subhalaxmi Nambi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Franci Merzel
- Laboratory of Biomolecular Structure, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia and
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Pemberton TA, Srivastava D, Sanyal N, Henzl MT, Becker DF, Tanner JJ. Structural studies of yeast Δ(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): active site flexibility and oligomeric state. Biochemistry 2014; 53:1350-9. [PMID: 24502590 PMCID: PMC3954644 DOI: 10.1021/bi500048b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
The proline catabolic enzyme Δ1-pyrroline-5-carboxylate
dehydrogenase (ALDH4A1) catalyzes the NAD+-dependent oxidation
of γ-glutamate semialdehyde to l-glutamate. In Saccharomyces cerevisiae, ALDH4A1 is encoded by the PUT2 gene and known as Put2p. Here we report the steady-state
kinetic parameters of the purified recombinant enzyme, two crystal
structures of Put2p, and the determination of the oligomeric state
and quaternary structure from small-angle X-ray scattering and sedimentation
velocity. Using Δ1-pyrroline-5-carboxylate as the
substrate, catalytic parameters kcat and Km were determined to be 1.5 s–1 and 104 μM, respectively, with a catalytic efficiency of 14000
M–1 s–1. Although Put2p exhibits
the expected aldehyde dehydrogenase superfamily fold, a large portion
of the active site is disordered in the crystal structure. Electron
density for the 23-residue aldehyde substrate-binding loop is absent,
implying substantial conformational flexibility in solution. We furthermore
report a new crystal form of human ALDH4A1 (42% identical to Put2p)
that also shows disorder in this loop. The crystal structures provide
evidence of multiple active site conformations in the substrate-free
form of the enzyme, which is consistent with a conformational selection
mechanism of substrate binding. We also show that Put2p forms a trimer-of-dimers
hexamer in solution. This result is unexpected because human ALDH4A1
is dimeric, whereas some bacterial ALDH4A1s are hexameric. Thus, global
sequence identity and domain of life are poor predictors of the oligomeric
states of ALDH4A1. Mutation of a single Trp residue that forms knob-in-hole
interactions across the dimer–dimer interface abrogates hexamer
formation, suggesting that this residue is the center of a protein–protein
association hot spot.
Collapse
Affiliation(s)
- Travis A Pemberton
- Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | | | | | | | | | | |
Collapse
|