1
|
Cerbus RT, Hiratani I, Kawaguchi K. Homeotic and nonhomeotic patterns in the tetrapod vertebral formula. Proc Natl Acad Sci U S A 2024; 121:e2411421121. [PMID: 39527744 PMCID: PMC11588047 DOI: 10.1073/pnas.2411421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Vertebrate development and phylogeny are intimately connected through the vertebral formula, the numerical distribution of vertebrae along the body axis into different categories such as neck and chest. A key window into this relationship is through the conserved Hox gene clusters. Hox gene expression boundaries align with vertebral boundaries, and their manipulation in model organisms often results in the transformation of one vertebral type into its neighbor, a homeotic transformation. If the variety in the vertebrate body plan is produced by homeotic shifts, then the number of adjacent vertebrae will be inversely related when making interspecies comparisons since the gain in one vertebra is due to the loss in its neighbor. To date, such a pattern across species consistent with homeotic transitions has only been found in the thoracolumbar vertebral count of mammals. To further investigate potential homeotic relationships in other vertebrate classes and along the entire body axis, we compiled a comprehensive dataset of complete tetrapod vertebral formulas and systematically searched for patterns by analyzing combinations of vertebrae. We uncovered mammalian homeotic patterns and found balances between distal vertebrae not anticipated by a Hox-vertebral homeotic relationship, including one that emerged during the progression from theropods to birds. We also identified correlations between vertebral counts and intergenic distances in the HoxB gene cluster which do not align with the common picture of a colinear relationship between Hox expression and vertebral categories. This quantitative approach revises our expectations for the diversity of a Hox-mediated vertebrate body plan.
Collapse
Affiliation(s)
- Rory T. Cerbus
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Ichiro Hiratani
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Kyogo Kawaguchi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
- RIKEN Cluster for Pioneering Research, Kobe, Japan
- Institute for Physics of Intelligence, The University of Tokyo, Hongo, Tokyo113-0033, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
2
|
Pallarès-Albanell J, Ortega-Flores L, Senar-Serra T, Ruiz A, Abril JF, Rossello M, Almudi I. Gene regulatory dynamics during the development of a paleopteran insect, the mayfly Cloeon dipterum. Development 2024; 151:dev203017. [PMID: 39324209 PMCID: PMC11491810 DOI: 10.1242/dev.203017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The evolution of insects has been marked by the appearance of key body plan innovations that promoted the outstanding ability of this lineage to adapt to new habitats, boosting the most successful radiation in animals. To understand the evolution of these new structures, it is essential to investigate which genes and gene regulatory networks participate during the embryonic development of insects. Great efforts have been made to fully understand gene expression and gene regulation during the development of holometabolous insects, in particular Drosophila melanogaster. Conversely, functional genomics resources and databases in other insect lineages are scarce. To provide a new platform to study gene regulation in insects, we generated ATAC-seq for the first time during the development of the mayfly Cloeon dipterum, which belongs to Paleoptera, the sister group to all other winged insects. With these comprehensive datasets along six developmental stages, we characterized pronounced changes in accessible chromatin between early and late embryogenesis. The application of ATAC-seq in mayflies provides a fundamental resource to understand the evolution of gene regulation in insects.
Collapse
Affiliation(s)
- Joan Pallarès-Albanell
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Laia Ortega-Flores
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Tòt Senar-Serra
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Antoni Ruiz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Josep F. Abril
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institute of Biomedicine of Universitat de Barcelona (IBUB), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Maria Rossello
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Isabel Almudi
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Hillan EJ, Roberts LE, Criswell KE, Head JJ. Conservation of rib skeleton regionalization in the homoplastic evolution of the snake-like body form in squamates. Proc Biol Sci 2024; 291:20241160. [PMID: 39379001 DOI: 10.1098/rspb.2024.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Squamates have independently evolved an elongate, limb-reduced body form numerous times. This transition has been proposed to involve either changes to regulatory gene expression or downstream modification of target enhancers to produce a homogeneous, deregionalized axial skeleton. Analysis of vertebral morphology has suggested that regionalization is maintained in snake-like body forms, but morphological variation in the other primary component of the axial skeleton, the dorsal ribs, has not been previously examined. We quantified rib morphology along the anterior-posterior axis in limbed and snake-like squamates to test different regionalization models. We find that the relative position of regional boundaries remains consistent across taxa of differing body types, including in the homoplastic evolution of snake-like body forms. The consistent retention of regional boundaries in this primaxial domain is uncorrelated with more plastic abaxial region markers. Rather than loss of regions, rib shape at the anterior and posterior of the axis converges on those in the middle, resulting in axial regions being distinguishable by allometric shape changes rather than by discrete morphologies. This complexity challenges notions of deregionalization, revealing a nuanced evolutionary history shaped by shared functions.
Collapse
Affiliation(s)
- Emily J Hillan
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Lucy E Roberts
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- The Natural History Museum, London, UK
| | - Katharine E Criswell
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
- Department of Biology, Saint Francis University, Loretto, PA, USA
| | - Jason J Head
- Department of Zoology, University Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Wellik DM. Hox genes and patterning the vertebrate body. Curr Top Dev Biol 2024; 159:1-27. [PMID: 38729674 DOI: 10.1016/bs.ctdb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
5
|
Mañes-García J, Marco-Ferreres R, Beccari L. Shaping gene expression and its evolution by chromatin architecture and enhancer activity. Curr Top Dev Biol 2024; 159:406-437. [PMID: 38729683 DOI: 10.1016/bs.ctdb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Transcriptional regulation plays a pivotal role in orchestrating the intricate genetic programs governing embryonic development. The expression of developmental genes relies on the combined activity of several cis-regulatory elements (CREs), such as enhancers and silencers, which can be located at long linear distances from the genes that they regulate and that interact with them through establishment of chromatin loops. Mutations affecting their activity or interaction with their target genes can lead to developmental disorders and are thought to have importantly contributed to the evolution of the animal body plan. The income of next-generation-sequencing approaches has allowed identifying over a million of sequences with putative regulatory potential in the human genome. Characterizing their function and establishing gene-CREs maps is essential to decode the logic governing developmental gene expression and is one of the major challenges of the post-genomic era. Chromatin 3D organization plays an essential role in determining how CREs specifically contact their target genes while avoiding deleterious off-target interactions. Our understanding of these aspects has greatly advanced with the income of chromatin conformation capture techniques and fluorescence microscopy approaches to visualize the organization of DNA elements in the nucleus. Here we will summarize relevant aspects of how the interplay between CRE activity and chromatin 3D organization regulates developmental gene expression and how it relates to pathological conditions and the evolution of animal body plan.
Collapse
Affiliation(s)
| | | | - Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
6
|
Chen HI, Turakhia Y, Bejerano G, Kingsley DM. Whole-genome Comparisons Identify Repeated Regulatory Changes Underlying Convergent Appendage Evolution in Diverse Fish Lineages. Mol Biol Evol 2023; 40:msad188. [PMID: 37739926 PMCID: PMC10516590 DOI: 10.1093/molbev/msad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Fins are major functional appendages of fish that have been repeatedly modified in different lineages. To search for genomic changes underlying natural fin diversity, we compared the genomes of 36 percomorph fish species that span over 100 million years of evolution and either have complete or reduced pelvic and caudal fins. We identify 1,614 genomic regions that are well-conserved in fin-complete species but missing from multiple fin-reduced lineages. Recurrent deletions of conserved sequences in wild fin-reduced species are enriched for functions related to appendage development, suggesting that convergent fin reduction at the organismal level is associated with repeated genomic deletions near fin-appendage development genes. We used sequencing and functional enhancer assays to confirm that PelA, a Pitx1 enhancer previously linked to recurrent pelvic loss in sticklebacks, has also been independently deleted and may have contributed to the fin morphology in distantly related pelvic-reduced species. We also identify a novel enhancer that is conserved in the majority of percomorphs, drives caudal fin expression in transgenic stickleback, is missing in tetraodontiform, syngnathid, and synbranchid species with caudal fin reduction, and alters caudal fin development when targeted by genome editing. Our study illustrates a broadly applicable strategy for mapping phenotypes to genotypes across a tree of vertebrate species and highlights notable new examples of regulatory genomic hotspots that have been used to evolve recurrent phenotypes across 100 million years of fish evolution.
Collapse
Affiliation(s)
- Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University School of Engineering, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Pereira AG, Kohlsdorf T. Repeated evolution of similar phenotypes: Integrating comparative methods with developmental pathways. Genet Mol Biol 2023; 46:e20220384. [PMID: 37486083 PMCID: PMC10364090 DOI: 10.1590/1678-4685-gmb-2022-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Repeated phenotypes, often referred to as 'homoplasies' in cladistic analyses, may evolve through changes in developmental processes. Genetic bases of recurrent evolution gained attention and have been studied in the past years using approaches that combine modern analytical phylogenetic tools with the stunning assemblage of new information on developmental mechanisms. In this review, we evaluated the topic under an integrated perspective, revisiting the classical definitions of convergence and parallelism and detailing comparative methods used to evaluate evolution of repeated phenotypes, which include phylogenetic inference, estimates of evolutionary rates and reconstruction of ancestral states. We provide examples to illustrate how a given methodological approach can be used to identify evolutionary patterns and evaluate developmental mechanisms associated with the intermittent expression of a given trait along the phylogeny. Finally, we address why repeated trait loss challenges strict definitions of convergence and parallelism, discussing how changes in developmental pathways might explain the high frequency of repeated trait loss in specific lineages.
Collapse
Affiliation(s)
- Anieli Guirro Pereira
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Tiana Kohlsdorf
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Human and African ape myosin heavy chain content and the evolution of hominin skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111415. [PMID: 36931425 DOI: 10.1016/j.cbpa.2023.111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Humans are unique among terrestrial mammals in our manner of walking and running, reflecting 7 to 8 Ma of musculoskeletal evolution since diverging with the genus Pan. One component of this is a shift in our skeletal muscle biology towards a predominance of myosin heavy chain (MyHC) I isoforms (i.e. slow fibers) across our pelvis and lower limbs, which distinguishes us from chimpanzees. Here, new MyHC data from 35 pelvis and hind limb muscles of a Western gorilla (Gorilla gorilla) are presented. These data are combined with a similar chimpanzee dataset to assess the MyHC I content of humans in comparison to African apes (chimpanzees and gorillas) and other terrestrial mammals. The responsiveness of human skeletal muscle to behavioral interventions is also compared to the human-African ape differential. Humans are distinct from African apes and among a small group of terrestrial mammals whose pelvis and hind/lower limb muscle is slow fiber dominant, on average. Behavioral interventions, including immobilization, bed rest, spaceflight and exercise, can induce modest decreases and increases in human MyHC I content (i.e. -9.3% to 2.3%, n = 2033 subjects), but these shifts are much smaller than the mean human-African ape differential (i.e. 31%). Taken together, these results indicate muscle fiber content is likely an evolvable trait under selection in the hominin lineage. As such, we highlight potential targets of selection in the genome (e.g. regions that regulate MyHC content) that may play an important role in hominin skeletal muscle evolution.
Collapse
|
9
|
Chen HI, Turakhia Y, Bejerano G, Kingsley DM. Whole-genome comparisons identify repeated regulatory changes underlying convergent appendage evolution in diverse fish lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526059. [PMID: 36778215 PMCID: PMC9915506 DOI: 10.1101/2023.01.30.526059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fins are major functional appendages of fish that have been repeatedly modified in different lineages. To search for genomic changes underlying natural fin diversity, we compared the genomes of 36 wild fish species that either have complete or reduced pelvic and caudal fins. We identify 1,614 genomic regions that are well-conserved in fin-complete species but missing from multiple fin-reduced lineages. Recurrent deletions of conserved sequences (CONDELs) in wild fin-reduced species are enriched for functions related to appendage development, suggesting that convergent fin reduction at the organismal level is associated with repeated genomic deletions near fin-appendage development genes. We used sequencing and functional enhancer assays to confirm that PelA , a Pitx1 enhancer previously linked to recurrent pelvic loss in sticklebacks, has also been independently deleted and may have contributed to the fin morphology in distantly related pelvic-reduced species. We also identify a novel enhancer that is conserved in the majority of percomorphs, drives caudal fin expression in transgenic stickleback, is missing in tetraodontiform, s yngnathid, and synbranchid species with caudal fin reduction, and which alters caudal fin development when targeted by genome editing. Our study illustrates a general strategy for mapping phenotypes to genotypes across a tree of vertebrate species, and highlights notable new examples of regulatory genomic hotspots that have been used to evolve recurrent phenotypes during 100 million years of fish evolution.
Collapse
Affiliation(s)
- Heidi I. Chen
- Department of Developmental Biology, Stanford University School of Medicine, CA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University School of Medicine, CA
- Department of Biomedical Data Science, Stanford University School of Medicine, CA
- Department of Computer Science, Stanford University School of Engineering, CA
- Department of Pediatrics, Stanford University School of Medicine, CA
| | - David M. Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, CA
- Howard Hughes Medical Institute, Stanford University, CA
| |
Collapse
|
10
|
Galupa R, Alvarez-Canales G, Borst NO, Fuqua T, Gandara L, Misunou N, Richter K, Alves MRP, Karumbi E, Perkins ML, Kocijan T, Rushlow CA, Crocker J. Enhancer architecture and chromatin accessibility constrain phenotypic space during Drosophila development. Dev Cell 2023; 58:51-62.e4. [PMID: 36626871 PMCID: PMC9860173 DOI: 10.1016/j.devcel.2022.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Developmental enhancers bind transcription factors and dictate patterns of gene expression during development. Their molecular evolution can underlie phenotypical evolution, but the contributions of the evolutionary pathways involved remain little understood. Here, using mutation libraries in Drosophila melanogaster embryos, we observed that most point mutations in developmental enhancers led to changes in gene expression levels but rarely resulted in novel expression outside of the native pattern. In contrast, random sequences, often acting as developmental enhancers, drove expression across a range of cell types; random sequences including motifs for transcription factors with pioneer activity acted as enhancers even more frequently. Our findings suggest that the phenotypic landscapes of developmental enhancers are constrained by enhancer architecture and chromatin accessibility. We propose that the evolution of existing enhancers is limited in its capacity to generate novel phenotypes, whereas the activity of de novo elements is a primary source of phenotypic novelty.
Collapse
Affiliation(s)
- Rafael Galupa
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | | | - Timothy Fuqua
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lautaro Gandara
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Natalia Misunou
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Kerstin Richter
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Esther Karumbi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Tin Kocijan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Justin Crocker
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
11
|
Gaunt SJ. Seeking Sense in the Hox Gene Cluster. J Dev Biol 2022; 10:48. [PMID: 36412642 PMCID: PMC9680502 DOI: 10.3390/jdb10040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hox gene cluster, responsible for patterning of the head-tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since it is commonly the same in all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form in the protostome-deuterostome last common ancestor, and why was this with a particular head-tail polarity? Why is gene clustering usually maintained? Why is there collinearity between the order of genes along the cluster and the positions of their expressions along the embryo? Why do the Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do animals adapt their Hox clusters to evolve new structural patterns along the head-tail axis?
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
12
|
Pereira AG, Grizante MB, Kohlsdorf T. What snakes and caecilians have in common? Molecular interaction units and the independent origins of similar morphotypes in Tetrapoda. Proc Biol Sci 2022; 289:20220841. [PMID: 35975445 PMCID: PMC9382212 DOI: 10.1098/rspb.2022.0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
Developmental pathways encompass transcription factors and cis-regulatory elements that interact as transcription factor-regulatory element (TF-RE) units. Independent origins of similar phenotypes likely involve changes in different parts of these units, a hypothesis promisingly tested addressing the evolution of the rib-associated lumbar (RAL) morphotype that characterizes emblematic animals such as snakes and elephants. Previous investigation in these lineages identified a polymorphism in the Homology region 1 [H1] enhancer of the Myogenic factor-5 [Myf5], which interacts with HOX10 proteins to modulate rib development. Here we address the evolution of TF-RE units focusing on independent origins of RAL morphotypes. We compiled an extensive database for H1-Myf5 and HOX10 sequences with two goals: (i) evaluate if the enhancer polymorphism is present in amphibians exhibiting the RAL morphotype and (ii) test a hypothesis of enhanced evolutionary flexibility mediated by TF-RE units, according to which independent origins of the RAL morphotype might involve changes in either component of the interaction unit. We identified the H1-Myf5 polymorphism in lineages that diverged around 340 Ma, including Lissamphibia. Independent origins of the RAL morphotype in Tetrapoda involved sequence variation in either component of the TF-RE unit, confirming that different changes may similarly affect the phenotypic outcome of a given developmental pathway.
Collapse
Affiliation(s)
- Anieli G. Pereira
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana B. Grizante
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Khabyuk J, Pröls F, Draga M, Scaal M. Development of ribs and intercostal muscles in the chicken embryo. J Anat 2022; 241:831-845. [PMID: 35751554 PMCID: PMC9358761 DOI: 10.1111/joa.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
In the thorax of higher vertebrates, ribs and intercostal muscles play a decisive role in stability and respiratory movements of the body wall. They are derivatives of the somites, the ribs originating in the sclerotome and the intercostal muscles originating in the myotome. During thorax development, ribs and intercostal muscles extend into the lateral plate mesoderm and eventually contact the sternum during ventral closure. Here, we give a detailed description of the morphogenesis of ribs and thoracic muscles in the chicken embryo (Gallus gallus). Using Alcian blue staining as well as Sox9 and Desmin whole‐mount immunohistochemistry, we monitor synchronously the development of rib cartilage and intercostal muscle anlagen. We show that the muscle anlagen precede the rib anlagen during ventrolateral extension, which is in line with the inductive role of the myotome in rib differentiation. Our studies furthermore reveal the temporary formation of a previously unknown eighth rib in the chicken embryonic thorax.
Collapse
Affiliation(s)
- Julia Khabyuk
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Felicitas Pröls
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Rao WQ, Kalogeropoulos K, Allentoft ME, Gopalakrishnan S, Zhao WN, Workman CT, Knudsen C, Jiménez-Mena B, Seneci L, Mousavi-Derazmahalleh M, Jenkins TP, Rivera-de-Torre E, Liu SQ, Laustsen AH. The rise of genomics in snake venom research: recent advances and future perspectives. Gigascience 2022; 11:giac024. [PMID: 35365832 PMCID: PMC8975721 DOI: 10.1093/gigascience/giac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Snake venoms represent a danger to human health, but also a gold mine of bioactive proteins that can be harnessed for drug discovery purposes. The evolution of snakes and their venom has been studied for decades, particularly via traditional morphological and basic genetic methods alongside venom proteomics. However, while the field of genomics has matured rapidly over the past 2 decades, owing to the development of next-generation sequencing technologies, snake genomics remains in its infancy. Here, we provide an overview of the state of the art in snake genomics and discuss its potential implications for studying venom evolution and toxinology. On the basis of current knowledge, gene duplication and positive selection are key mechanisms in the neofunctionalization of snake venom proteins. This makes snake venoms important evolutionary drivers that explain the remarkable venom diversification and adaptive variation observed in these reptiles. Gene duplication and neofunctionalization have also generated a large number of repeat sequences in snake genomes that pose a significant challenge to DNA sequencing, resulting in the need for substantial computational resources and longer sequencing read length for high-quality genome assembly. Fortunately, owing to constantly improving sequencing technologies and computational tools, we are now able to explore the molecular mechanisms of snake venom evolution in unprecedented detail. Such novel insights have the potential to affect the design and development of antivenoms and possibly other drugs, as well as provide new fundamental knowledge on snake biology and evolution.
Collapse
Affiliation(s)
- Wei-qiao Rao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Konstantinos Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, 6102, Bentley Perth, Australia
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350, Copenhagen, Denmark
| | - Wei-ning Zhao
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Belén Jiménez-Mena
- DTU Aqua, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Lorenzo Seneci
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, 6102, Bentley Perth, Australia
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Si-qi Liu
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Weldon SA, Münsterberg AE. Somite development and regionalisation of the vertebral axial skeleton. Semin Cell Dev Biol 2021; 127:10-16. [PMID: 34690064 DOI: 10.1016/j.semcdb.2021.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
A critical stage in the development of all vertebrate embryos is the generation of the body plan and its subsequent patterning and regionalisation along the main anterior-posterior axis. This includes the formation of the vertebral axial skeleton. Its organisation begins during early embryonic development with the periodic formation of paired blocks of mesoderm tissue called somites. Here, we review axial patterning of somites, with a focus on studies using amniote model systems - avian and mouse. We summarise the molecular and cellular mechanisms that generate paraxial mesoderm and review how the different anatomical regions of the vertebral column acquire their specific identity and thus shape the body plan. We also discuss the generation of organoids and embryo-like structures from embryonic stem cells, which provide insights regarding axis formation and promise to be useful for disease modelling.
Collapse
Affiliation(s)
- Shannon A Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
16
|
Abstract
The axial skeleton of all vertebrates is composed of individual units known as vertebrae. Each vertebra has individual anatomical attributes, yet they can be classified in five different groups, namely cervical, thoracic, lumbar, sacral and caudal, according to shared characteristics and their association with specific body areas. Variations in vertebral number, size, morphological features and their distribution amongst the different regions of the vertebral column are a major source of the anatomical diversity observed among vertebrates. In this review I will discuss the impact of those variations on the anatomy of different vertebrate species and provide insights into the genetic origin of some remarkable morphological traits that often serve to classify phylogenetic branches or individual species, like the long trunks of snakes or the long necks of giraffes.
Collapse
|
17
|
Bayramov AV, Ermakova GV, Kuchryavyy AV, Zaraisky AG. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Li J, Wang L, Yu D, Hao J, Zhang L, Adeola AC, Mao B, Gao Y, Wu S, Zhu C, Zhang Y, Ren J, Mu C, Irwin DM, Wang L, Hai T, Xie H, Zhang Y. Single-cell RNA Sequencing Reveals Thoracolumbar Vertebra Heterogeneity and Rib-genesis in Pigs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:423-436. [PMID: 34775075 PMCID: PMC8864194 DOI: 10.1016/j.gpb.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 08/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Development of thoracolumbar vertebra (TLV) and rib primordium (RP) is a common evolutionary feature across vertebrates, although whole-organism analysis of the expression dynamics of TLV- and RP-related genes has been lacking. Here, we investigated the single-cell transcriptome landscape of thoracic vertebra (TV), lumbar vertebra (LV), and RP cells from a pig embryo at 27 days post-fertilization (dpf) and identified six cell types with distinct gene expression signatures. In-depth dissection of the gene expression dynamics and RNA velocity revealed a coupled process of osteogenesis and angiogenesis during TLV and RP development. Further analysis of cell type-specific and strand-specific expression uncovered the extremely high level of HOXA10 3'-UTR sequence specific to osteoblasts of LV cells, which may function as anti-HOXA10-antisense by counteracting the HOXA10-antisense effect to determine TLV transition. Thus, this work provides a valuable resource for understanding embryonic osteogenesis and angiogenesis underlying vertebrate TLV and RP development at the cell type-specific resolution, which serves as a comprehensive view on the transcriptional profile of animal embryo development.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junfeng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adeniyi C. Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shifang Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chunling Zhu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yongqing Zhang
- State Key Laboratory for Molecular and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 10010, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changgai Mu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - David M. Irwin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haibing Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
19
|
Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 2021; 592:577-582. [PMID: 33828300 DOI: 10.1038/s41586-021-03433-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Mammaliamorpha comprises the last common ancestor of Tritylodontidae and Mammalia plus all its descendants1. Tritylodontids are nonmammaliaform herbivorous cynodonts that originated in the Late Triassic epoch, diversified in the Jurassic period2-5 and survived into the Early Cretaceous epoch6,7. Eutriconodontans have generally been considered to be an extinct mammalian group, although different views exist8. Here we report a newly discovered tritylodontid and eutriconodontan from the Early Cretaceous Jehol Biota of China. Eutriconodontans are common in this biota9, but it was not previously known to contain tritylodontids. The two distantly related species show convergent features that are adapted for fossorial life, and are the first 'scratch-diggers' known from this biota. Both species also show an increased number of presacral vertebrae, relative to the ancestral state in synapsids or mammals10,11, that display meristic and homeotic changes. These fossils shed light on the evolutionary development of the axial skeleton in mammaliamorphs, which has been the focus of numerous studies in vertebrate evolution12-17 and developmental biology18-28. The phenotypes recorded by these fossils indicate that developmental plasticity in somitogenesis and HOX gene expression in the axial skeleton-similar to that observed in extant mammals-was already in place in stem mammaliamorphs. The interaction of these developmental mechanisms with natural selection may have underpinned the diverse phenotypes of body plan that evolved independently in various clades of mammaliamorph.
Collapse
|
20
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
21
|
Wagner A. Information Theory Can Help Quantify the Potential of New Phenotypes to Originate as Exaptations. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.564071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exaptations are adaptive traits that do not originate de novo but from other adaptive traits. They include complex macroscopic traits, such as the middle ear bones of mammals, which originated from reptile jaw bones, but also molecular traits, such as new binding sites of transcriptional regulators. What determines whether a trait originates de novo or as an exaptation is unknown. I here use simple information theoretic concepts to quantify a molecular phenotype’s potential to give rise to new phenotypes. These quantities rely on the amount of genetic information needed to encode a phenotype. I use these quantities to estimate the propensity of new transcription factor binding phenotypes to emerge de novo or exaptively, and do so for 187 mouse transcription factors. I also use them to quantify whether an organism’s viability in one of 10 different chemical environment is likely to arise exaptively. I show that informationally expensive traits are more likely to originate exaptively. Exaptive evolution is only sometimes favored for new transcription factor binding, but it is always favored for the informationally complex metabolic phenotypes I consider. As our ability to genotype evolving populations increases, so will our ability to understand how phenotypes of ever-increasing informational complexity originate in evolution.
Collapse
|
22
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Mallo M. The vertebrate tail: a gene playground for evolution. Cell Mol Life Sci 2020; 77:1021-1030. [PMID: 31559446 PMCID: PMC11104866 DOI: 10.1007/s00018-019-03311-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
The tail of all vertebrates, regardless of size and anatomical detail, derive from a post-anal extension of the embryo known as the tail bud. Formation, growth and differentiation of this structure are closely associated with the activity of a group of cells that derive from the axial progenitors that build the spinal cord and the muscle-skeletal case of the trunk. Gdf11 activity switches the development of these progenitors from a trunk to a tail bud mode by changing the regulatory network that controls their growth and differentiation potential. Recent work in the mouse indicates that the tail bud regulatory network relies on the interconnected activities of the Lin28/let-7 axis and the Hox13 genes. As this network is likely to be conserved in other mammals, it is possible that the final length and anatomical composition of the adult tail result from the balance between the progenitor-promoting and -repressing activities provided by those genes. This balance might also determine the functional characteristics of the adult tail. Particularly relevant is its regeneration potential, intimately linked to the spinal cord. In mammals, known for their complete inability to regenerate the tail, the spinal cord is removed from the embryonic tail at late stages of development through a Hox13-dependent mechanism. In contrast, the tail of salamanders and lizards keep a functional spinal cord that actively guides the tail's regeneration process. I will argue that the distinct molecular networks controlling tail bud development provided a collection of readily accessible gene networks that were co-opted and combined during evolution either to end the active life of those progenitors or to make them generate the wide diversity of tail shapes and sizes observed among vertebrates.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
24
|
Leite DJ, Baudouin-Gonzalez L, Iwasaki-Yokozawa S, Lozano-Fernandez J, Turetzek N, Akiyama-Oda Y, Prpic NM, Pisani D, Oda H, Sharma PP, McGregor AP. Homeobox Gene Duplication and Divergence in Arachnids. Mol Biol Evol 2020; 35:2240-2253. [PMID: 29924328 PMCID: PMC6107062 DOI: 10.1093/molbev/msy125] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Homeobox genes are key toolkit genes that regulate the development of metazoans and changes in their regulation and copy number have contributed to the evolution of phenotypic diversity. We recently identified a whole genome duplication (WGD) event that occurred in an ancestor of spiders and scorpions (Arachnopulmonata), and that many homeobox genes, including two Hox clusters, appear to have been retained in arachnopulmonates. To better understand the consequences of this ancient WGD and the evolution of arachnid homeobox genes, we have characterized and compared the homeobox repertoires in a range of arachnids. We found that many families and clusters of these genes are duplicated in all studied arachnopulmonates (Parasteatoda tepidariorum, Pholcus phalangioides, Centruroides sculpturatus, and Mesobuthus martensii) compared with nonarachnopulmonate arachnids (Phalangium opilio, Neobisium carcinoides, Hesperochernes sp., and Ixodes scapularis). To assess divergence in the roles of homeobox ohnologs, we analyzed the expression of P. tepidariorum homeobox genes during embryogenesis and found pervasive changes in the level and timing of their expression. Furthermore, we compared the spatial expression of a subset of P. tepidariorum ohnologs with their single copy orthologs in P. opilio embryos. We found evidence for likely subfunctionlization and neofunctionalization of these genes in the spider. Overall our results show a high level of retention of homeobox genes in spiders and scorpions post-WGD, which is likely to have made a major contribution to their developmental evolution and diversification through pervasive subfunctionlization and neofunctionalization, and paralleling the outcomes of WGD in vertebrates.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Luís Baudouin-Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Jesus Lozano-Fernandez
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Natascha Turetzek
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, Göttingen, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan.,Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Nikola-Michael Prpic
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, Göttingen, Germany
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
25
|
Kudlicki A. Why a Constant Number of Vertebrae? Digital Control of Segmental Identity during Vertebrate Development: The Somite Cycle Controls a Digital, Chromatin-Based Counter That Defines Segmental Identity and Body Plans in Vertebrate Animals. Bioessays 2019; 42:e1900133. [PMID: 31755133 DOI: 10.1002/bies.201900133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/01/2019] [Indexed: 11/06/2022]
Abstract
It is not understood how the numbers and identities of vertebrae are controlled during mammalian development. The remarkable robustness and conservation of segmental numbers may suggest the digital nature of the underlying process. The study proposes a mechanism that allows cells to obtain and store the segmental information in digital form, and to produce a pattern of chromatin accessibility that in turn regulates Hox gene expression specific to the metameric segment. The model requires that a regulatory element be present such that the number of occurrences of the motif between two consecutive Hox genes equals the number of segments under the control of the anterior gene. This is true for the recently discovered hydroxyl radical cleavage 3bp-periodic (HRC3) motif, associated with histone modifications and developmental genes. The finding not only allows the correct prediction of the numbers of segments using only sequence information, but also resolves the 40-year-old enigma of the function of temporal and spatial collinearity of Hox genes. The logic of the mechanism is illustrated in the attached animated video. How different aspects of the proposed mechanism can be tested experimentally is also discussed.
Collapse
Affiliation(s)
- Andrzej Kudlicki
- Institute for Translational Sciences, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, USA
| |
Collapse
|
26
|
Lin Y, Yu J, Wu J, Wang S, Zhang T. Abnormal level of CUL4B-mediated histone H2A ubiquitination causes disruptive HOX gene expression. Epigenetics Chromatin 2019; 12:22. [PMID: 30992047 PMCID: PMC6466687 DOI: 10.1186/s13072-019-0268-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neural tube defects (NTDs) are common birth defects involving the central nervous system. Recent studies on the etiology of human NTDs have raised the possibility that epigenetic regulation could be involved in determining susceptibility to them. Results Here, we show that the H2AK119ub1 E3 ligase CUL4B is required for the activation of retinoic acid (RA)-inducible developmentally critical homeobox (HOX) genes in NT2/D1 embryonal carcinoma cells. RA treatment led to attenuation of H2AK119ub1 due to decrease in CUL4B, further affecting HOX gene regulation. Furthermore, we found that CUL4B interacted directly with RORγ and negatively regulated its transcriptional activity. Interestingly, knockdown of RORγ decreased the expression of HOX genes along with increased H2AK119ub1 occupancy levels, at HOX gene sites in N2/D1 cells. In addition, upregulation of HOX genes was observed along with lower levels of CUL4B-mediated H2AK119ub1 in both mouse and human anencephaly NTD cases. Notably, the expression of HOXA10 genes was negatively correlated with CUL4B levels in human anencephaly NTD cases. Conclusions Our results indicate that abnormal HOX gene expression induced by aberrant CUL4B-mediated H2AK119ub1 levels may be a risk factor for NTDs, and highlight the need for further analysis of genome-wide epigenetic modifications in NTDs. Electronic supplementary material The online version of this article (10.1186/s13072-019-0268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Lin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Graduate Schools of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
27
|
van Son M, Lopes MS, Martell HJ, Derks MFL, Gangsei LE, Kongsro J, Wass MN, Grindflek EH, Harlizius B. A QTL for Number of Teats Shows Breed Specific Effects on Number of Vertebrae in Pigs: Bridging the Gap Between Molecular and Quantitative Genetics. Front Genet 2019; 10:272. [PMID: 30972109 PMCID: PMC6445065 DOI: 10.3389/fgene.2019.00272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Modern breeding schemes for livestock species accumulate a large amount of genotype and phenotype data which can be used for genome-wide association studies (GWAS). Many chromosomal regions harboring effects on quantitative traits have been reported from these studies, but the underlying causative mutations remain mostly undetected. In this study, we combine large genotype and phenotype data available from a commercial pig breeding scheme for three different breeds (Duroc, Landrace, and Large White) to pinpoint functional variation for a region on porcine chromosome 7 affecting number of teats (NTE). Our results show that refining trait definition by counting number of vertebrae (NVE) and ribs (RIB) helps to reduce noise from other genetic variation and increases heritability from 0.28 up to 0.62 NVE and 0.78 RIB in Duroc. However, in Landrace, the effect of the same QTL on NTE mainly affects NVE and not RIB, which is reflected in reduced heritability for RIB (0.24) compared to NVE (0.59). Further, differences in allele frequencies and accuracy of rib counting influence genetic parameters. Correction for the top SNP does not detect any other QTL effect on NTE, NVE, or RIB in Landrace or Duroc. At the molecular level, haplotypes derived from 660K SNP data detects a core haplotype of seven SNPs in Duroc. Sequence analysis of 16 Duroc animals shows that two functional mutations of the Vertnin (VRTN) gene known to increase number of thoracic vertebrae (ribs) reside on this haplotype. In Landrace, the linkage disequilibrium (LD) extends over a region of more than 3 Mb also containing both VRTN mutations. Here, other modifying loci are expected to cause the breed-specific effect. Additional variants found on the wildtype haplotype surrounding the VRTN region in all sequenced Landrace animals point toward breed specific differences which are expected to be present also across the whole genome. This Landrace specific haplotype contains two missense mutations in the ABCD4 gene, one of which is expected to have a negative effect on the protein function. Together, the integration of largescale genotype, phenotype and sequence data shows exemplarily how population parameters are influenced by underlying variation at the molecular level.
Collapse
Affiliation(s)
| | - Marcos S Lopes
- Topigs Norsvin Research Center, Beuningen, Netherlands.,Topigs Norsvin, Curitiba, Brazil
| | - Henry J Martell
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martijn F L Derks
- Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Lars Erik Gangsei
- Animalia AS, Oslo, Norway.,Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | |
Collapse
|
28
|
Yamamoto S, Uchida Y, Ohtani T, Nozaki E, Yin C, Gotoh Y, Yakushiji-Kaminatsui N, Higashiyama T, Suzuki T, Takemoto T, Shiraishi YI, Kuroiwa A. Hoxa13 regulates expression of common Hox target genes involved in cartilage development to coordinate the expansion of the autopodal anlage. Dev Growth Differ 2019; 61:228-251. [PMID: 30895612 PMCID: PMC6850407 DOI: 10.1111/dgd.12601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/04/2023]
Abstract
To elucidate the role of Hox genes in limb cartilage development, we identified the target genes of HOXA11 and HOXA13 by ChIP‐Seq. The ChIP DNA fragment contained evolutionarily conserved sequences and multiple highly conserved HOX binding sites. A substantial portion of the HOXA11 ChIP fragment overlapped with the HOXA13 ChIP fragment indicating that both factors share common targets. Deletion of the target regions neighboring Bmp2 or Tshz2 reduced their expression in the autopod suggesting that they function as the limb bud‐specific enhancers. We identified the Hox downstream genes as exhibiting expression changes in the Hoxa13 knock out (KO) and Hoxd11‐13 deletion double mutant (Hox13 dKO) autopod by Genechip analysis. The Hox downstream genes neighboring the ChIP fragment were defined as the direct targets of Hox. We analyzed the spatial expression pattern of the Hox target genes that encode two different categories of transcription factors during autopod development and Hox13dKO limb bud. (a) Bcl11a, encoding a repressor of cartilage differentiation, was expressed in the E11.5 autopod and was substantially reduced in the Hox13dKO. (b) The transcription factors Aff3, Bnc2, Nfib and Runx1t1 were expressed in the zeugopodal cartilage but not in the autopod due to the repressive or relatively weak transcriptional activity of Hox13 at E11.5. Interestingly, the expression of these genes was later observed in the autopodal cartilage at E12.5. These results indicate that Hox13 transiently suspends the cartilage differentiation in the autopodal anlage via multiple pathways until establishing the paddle‐shaped structure required to generate five digits.
Collapse
Affiliation(s)
- Shiori Yamamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Yuji Uchida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Tomomi Ohtani
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Erina Nozaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Chunyang Yin
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Yoshihiro Gotoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | | | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai-shi, Aichi-ken, Japan
| | - Tatsuya Takemoto
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yo-Ichi Shiraishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| |
Collapse
|
29
|
Reassessing the Role of Hox Genes during Vertebrate Development and Evolution. Trends Genet 2018; 34:209-217. [PMID: 29269261 DOI: 10.1016/j.tig.2017.11.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Since their discovery Hox genes have been at the core of the established models explaining the development and evolution of the vertebrate body plan as well as its paired appendages. Recent work brought new light to their role in the patterning processes along the main body axis. These studies show that Hox genes do not control the basic layout of the vertebrate body plan but carry out region-specific patterning instructions loaded on the derivatives of axial progenitors by Hox-independent processes. Furthermore, the finding that Hox clusters are embedded in functional chromatin domains, which critically impacts their expression, has significantly altered our understanding of the mechanisms of Hox gene regulation. This new conceptual framework has broadened our understanding of both limb development and the evolution of vertebrate paired appendages.
Collapse
|
30
|
Skuplik I, Benito-Sanz S, Rosin JM, Bobick BE, Heath KE, Cobb J. Identification of a limb enhancer that is removed by pathogenic deletions downstream of the SHOX gene. Sci Rep 2018; 8:14292. [PMID: 30250174 PMCID: PMC6155277 DOI: 10.1038/s41598-018-32565-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/11/2018] [Indexed: 01/06/2023] Open
Abstract
Haploinsufficiency of the human SHOX gene causes Léri-Weill dyschondrosteosis (LWD), characterized by shortening of the middle segments of the limbs and Madelung deformity of the wrist. As many as 35% of LWD cases are caused by deletions of non-coding sequences downstream of SHOX that presumably remove an enhancer or enhancers necessary for SHOX expression in developing limbs. We searched for these active sequences using a transgenic mouse assay and identified a 563 basepair (bp) enhancer with specific activity in the limb regions where SHOX functions. This enhancer has previously escaped notice because of its poor evolutionary conservation, although it does contain 100 bp that are conserved in non-rodent mammals. A primary cell luciferase assay confirmed the enhancer activity of the conserved core sequence and demonstrated that putative HOX binding sites are required for its activity. This enhancer is removed in most non-coding deletions that cause LWD. However, we did not identify any likely pathogenic variants of the enhancer in a screen of 124 LWD individuals for whom no causative mutation had been found, suggesting that only larger deletions in the region commonly cause LWD. We hypothesize that loss of this enhancer contributes to the pathogenicity of deletions downstream of SHOX.
Collapse
Affiliation(s)
- Isabella Skuplik
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Sara Benito-Sanz
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ and Skeletal dysplasia multidisciplinary unit (UMDE), Hospital Universitario La Paz, Universidad Autónoma de Madrid, P° Castellana 261, 28046, Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | - Jessica M Rosin
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Brent E Bobick
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Karen E Heath
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ and Skeletal dysplasia multidisciplinary unit (UMDE), Hospital Universitario La Paz, Universidad Autónoma de Madrid, P° Castellana 261, 28046, Madrid, Spain. .,CIBERER, ISCIII, Madrid, Spain.
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
31
|
Schaerli Y, Jiménez A, Duarte JM, Mihajlovic L, Renggli J, Isalan M, Sharpe J, Wagner A. Synthetic circuits reveal how mechanisms of gene regulatory networks constrain evolution. Mol Syst Biol 2018; 14:e8102. [PMID: 30201776 PMCID: PMC6129954 DOI: 10.15252/msb.20178102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Phenotypic variation is the raw material of adaptive Darwinian evolution. The phenotypic variation found in organismal development is biased towards certain phenotypes, but the molecular mechanisms behind such biases are still poorly understood. Gene regulatory networks have been proposed as one cause of constrained phenotypic variation. However, most pertinent evidence is theoretical rather than experimental. Here, we study evolutionary biases in two synthetic gene regulatory circuits expressed in Escherichia coli that produce a gene expression stripe-a pivotal pattern in embryonic development. The two parental circuits produce the same phenotype, but create it through different regulatory mechanisms. We show that mutations cause distinct novel phenotypes in the two networks and use a combination of experimental measurements, mathematical modelling and DNA sequencing to understand why mutations bring forth only some but not other novel gene expression phenotypes. Our results reveal that the regulatory mechanisms of networks restrict the possible phenotypic variation upon mutation. Consequently, seemingly equivalent networks can indeed be distinct in how they constrain the outcome of further evolution.
Collapse
Affiliation(s)
- Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Alba Jiménez
- Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | - José M Duarte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Ljiljana Mihajlovic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | | | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - James Sharpe
- Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- EMBL Barcelona European Molecular Biology Laboratory, Barcelona, Spain
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
32
|
Li S, Luo R, Lai D, Ma M, Hao F, Qi X, Liu X, Liu D. Whole-genome resequencing of Ujumqin sheep to investigate the determinants of the multi-vertebral trait. Genome 2018; 61:653-661. [PMID: 30001497 DOI: 10.1139/gen-2017-0267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Ujumqin sheep is one of the most profitable breeds in China, with unique multi-vertebral characteristics. We performed high-throughput genome resequencing of five multi-vertebral and three non-multi-vertebral sheep in an Ujumqin population. We identified the genomic regions that correlated with the germplasm characteristics to establish the cause of the "multi-vertebral" phenotype in this breed. Sequencing generated a total of 314 952 000 000 bp of raw data. The alignment rate of all the samples was between 98.53% and 99.11%, and the mean depth of coverage relative to the reference genome was between 11.58× and 14.92×. After comparing the differences between the two groups, we identified 21 homozygous single nucleotide polymorphisms (SNPs) in the mutant exons of 14 genes. Nineteen loci of 10 genes contained nonsynonymous mutations, while two loci contained synonymous mutations. Resequencing revealed homozygous mutations comprised of 44 indels located within exons of 19 genes. These indels included 37 frameshift mutations, 6 non-frameshift mutations, and 1 stopgain single nucleotide variation (SNV). Finally, comparisons of genotypic variations revealed 17 genes with homozygous mutations in their coding regions, 5 of which have previously been associated with vertebral development and the remaining 12 genes were newly identified in this study.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Rongsong Luo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Defang Lai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Min Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Xuan Qi
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Xu Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China.,State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, P.R. China
| |
Collapse
|
33
|
Raffini F, Fruciano C, Meyer A. Gene(s) and individual feeding behavior: Exploring eco-evolutionary dynamics underlying left-right asymmetry in the scale-eating cichlid fish Perissodus microlepis. Ecol Evol 2018; 8:5495-5507. [PMID: 29938068 PMCID: PMC6010907 DOI: 10.1002/ece3.4070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023] Open
Abstract
The scale‐eating cichlid fish Perissodus microlepis is a textbook example of bilateral asymmetry due to its left or right‐bending heads and of negative frequency‐dependent selection, which is proposed to maintain this stable polymorphism. The mechanisms that underlie this asymmetry remain elusive. Several studies had initially postulated a simple genetic basis for this trait, but this explanation has been questioned, particularly by reports observing a unimodal distribution of mouth shapes. We hypothesize that this unimodal distribution might be due to a combination of genetic and phenotypically plastic components. Here, we expanded on previous work by investigating a formerly identified candidate SNP associated to mouth laterality, documenting inter‐individual variation in feeding preference using stable isotope analyses, and testing their association with mouth asymmetry. Our results suggest that this polymorphism is influenced by both a polygenic basis and inter‐individual non‐genetic variation, possibly due to feeding experience, individual specialization, and intraspecific competition. We introduce a hypothesis potentially explaining the simultaneous maintenance of left, right, asymmetric and symmetric mouth phenotypes due to the interaction between diverse eco‐evolutionary dynamics including niche construction and balancing selection. Future studies will have to further tease apart the relative contribution of genetic and environmental factors and their interactions in an integrated fashion.
Collapse
Affiliation(s)
- Francesca Raffini
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany.,International Max Planck Research School (IMPRS) for Organismal Biology University of Konstanz Konstanz Germany
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany.,School of Earth, Environmental & Biological Sciences Queensland University of Technology Brisbane QLD Australia.,Institut de biologie de l'Ecole normale supérieure (IBENS) Ecole normale supérieure, CNRS, INSERM PSL Université, Paris France
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany.,International Max Planck Research School (IMPRS) for Organismal Biology University of Konstanz Konstanz Germany.,Radcliffe Institute for Advanced Study Harvard University Cambridge Massachusetts
| |
Collapse
|
34
|
Aguilar‐Rodríguez J, Peel L, Stella M, Wagner A, Payne JL. The architecture of an empirical genotype-phenotype map. Evolution 2018; 72:1242-1260. [PMID: 29676774 PMCID: PMC6055911 DOI: 10.1111/evo.13487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Recent advances in high-throughput technologies are bringing the study of empirical genotype-phenotype (GP) maps to the fore. Here, we use data from protein-binding microarrays to study an empirical GP map of transcription factor (TF) -binding preferences. In this map, each genotype is a DNA sequence. The phenotype of this DNA sequence is its ability to bind one or more TFs. We study this GP map using genotype networks, in which nodes represent genotypes with the same phenotype, and edges connect nodes if their genotypes differ by a single small mutation. We describe the structure and arrangement of genotype networks within the space of all possible binding sites for 525 TFs from three eukaryotic species encompassing three kingdoms of life (animal, plant, and fungi). We thus provide a high-resolution depiction of the architecture of an empirical GP map. Among a number of findings, we show that these genotype networks are "small-world" and assortative, and that they ubiquitously overlap and interface with one another. We also use polymorphism data from Arabidopsis thaliana to show how genotype network structure influences the evolution of TF-binding sites in vivo. We discuss our findings in the context of regulatory evolution.
Collapse
Affiliation(s)
- José Aguilar‐Rodríguez
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Current Address: Department of Biology, Stanford University, StanfordCA, USA; Department of Chemical and Systems Biology, Stanford UniversityStanfordCAUSA
| | - Leto Peel
- Institute of Information and Communication Technologies, Electronics and Applied MathematicsUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
- Namur Center for Complex SystemsUniversity of NamurNamurBelgium
| | - Massimo Stella
- Institute for Complex Systems Simulation, Department of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- The Santa Fe InstituteSanta FeNew MexicoUSA
| | - Joshua L. Payne
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Institute for Integrative Biology, ETHZurichSwitzerland
| |
Collapse
|
35
|
Woltering JM, Holzem M, Schneider RF, Nanos V, Meyer A. The skeletal ontogeny of Astatotilapia burtoni - a direct-developing model system for the evolution and development of the teleost body plan. BMC DEVELOPMENTAL BIOLOGY 2018; 18:8. [PMID: 29614958 PMCID: PMC5883283 DOI: 10.1186/s12861-018-0166-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Background The experimental approach to the evolution and development of the vertebrate skeleton has to a large extent relied on “direct-developing” amniote model organisms, such as the mouse and the chicken. These organisms can however only be partially informative where it concerns secondarily lost features or anatomical novelties not present in their lineages. The widely used anamniotes Xenopus and zebrafish are “indirect-developing” organisms that proceed through an extended time as free-living larvae, before adopting many aspects of their adult morphology, complicating experiments at these stages, and increasing the risk for lethal pleiotropic effects using genetic strategies. Results Here, we provide a detailed description of the development of the osteology of the African mouthbrooding cichlid Astatotilapia burtoni, primarily focusing on the trunk (spinal column, ribs and epicentrals) and the appendicular skeleton (pectoral, pelvic, dorsal, anal, caudal fins and scales), and to a lesser extent on the cranium. We show that this species has an extremely “direct” mode of development, attains an adult body plan within 2 weeks after fertilization while living off its yolk supply only, and does not pass through a prolonged larval period. Conclusions As husbandry of this species is easy, generation time is short, and the species is amenable to genetic targeting strategies through microinjection, we suggest that the use of this direct-developing cichlid will provide a valuable model system for the study of the vertebrate body plan, particularly where it concerns the evolution and development of fish or teleost specific traits. Based on our results we comment on the development of the homocercal caudal fin, on shared ontogenetic patterns between pectoral and pelvic girdles, and on the evolution of fin spines as novelty in acanthomorph fishes. We discuss the differences between “direct” and “indirect” developing actinopterygians using a comparison between zebrafish and A. burtoni development.
Collapse
Affiliation(s)
- Joost M Woltering
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| | - Michaela Holzem
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.,Current address: Department of Biological an Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0 BP, UK
| | - Ralf F Schneider
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Vasilios Nanos
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| |
Collapse
|
36
|
Abstract
Cells regulate the activity of genes in a variety of ways. For example, they regulate transcription through DNA binding proteins called transcription factors, and they regulate mRNA stability and processing through RNA binding proteins. Based on current knowledge, transcriptional regulation is more widespread and is involved in many more evolutionary adaptations than posttranscriptional regulation. The reason could be that transcriptional regulation is studied more intensely. We suggest instead that transcriptional regulation harbors an intrinsic evolutionary advantage: when mutations change transcriptional regulation, they are more likely to bring forth novel patterns of such regulation. That is, transcriptional regulation is more evolvable. Our analysis suggests a reason why a specific kind of gene regulation is especially abundant in the living world. Much of gene regulation is carried out by proteins that bind DNA or RNA molecules at specific sequences. One class of such proteins is transcription factors, which bind short DNA sequences to regulate transcription. Another class is RNA binding proteins, which bind short RNA sequences to regulate RNA maturation, transport, and stability. Here, we study the robustness and evolvability of these regulatory mechanisms. To this end, we use experimental binding data from 172 human and fruit fly transcription factors and RNA binding proteins as well as human polymorphism data to study the evolution of binding sites in vivo. We find little difference between the robustness of regulatory protein–RNA interactions and transcription factor–DNA interactions to DNA mutations. In contrast, we find that RNA-mediated regulation is less evolvable than transcriptional regulation, because mutations are less likely to create interactions of an RNA molecule with a new RNA binding protein than they are to create interactions of a gene regulatory region with a new transcription factor. Our observations are consistent with the high level of conservation observed for interactions between RNA binding proteins and their target molecules as well as the evolutionary plasticity of regulatory regions bound by transcription factors. They may help explain why transcriptional regulation is implicated in many more evolutionary adaptations and innovations than RNA-mediated gene regulation.
Collapse
|
37
|
Moriyama Y, Koshiba-Takeuchi K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Brief Funct Genomics 2018; 17:329-338. [DOI: 10.1093/bfgp/ely007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuuta Moriyama
- Institute of Science and Technology Austria (IST), Klosterneuburg, Austria
| | | |
Collapse
|
38
|
Leal F, Cohn MJ. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 2017; 56. [DOI: 10.1002/dvg.23077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Francisca Leal
- Howard Hughes Medical Institute, UF Genetics Institute, University of Florida; Gainesville FL 32610
- Department of Biology; University of Florida; Gainesville FL 32610
| | - Martin J. Cohn
- Department of Biology; University of Florida; Gainesville FL 32610
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville FL 32610
| |
Collapse
|
39
|
Infante CR, Rasys AM, Menke DB. Appendages and gene regulatory networks: Lessons from the limbless. Genesis 2017; 56. [PMID: 29076617 DOI: 10.1002/dvg.23078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023]
Abstract
Among squamate reptiles, dozens of lineages have independently evolved complete or partial limb reduction. This remarkable convergence of limbless and limb-reduced phenotypes provides multiple natural replicates of different ages to explore the evolution and development of the vertebrate limb and the gene regulatory network that controls its formation. The most successful and best known of the limb-reduced squamates are snakes, which evolved a limb-reduced body form more than 100 million years ago. Recent studies have revealed the unexpected finding that many ancient limb enhancers are conserved in the genomes of snakes. Analyses in limbed animals show that many of these limb enhancers are also active during development of the phallus, suggesting that these enhancers may have been retained in snakes due their importance in regulating transcription in the external genitalia. This hypothesis is substantiated by functional tests of snake enhancers, which demonstrate that snake enhancer elements have lost limb function while retaining genital enhancer function. The large degree of overlap in the gene regulatory networks deployed during limb and phallus development may act to constrain the divergence of shared gene network components and the evolution of appendage morphology. Future studies will reveal whether limb regulatory elements have undergone similar functional changes in other lineages of limb-reduced squamates.
Collapse
Affiliation(s)
- Carlos R Infante
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, 85721
| | - Ashley M Rasys
- Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602.,Department of Genetics, University of Georgia, Athens, Georgia, 30602
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
40
|
Nishii K, Huang BH, Wang CN, Möller M. From shoot to leaf: step-wise shifts in meristem and KNOX1 activity correlate with the evolution of a unifoliate body plan in Gesneriaceae. Dev Genes Evol 2017; 227:41-60. [PMID: 27928690 DOI: 10.1007/s00427-016-0568-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Typical dicots possess equal-sized cotyledons and leaf-bearing shoots topped with a shoot apical meristem (SAM), the source of lateral organs, and where KNOX1 homeobox genes act as key regulators. New World Gesneriaceae show typical cotyledons, whereas Old World Gesneriaceae show anisocotyly, the unequal post-germination growth of cotyledons, and include unifoliate (one-leaf) plants. One-leaf plants show an extremely reduced body plan: the adult above-ground photosynthetic tissue consisting of a single cotyledon, a macrocotyledon enlarged by the basal meristem (BM), but lacking a SAM. To investigate the origin and evolution of the BM and one-leaf plants, the meristem activity and KNOX1 SHOOTMERISTEMLESS (STM) expression in cotyledons and leaves were systematically studied by RT-PCR and in situ hybridization across the family Gesneriaceae, Jovellana in Calceolariaceae (sister family to Gesneriaceae), and Antirrhinum in Plantaginaceae, all families of order Lamiales (asterids), in comparison to Arabidopsis (Brassicales, rosids). In all examined Lamiales samples, unlike Arabidopsis, BM activity accompanied by STM expression was found in both cotyledons in early stages. Foliage leaves of Gesneriaceae and Jovellana also showed the correlation of BM and STM expression. An extension of BM activity was found following a phylogenetic trajectory towards one-leaf plants where it is active throughout the lifetime of the macrocotyledon. Our results suggest that KNOX1 involvement in early cotyledon expansion originated early on in the diversification of Lamiales and is proposed as the prerequisite for the evolution of vegetative diversity in Gesneriaceae. Step-wise morphological shifts, driven by transfers of meristematic activity, as evidenced by shifts in KNOX1 expression, may be one mechanism by which morphological diversity evolves in plants.
Collapse
Affiliation(s)
- Kanae Nishii
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, Scotland, EH3 5LR, UK
- Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo, 184-8501, Japan
| | - Bing-Hong Huang
- National Taiwan Normal University, No. 88, Sec. 4, Ting Chow Road, Taipei, 11677, Taiwan
| | - Chun-Neng Wang
- National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Michael Möller
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, Scotland, EH3 5LR, UK.
| |
Collapse
|
41
|
Xu C, Grizante MB, Kusumi K. Somitogenesis and Axial Development in Reptiles. Methods Mol Biol 2017; 1650:335-353. [PMID: 28809033 DOI: 10.1007/978-1-4939-7216-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Among amniote vertebrates, reptiles display the greatest variation in axial skeleton morphology. Only recently have they been used in gene expression studies of somitogenesis , challenging previous assumptions about the segmentation clock and axial patterning. An increasing number of reptile genomes and transcriptomes are becoming available as next-generation sequencing becomes more affordable. Information regarding gene sequence and structure can be used to design and synthesize labeled riboprobes by in vitro transcription for gene expression analysis by in situ hybridization, thus, enabling the characterization of spatial and temporal expression patterns of genes involved in somitogenesis, a topic of great interest within evolutionary developmental studies of vertebrates.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mariana B Grizante
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
42
|
Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissières V, Pickle CS, Plajzer-Frick I, Lee EA, Kato M, Garvin TH, Akiyama JA, Afzal V, Lopez-Rios J, Rubin EM, Dickel DE, Pennacchio LA, Visel A. Progressive Loss of Function in a Limb Enhancer during Snake Evolution. Cell 2016; 167:633-642.e11. [PMID: 27768887 DOI: 10.1016/j.cell.2016.09.028] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/07/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.
Collapse
Affiliation(s)
- Evgeny Z Kvon
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Olga K Kamneva
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Uirá S Melo
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iros Barozzi
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brandon J Mannion
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Catherine S Pickle
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Elizabeth A Lee
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veena Afzal
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Lopez-Rios
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Edward M Rubin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Diane E Dickel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Len A Pennacchio
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Axel Visel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
43
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
44
|
Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper. Nat Commun 2016; 7:13107. [PMID: 27708285 PMCID: PMC5059746 DOI: 10.1038/ncomms13107] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/02/2016] [Indexed: 12/29/2022] Open
Abstract
Snakes have numerous features distinctive from other tetrapods and a rich history of genome evolution that is still obscure. Here, we report the high-quality genome of the five-pacer viper, Deinagkistrodon acutus, and comparative analyses with other representative snake and lizard genomes. We map the evolutionary trajectories of transposable elements (TEs), developmental genes and sex chromosomes onto the snake phylogeny. TEs exhibit dynamic lineage-specific expansion, and many viper TEs show brain-specific gene expression along with their nearby genes. We detect signatures of adaptive evolution in olfactory, venom and thermal-sensing genes and also functional degeneration of genes associated with vision and hearing. Lineage-specific relaxation of functional constraints on respective Hox and Tbx limb-patterning genes supports fossil evidence for a successive loss of forelimbs then hindlimbs during snake evolution. Finally, we infer that the ZW sex chromosome pair had undergone at least three recombination suppression events in the ancestor of advanced snakes. These results altogether forge a framework for our deep understanding into snakes' history of molecular evolution. Snakes have many characteristics that distinguish them from their relatives. Here, Yin et al. sequence the genome of the five-pacer viper, Deinagkistrodon acutus, and use comparative genomic analyses to elucidate the evolution of transposable elements, developmental genes and sex chromosomes in snakes.
Collapse
|
45
|
Abstract
Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP) axis in
Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that
Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of
Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian
Hox cluster, the role of
Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which
Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about
Hox biology and the roles it has played in the evolution of the Bilaterian body plan.
Collapse
Affiliation(s)
- Steven M Hrycaj
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109-2200, USA
| | - Deneen M Wellik
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109-2200, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109-2200, USA
| |
Collapse
|
46
|
Douglas AT, Hill RD. Variation in vertebrate cis-regulatory elements in evolution and disease. Transcription 2015; 5:e28848. [PMID: 25764334 DOI: 10.4161/trns.28848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Much of the genetic information that drives animal diversity lies within the vast non-coding regions of the genome. Multi-species sequence conservation in non-coding regions of the genome flags important regulatory elements and more recently, techniques that look for functional signatures predicted for regulatory sequences have added to the identification of thousands more. For some time, biologists have argued that changes in cis-regulatory sequences creates the basic genetic framework for evolutionary change. Recent advances support this notion and show that there is extensive genomic variability in non-coding regulatory elements associated with trait variation, speciation and disease.
Collapse
Affiliation(s)
- Adam Thomas Douglas
- a MRC Human Genetics Unit; MRC Institute of Genetics and Molecular Medicine; University of Edinburgh; Edinburgh, UK
| | | |
Collapse
|
47
|
Nikkhah M, Rezazadeh M, Khorram Khorshid HR, Biglarian A, Ohadi M. An exceptionally long CA-repeat in the core promoter of SCGB2B2 links with the evolution of apes and Old World monkeys. Gene 2015; 576:109-14. [PMID: 26437309 DOI: 10.1016/j.gene.2015.09.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
We have recently reported a genome-scale catalog of human protein-coding genes that contain "exceptionally long" STRs (≥6-repeats) in their core promoter, which may be of selective advantage in this species. At the top of that list, SCGB2B2 (also known as SCGBL), contains one of the longest CA-repeat STRs identified in a human gene core promoter, at 25-repeats. In the study reported here, we analyzed the conservation status of this CA-STR across evolution. The functional implication of this STR to alter gene expression activity was also analyzed in the HEK-293 cell line. We report that the SCGB2B2 core promoter CA-repeat reaches exceptional lengths, ranging from 9- to 25-repeats, across Apes (Hominoids) and the Old World monkeys (CA>2-repeats were not detected in any other species). The longest CA-repeats and highest identity in the SCGB2B2 protein sequence were observed between human and bonobo. A trend for increased gene expression activity was observed from the shorter to the longer CA-repeats (p<0.009), and the CA-repeat increased gene expression activity, per se (p<0.02). We propose that the SCGB2B2 gene core promoter CA-repeat functions as an expression code for the evolution of Apes and the Old World monkeys.
Collapse
Affiliation(s)
- M Nikkhah
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Rezazadeh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - H R Khorram Khorshid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - A Biglarian
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Ohadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Organ CL, Cooper LN, Hieronymus TL. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies. Dev Dyn 2015; 244:1184-92. [PMID: 26250386 DOI: 10.1002/dvdy.24318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022] Open
Abstract
The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization.
Collapse
Affiliation(s)
- Chris L Organ
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.,Department of Earth Sciences, Montana State University, Bozeman, Montana
| | | | | |
Collapse
|
49
|
Woltering JM, Duboule D. Tetrapod axial evolution and developmental constraints; Empirical underpinning by a mouse model. Mech Dev 2015; 138 Pt 2:64-72. [PMID: 26238020 PMCID: PMC4678112 DOI: 10.1016/j.mod.2015.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 02/05/2023]
Abstract
The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan. A transgenic mouse line expressing fish Hox genes has anterior homeotic transformations. Fish Hox genes are capable of inducing tetrapod specific vertebral characters. A sacral Hox-code influences adult hindlimb position, yet not the position of limb budding.
Collapse
Affiliation(s)
- Joost M Woltering
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
50
|
Namdar-Aligoodarzi P, Mohammadparast S, Zaker-Kandjani B, Talebi Kakroodi S, Jafari Vesiehsari M, Ohadi M. Exceptionally long 5' UTR short tandem repeats specifically linked to primates. Gene 2015; 569:88-94. [PMID: 26022613 DOI: 10.1016/j.gene.2015.05.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/23/2022]
Abstract
We have previously reported genome-scale short tandem repeats (STRs) in the core promoter interval (i.e. -120 to +1 to the transcription start site) of protein-coding genes that have evolved identically in primates vs. non-primates. Those STRs may function as evolutionary switch codes for primate speciation. In the current study, we used the Ensembl database to analyze the 5' untranslated region (5' UTR) between +1 and +60 of the transcription start site of the entire human protein-coding genes annotated in the GeneCards database, in order to identify "exceptionally long" STRs (≥5-repeats), which may be of selective/adaptive advantage. The importance of this critical interval is its function as core promoter, and its effect on transcription and translation. In order to minimize ascertainment bias, we analyzed the evolutionary status of the human 5' UTR STRs of ≥5-repeats in several species encompassing six major orders and superorders across mammals, including primates, rodents, Scandentia, Laurasiatheria, Afrotheria, and Xenarthra. We introduce primate-specific STRs, and STRs which have expanded from mouse to primates. Identical co-occurrence of the identified STRs of rare average frequency between 0.006 and 0.0001 in primates supports a role for those motifs in processes that diverged primates from other mammals, such as neuronal differentiation (e.g. APOD and FGF4), and craniofacial development (e.g. FILIP1L). A number of the identified STRs of ≥5-repeats may be human-specific (e.g. ZMYM3 and DAZAP1). Future work is warranted to examine the importance of the listed genes in primate/human evolution, development, and disease.
Collapse
Affiliation(s)
- P Namdar-Aligoodarzi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - S Mohammadparast
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - B Zaker-Kandjani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - S Talebi Kakroodi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Jafari Vesiehsari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Ohadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|