1
|
Li Y, Yan Y, Gong B, Zheng Q, Zhou H, Sun J, Li M, Wang Z, Li Y, Wan Y, Chen W, Qi S, Mo X, Meng A, Xiang B, Chen J. A Huluwa phosphorylation switch regulates embryonic axis induction. Nat Commun 2024; 15:10028. [PMID: 39562571 PMCID: PMC11576741 DOI: 10.1038/s41467-024-54450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Embryonic axis formation is essential for patterning and morphogenesis in vertebrates and is tightly regulated by the dorsal organizer. Previously, we demonstrated that maternally derived Huluwa (Hwa) acts as a dorsal determinant, dictating axis formation by activating β-catenin signaling in zebrafish and Xenopus. However, the mechanism of activation and fine regulation of the Hwa protein remains unclear. Through candidate screening we identified a mutation at Ser168 in the PPNSP motif of Hwa that dramatically abolishes its axis-inducing activity. Mechanistically, mutating the Ser168 residue reduced its binding affinity to Tankyrase 1/2 and the degradation of the Axin protein, weakening β-catenin signaling activation. We confirmed that Ser168 is phosphorylated and that phosphorylation increases Hwa activity in β-catenin signaling and axis induction. Several kinases including Cdk16, Cdk2, and GSK3β, were found to enhance Ser168 phosphorylation in vitro and in vivo. Both dominant-negative Cdk16 expression and pHwa (Ser168) antibody treatment reduce Hwa function. Lastly, a knock-in allele mutating Ser168 to alanine resulted in embryos lacking body axes, demonstrating that Ser168 is essential to axis formation. In summary, Ser168 acts as a phosphorylation switch in Hwa/β-catenin signaling for embryonic axis induction, regulated by multiple kinases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yan
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Gong
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Qianwen Zheng
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haiyan Zhou
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiarui Sun
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingpeng Li
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhao Wang
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaohui Li
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunjing Wan
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weixi Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Xiang
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Huang J, Gujar MR, Deng Q, Y Chia S, Li S, Tan P, Sung W, Wang H. Histone lysine methyltransferase Pr-set7/SETD8 promotes neural stem cell reactivation. EMBO Rep 2021; 22:e50994. [PMID: 33565211 PMCID: PMC8024890 DOI: 10.15252/embr.202050994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
The ability of neural stem cells (NSCs) to switch between quiescence and proliferation is crucial for brain development and homeostasis. Increasing evidence suggests that variants of histone lysine methyltransferases including KMT5A are associated with neurodevelopmental disorders. However, the function of KMT5A/Pr-set7/SETD8 in the central nervous system is not well established. Here, we show that Drosophila Pr-Set7 is a novel regulator of NSC reactivation. Loss of function of pr-set7 causes a delay in NSC reactivation and loss of H4K20 monomethylation in the brain. Through NSC-specific in vivo profiling, we demonstrate that Pr-set7 binds to the promoter region of cyclin-dependent kinase 1 (cdk1) and Wnt pathway transcriptional co-activator earthbound1/jerky (ebd1). Further validation indicates that Pr-set7 is required for the expression of cdk1 and ebd1 in the brain. Similar to Pr-set7, Cdk1 and Ebd1 promote NSC reactivation. Finally, overexpression of Cdk1 and Ebd1 significantly suppressed NSC reactivation defects observed in pr-set7-depleted brains. Therefore, Pr-set7 promotes NSC reactivation by regulating Wnt signaling and cell cycle progression. Our findings may contribute to the understanding of mammalian KMT5A/PR-SET7/SETD8 during brain development.
Collapse
Affiliation(s)
- Jiawen Huang
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Mahekta R Gujar
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Qiannan Deng
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Sook Y Chia
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Present address:
National Neuroscience InstituteSingaporeSingapore
| | - Song Li
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Patrick Tan
- Genome Institute of SingaporeSingaporeSingapore
- Cancer & Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Cellular and Molecular ResearchNational Cancer CentreSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Wing‐Kin Sung
- Genome Institute of SingaporeSingaporeSingapore
- Department of Computer ScienceNational University of SingaporeSingaporeSingapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering ProgrammeNational University of SingaporeSingaporeSingapore
| |
Collapse
|
3
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
4
|
Kimata Y, Leturcq M, Aradhya R. Emerging roles of metazoan cell cycle regulators as coordinators of the cell cycle and differentiation. FEBS Lett 2020; 594:2061-2083. [PMID: 32383482 DOI: 10.1002/1873-3468.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023]
Abstract
In multicellular organisms, cell proliferation must be tightly coordinated with other developmental processes to form functional tissues and organs. Despite significant advances in our understanding of how the cell cycle is controlled by conserved cell-cycle regulators (CCRs), how the cell cycle is coordinated with cell differentiation in metazoan organisms and how CCRs contribute to this process remain poorly understood. Here, we review the emerging roles of metazoan CCRs as intracellular proliferation-differentiation coordinators in multicellular organisms. We illustrate how major CCRs regulate cellular events that are required for cell fate acquisition and subsequent differentiation. To this end, CCRs employ diverse mechanisms, some of which are separable from those underpinning the conventional cell-cycle-regulatory functions of CCRs. By controlling cell-type-specific specification/differentiation processes alongside the progression of the cell cycle, CCRs enable spatiotemporal coupling between differentiation and cell proliferation in various developmental contexts in vivo. We discuss the significance and implications of this underappreciated role of metazoan CCRs for development, disease and evolution.
Collapse
Affiliation(s)
- Yuu Kimata
- School of Life Science and Technology, ShanghaiTech University, China
| | - Maïté Leturcq
- School of Life Science and Technology, ShanghaiTech University, China
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
5
|
Kroll JR, Tsiaxiras J, van Zon JS. Variability in β-catenin pulse dynamics in a stochastic cell fate decision in C. elegans. Dev Biol 2020; 461:110-123. [PMID: 32032579 PMCID: PMC7203549 DOI: 10.1016/j.ydbio.2020.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 11/30/2022]
Abstract
During development, cell fate decisions are often highly stochastic, but with the frequency of the different possible fates tightly controlled. To understand how signaling networks control the cell fate frequency of such random decisions, we studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. Using time-lapse microscopy to measure the single-cell dynamics of two key inhibitors of cell fusion, the Hox gene LIN-39 and Wnt signaling through the β-catenin BAR-1, we uncovered significant variability in the dynamics of LIN-39 and BAR-1 levels. Most strikingly, we observed that BAR-1 accumulated in a single, 1–4 h pulse at the time of the P3.p cell fate decision, with strong variability both in pulse slope and time of pulse onset. We found that the time of BAR-1 pulse onset was delayed relative to the time of cell fusion in mutants with low cell fusion frequency, linking BAR-1 pulse timing to cell fate outcome. Overall, a model emerged where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced. Our results highlight that timing of cell signaling dynamics, rather than its average level or amplitude, could play an instructive role in determining cell fate. The fate of the C. elegans P3.p cell is stochastic. β-catenin (BAR-1) accumulated in P3.p at the time of the cell fate decision. There is variability in dynamics of Hox and β-catenin levels during the decision. BAR-1 accumulated with variable pulse slope and time of pulse onset. Pulse dynamics bias cell fate at the time of the cell fate decision.
Collapse
Affiliation(s)
- Jason R Kroll
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands
| | - Jasonas Tsiaxiras
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands
| | - Jeroen S van Zon
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Cravo J, van den Heuvel S. Tissue polarity and PCP protein function: C. elegans as an emerging model. Curr Opin Cell Biol 2019; 62:159-167. [PMID: 31884395 DOI: 10.1016/j.ceb.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Polarity is the basis for the generation of cell diversity, as well as the organization, morphogenesis, and functioning of tissues. Studies in Caenorhabditis elegans have provided much insight into PAR-protein mediated polarity; however, the molecules and mechanisms critical for cell polarization within the plane of epithelia have been identified in other systems. Tissue polarity in C. elegans is organized by Wnt-signaling with some resemblance to the Wnt/planar cell polarity (PCP) pathway, but lacking core PCP protein functions. Nonetheless, recent studies revealed that conserved PCP proteins regulate directed cell migratory events in C. elegans, such as convergent extension movements and neurite formation and guidance. Here, we discuss the latest insights and use of C. elegans as a PCP model.
Collapse
Affiliation(s)
- Janine Cravo
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division. Genetics 2018; 208:1147-1164. [PMID: 29348144 PMCID: PMC5844328 DOI: 10.1534/genetics.117.300487] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Daniel J Dickinson
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Dottermusch M, Lakner T, Peyman T, Klein M, Walz G, Neumann-Haefelin E. Cell cycle controls stress response and longevity in C. elegans. Aging (Albany NY) 2017; 8:2100-2126. [PMID: 27668945 PMCID: PMC5076454 DOI: 10.18632/aging.101052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 12/30/2022]
Abstract
Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline.
Collapse
Affiliation(s)
- Matthias Dottermusch
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Theresa Lakner
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias Peyman
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Marinella Klein
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Elke Neumann-Haefelin
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
9
|
Armc5 deletion causes developmental defects and compromises T-cell immune responses. Nat Commun 2017; 8:13834. [PMID: 28169274 PMCID: PMC5309699 DOI: 10.1038/ncomms13834] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 11/04/2016] [Indexed: 01/10/2023] Open
Abstract
Armadillo repeat containing 5 (ARMC5) is a cytosolic protein with no enzymatic activities. Little is known about its function and mechanisms of action, except that gene mutations are associated with risks of primary macronodular adrenal gland hyperplasia. Here we map Armc5 expression by in situ hybridization, and generate Armc5 knockout mice, which are small in body size. Armc5 knockout mice have compromised T-cell proliferation and differentiation into Th1 and Th17 cells, increased T-cell apoptosis, reduced severity of experimental autoimmune encephalitis, and defective immune responses to lymphocytic choriomeningitis virus infection. These mice also develop adrenal gland hyperplasia in old age. Yeast 2-hybrid assays identify 16 ARMC5-binding partners. Together these data indicate that ARMC5 is crucial in fetal development, T-cell function and adrenal gland growth homeostasis, and that the functions of ARMC5 probably depend on interaction with multiple signalling pathways. Mutations in ARMC5 are associated with risk of primary macronodular adrenal gland hyperplasia. Here the authors show that mice lacking Armc5 have adrenal gland hyperplasia and defective T-cell proliferation, differentiation, survival and in vivo T-cell-mediated immune responses.
Collapse
|
10
|
Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA. Genetics 2016; 204:1177-1189. [PMID: 27672093 DOI: 10.1534/genetics.116.192831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism.
Collapse
|
11
|
Acebron SP, Niehrs C. β-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends Cell Biol 2016; 26:956-967. [PMID: 27568239 DOI: 10.1016/j.tcb.2016.07.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
Wnt/LRP6 signaling is best known for the β-catenin-dependent regulation of target genes. However, pathway branches have recently emerged, including Wnt/STOP signaling, which act independently of β-catenin and transcription. We review here the molecular mechanisms underlying β-catenin-independent Wnt/LRP6 signaling cascades and their implications for cell biology, development, and physiology.
Collapse
Affiliation(s)
- Sergio P Acebron
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany.
| | - Christof Niehrs
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Zacharias AL, Walton T, Preston E, Murray JI. Quantitative Differences in Nuclear β-catenin and TCF Pattern Embryonic Cells in C. elegans. PLoS Genet 2015; 11:e1005585. [PMID: 26488501 PMCID: PMC4619327 DOI: 10.1371/journal.pgen.1005585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022] Open
Abstract
The Wnt signaling pathway plays a conserved role during animal development in transcriptional regulation of distinct targets in different developmental contexts but it remains unclear whether quantitative differences in the nuclear localization of effector proteins TCF and β-catenin contribute to context-specific regulation. We investigated this question in Caenorhabditis elegans embryos by quantifying nuclear localization of fluorescently tagged SYS-1/β-catenin and POP-1/TCF and expression of Wnt ligands at cellular resolution by time-lapse microscopy and automated lineage tracing. We identified reproducible, quantitative differences that generate a subset of Wnt-signaled cells with a significantly higher nuclear concentration of the TCF/β-catenin activating complex. Specifically, β-catenin and TCF are preferentially enriched in nuclei of daughter cells whose parents also had high nuclear levels of that protein, a pattern that could influence developmental gene expression. Consistent with this, we found that expression of synthetic reporters of POP-1-dependent activation is biased towards cells that had high nuclear SYS-1 in consecutive divisions. We identified new genes whose embryonic expression patterns depend on pop-1. Most of these require POP-1 for either transcriptional activation or repression, and targets requiring POP-1 for activation are more likely to be expressed in the cells with high nuclear SYS-1 in consecutive divisions than those requiring POP-1 for repression. Taken together, these results indicate that SYS-1 and POP-1 levels are influenced by the parent cell’s SYS-1/POP-1 levels and this may provide an additional mechanism by which POP-1 regulates distinct targets in different developmental contexts. The Wnt signaling pathway is active during the development of all multi-cellular animals and also improperly re-activated in many cancers. Here, we use time-lapse microscopy to quantify the nuclear localization of several proteins in response to Wnt signaling throughout early embryonic development in the nematode worm, C. elegans. We find that cells that received a Wnt signal in the previous division respond more strongly to a Wnt signal in the next division, in part by localizing more of the regulator β-catenin to the nucleus. This causes the relative enrichment of Wnt pathway proteins in the nuclei of repeatedly signaled cells, which we show likely impacts the activation of Wnt target genes. This represents a novel mechanism for the regulation of Wnt pathway targets in development and disease.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Travis Walton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
14
|
Sinkovics JG. The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp) 2015; 5:25-43. [PMID: 25883792 PMCID: PMC4397846 DOI: 10.1556/eujmi-d-14-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix-loop-helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt-β-catenin, Hedgehog, PI3K, MAPK-ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous "cancer cells".
Collapse
Affiliation(s)
- J G Sinkovics
- St. Joseph's Hospital Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Morsani College of Medicine, Department of Molecular Medicine, The University of South Florida Tampa, FL USA
| |
Collapse
|
15
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
16
|
β-Catenin-related protein WRM-1 is a multifunctional regulatory subunit of the LIT-1 MAPK complex. Proc Natl Acad Sci U S A 2014; 112:E137-46. [PMID: 25548171 DOI: 10.1073/pnas.1416339112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vertebrate β-catenin has two functions, as a structural component of the adherens junction in cell adhesion and as the T-cell factor (TCF) transcriptional coactivator in canonical Wnt (wingless-related integration site) signaling. These two functions are split between three of the four β-catenin-related proteins present in the round worm Caenorhabditis elegans. The fourth β-catenin-related protein, WRM-1, exhibits neither of these functions. Instead, WRM-1 binds the MAPK loss of intestine 1 (LIT-1), and these two proteins have been shown to be essential for the transcription of Wnt target genes by phosphorylating and regulating the nuclear level of the sole worm TCF protein. We showed previously that WRM-1 binds to worm TCF and functions as the substrate-binding subunit for LIT-1. In this study, we show that phosphorylation of T220 in the activation loop is essential for LIT-1 kinase activity in vivo and in vitro. T220 can be phosphorylated either through LIT-1 autophosphorylation or directly by the upstream MAP3K MOM-4. Our data support a model in which WRM-1, which can undergo homotypic interaction, binds LIT-1 and thereby generates a kinase complex in which LIT-1 molecules are situated in a conformation enabling autophosphorylation as well as promoting phosphorylation of the T220 residue by MOM-4. In addition, we show that WRM-1 is essential for the translocation of the LIT-1 kinase complex to the nucleus, the site of its TCF substrate. To our knowledge, this is the first report of a MAP3K directly activating a MAPK by phosphorylation within the activation loop. This study should help uncover novel and as yet underappreciated functions of vertebrate β-catenin.
Collapse
|
17
|
Dejima K, Kang S, Mitani S, Cosman PC, Chisholm AD. Syndecan defines precise spindle orientation by modulating Wnt signaling in C. elegans. Development 2014; 141:4354-65. [PMID: 25344071 DOI: 10.1242/dev.113266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signals orient mitotic spindles in development, but it remains unclear how Wnt signaling is spatially controlled to achieve precise spindle orientation. Here, we show that C. elegans syndecan (SDN-1) is required for precise orientation of a mitotic spindle in response to a Wnt cue. We find that SDN-1 is the predominant heparan sulfate (HS) proteoglycan in the early C. elegans embryo, and that loss of HS biosynthesis or of the SDN-1 core protein results in misorientation of the spindle of the ABar blastomere. The ABar and EMS spindles both reorient in response to Wnt signals, but only ABar spindle reorientation is dependent on a new cell contact and on HS and SDN-1. SDN-1 transiently accumulates on the ABar surface as it contacts C, and is required for local concentration of Dishevelled (MIG-5) in the ABar cortex adjacent to C. These findings establish a new role for syndecan in Wnt-dependent spindle orientation.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sukryool Kang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92037-0407, USA
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Pamela C Cosman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92037-0407, USA
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Ackley BD. Wnt-signaling and planar cell polarity genes regulate axon guidance along the anteroposterior axis in C. elegans. Dev Neurobiol 2014; 74:781-96. [PMID: 24214205 PMCID: PMC4167394 DOI: 10.1002/dneu.22146] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/18/2013] [Accepted: 11/02/2013] [Indexed: 11/10/2022]
Abstract
During the development of the nervous system, neurons encounter signals that inform their outgrowth and polarization. Understanding how these signals combinatorially function to pattern the nervous system is of considerable interest to developmental neurobiologists. The Wnt ligands and their receptors have been well characterized in polarizing cells during asymmetric cell division. The planar cell polarity (PCP) pathway is also critical for cell polarization in the plane of an epithelium. The core set of PCP genes include members of the conserved Wnt-signaling pathway, such as Frizzled and Disheveled, but also the cadherin-domain protein Flamingo. In Drosophila, the Fat and Dachsous cadherins also function in PCP, but in parallel to the core PCP components. C. elegans also have two Fat-like and one Dachsous-like cadherins, at least one of which, cdh-4, contributes to neural development. In C. elegans Wnt ligands and the conserved PCP genes have been shown to regulate a number of different events, including embryonic cell polarity, vulval morphogenesis, and cell migration. As is also observed in vertebrates, the Wnt and PCP genes appear to function to primarily provide information about the anterior to posterior axis of development. Here, we review the recent work describing how mutations in the Wnt and core PCP genes affect axon guidance and synaptogenesis in C. elegans.
Collapse
Affiliation(s)
- Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|
19
|
Ishidate T, Elewa A, Kim S, Mello CC, Shirayama M. Divide and differentiate: CDK/Cyclins and the art of development. Cell Cycle 2014; 13:1384-91. [PMID: 24675894 PMCID: PMC4050136 DOI: 10.4161/cc.28656] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022] Open
Abstract
The elegant choreography of metazoan development demands exquisite regulation of cell-division timing, orientation, and asymmetry. In this review, we discuss studies in Drosophila and C. elegans that reveal how the cell cycle machinery, comprised of cyclin-dependent kinase (CDK) and cyclins functions as a master regulator of development. We provide examples of how CDK/cyclins: (1) regulate the asymmetric localization and timely destruction of cell fate determinants; (2) couple signaling to the control of cell division orientation; and (3) maintain mitotic zones for stem cell proliferation. These studies illustrate how the core cell cycle machinery should be viewed not merely as an engine that drives the cell cycle forward, but rather as a dynamic regulator that integrates the cell-division cycle with cellular differentiation, ensuring the coherent and faithful execution of developmental programs.
Collapse
Affiliation(s)
- Takao Ishidate
- RNA Therapeutics Institute; University of Massachusetts Medical School; Worcester, MA USA
- Howard Hughes Medical Institute; University of Massachusetts Medical School; Worcester, MA USA
| | - Ahmed Elewa
- RNA Therapeutics Institute; University of Massachusetts Medical School; Worcester, MA USA
| | - Soyoung Kim
- RNA Therapeutics Institute; University of Massachusetts Medical School; Worcester, MA USA
| | - Craig C Mello
- RNA Therapeutics Institute; University of Massachusetts Medical School; Worcester, MA USA
- Howard Hughes Medical Institute; University of Massachusetts Medical School; Worcester, MA USA
| | - Masaki Shirayama
- RNA Therapeutics Institute; University of Massachusetts Medical School; Worcester, MA USA
- Howard Hughes Medical Institute; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
20
|
Ishidate T, Kim S, Mello C, Shirayama M. Inductive asymmetric cell division: The WRM leads the way. WORM 2013; 2:e26276. [PMID: 24524013 PMCID: PMC3913193 DOI: 10.4161/worm.26276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/10/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
C. elegans, with its invariant cell lineage, provides a powerful model system in which to study signaling-dependent asymmetric cell division. The C. elegans β-catenin-related protein, WRM-1, specifies endoderm at the 4-cell stage during the first cell signaling-induced asymmetric cell division of embryogenesis. During this interaction, Wnt signaling and the cell cycle regulator CDK-1 act together to induce the asymmetric cortical release of WRM-1 at prophase of the EMS cell cycle. Genetic studies suggest that release of WRM-1 unmasks a cortical site that drives EMS spindle rotation onto the polarized axis of the cell, simultaneously making WRM-1 available for nuclear translocation, and downstream signaling to specify endoderm. These studies suggest a general paradigm for how cortical factors like WRM-1 can function at the cell cortex to mask potentially confounding polarity cues, and when released with appropriate cell cycle timing, can also function downstream to define cell fate.
Collapse
Affiliation(s)
- Takao Ishidate
- RNA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA
| | - Soyoung Kim
- RNA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA
| | - Craig Mello
- RNA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA
| | - Masaki Shirayama
- RNA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA
| |
Collapse
|
21
|
Gómez-Orte E, Sáenz-Narciso B, Moreno S, Cabello J. Multiple functions of the noncanonical Wnt pathway. Trends Genet 2013; 29:545-53. [PMID: 23846023 DOI: 10.1016/j.tig.2013.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/29/2013] [Accepted: 06/07/2013] [Indexed: 01/11/2023]
Abstract
Thirty years after the identification of WNTs, understanding of their signal transduction pathways continues to expand. Here, we review recent advances in characterizing the Wnt-dependent signaling pathways in Caenorhabditis elegans linking polar signals to rearrangements of the cytoskeleton in different developmental processes, such as proper mitotic spindle orientation, cell migration, and engulfment of apoptotic corpses. In addition to the well-described transcriptional outputs of the canonical and noncanonical Wnt pathways, new branches regulating nontranscriptional outputs that control RAC (Ras related GTPase) activity are also discussed. These findings suggest that Wnt signaling is a master regulator not only of development, but also of cell polarization.
Collapse
Affiliation(s)
- Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | | | | | | |
Collapse
|
22
|
Mbom BC, Nelson WJ, Barth A. β-catenin at the centrosome: discrete pools of β-catenin communicate during mitosis and may co-ordinate centrosome functions and cell cycle progression. Bioessays 2013; 35:804-9. [PMID: 23804296 DOI: 10.1002/bies.201300045] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Beta-catenin is a multifunctional protein with critical roles in cell-cell adhesion, Wnt-signaling and the centrosome cycle. Whereas the roles of β-catenin in cell-cell adhesion and Wnt-signaling have been studied extensively, the mechanism(s) involving β-catenin in centrosome functions are poorly understood. β-Catenin localizes to centrosomes and promotes mitotic progression. NIMA-related protein kinase 2 (Nek2), which stimulates centrosome separation, binds to and phosphorylates β-catenin. β-Catenin interacting proteins involved in Wnt signaling such as adenomatous polyposis coli, Axin, and GSK3β, are also localized at centrosomes and play roles in promoting mitotic progression. Additionally, proteins associated with cell-cell adhesion sites, such as dynein, regulate mitotic spindle positioning. These roles of proteins at the cell cortex and Wnt signaling that involve β-catenin indicate a cross-talk between different sub-cellular sites in the cell at mitosis, and that different pools of β-catenin may co-ordinate centrosome functions and cell cycle progression.
Collapse
Affiliation(s)
- Bertrade C Mbom
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|