1
|
Nesic K, Parker P, Swisher EM, Krais JJ. DNA repair and the contribution to chemotherapy resistance. Genome Med 2025; 17:62. [PMID: 40420317 PMCID: PMC12107761 DOI: 10.1186/s13073-025-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The DNA damage response comprises a set of imperfect pathways that maintain cell survival following exposure to DNA damaging agents. Cancers frequently exhibit DNA repair pathway alterations that contribute to their intrinsic genome instability. This, in part, facilitates a therapeutic window for many chemotherapeutic agents whose mechanisms of action often converge at the generation of a double-strand DNA break. The development of therapy resistance occurs through countless molecular mechanisms that promote tolerance to DNA damage, often by preventing break formation or increasing repair capacity. This review broadly discusses the DNA damaging mechanisms of action for different classes of chemotherapeutics, how avoidance and repair of double-strand breaks can promote resistance, and strategic directions for counteracting therapy resistance.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Phoebe Parker
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - John J Krais
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Xu Z, Xie H, Song L, Huang Y, Huang J. BRCA1 and BRCA2 in DNA damage and replication stress response: Insights into their functions, mechanisms, and implications for cancer treatment. DNA Repair (Amst) 2025; 150:103847. [PMID: 40373656 DOI: 10.1016/j.dnarep.2025.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Genomic stability is a cornerstone of cellular survival and proliferation. To counter the constant threat posed by endogenous and exogenous DNA-damaging agents, cells rely on a network of intricate mechanisms to safeguard DNA integrity and ensure accurate replication. Among these, the BRCA1 and BRCA2 tumor suppressor proteins play pivotal roles. While traditionally recognized for their involvement in homologous recombination repair and cell cycle checkpoints, emerging evidence highlights their essential functions in protecting stalled replication forks during replication stress. Mutations in BRCA1 or BRCA2 disrupt these critical functions, leading to compromised genome stability and an increased susceptibility to various cancers, particularly breast and ovarian cancers. This review provides a comprehensive analysis of the multifaceted roles of BRCA1 and BRCA2, focusing on their contributions to DNA damage responses and replication stress management. By elucidating the molecular pathways through which BRCA1 and BRCA2 operate, we aim to provide insights into their pivotal roles in maintaining genomic integrity and their implications for cancer treatment.
Collapse
Affiliation(s)
- Ziqi Xu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haihua Xie
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lizhi Song
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuhua Huang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China.
| | - Jun Huang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China.
| |
Collapse
|
3
|
Apelian S, Martincuks A, Whittum M, Yasukawa M, Nguy L, Mathyk B, Andikyan V, Anderson ML, Rutherford T, Cristea M, Stewart D, Kohut A. PARP Inhibitors in Ovarian Cancer: Resistance Mechanisms, Clinical Evidence, and Evolving Strategies. Biomedicines 2025; 13:1126. [PMID: 40426953 PMCID: PMC12108591 DOI: 10.3390/biomedicines13051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
The introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) into the management of ovarian cancer has transformed the treatment landscape for patients affected by this malignancy. However, as the use of PARPi expands into both frontline maintenance and recurrence settings, the emergence of drug resistance has become a significant clinical challenge in the treatment of these patients. Although platinum-based chemotherapy (PBC) and PARPi act through different mechanisms-PBC causes DNA damage while PARPi blocks its repair-both depend on the integrity of DNA damage repair (DDR) pathways, leading to overlapping mechanisms of resistance. Here, we review the key resistance mechanisms shared by PARPi and PBC, and then we discuss their clinical implications in the management of patients with ovarian cancer. We also examine clinical rationale supporting the hypothesis that prior PARPi exposure may reduce the efficacy of subsequent PBC in patients experiencing a disease recurrence. Furthermore, we review preliminary clinical data assessing the potential role of PARPi retreatment in patients who have previously progressed on PARPis.
Collapse
Affiliation(s)
- Shant Apelian
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, City of Hope National Medicinal Center, Duarte, CA 91010, USA;
| | - Michelle Whittum
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Maya Yasukawa
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Lindsey Nguy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Begum Mathyk
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
| | - Vaagn Andikyan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Matthew L. Anderson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | | | - Daphne Stewart
- Department of Medicine, Division of Medical Oncology, USC Norris Comprehensive Cancer Center and Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - Adrian Kohut
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| |
Collapse
|
4
|
Jordan MR, Mendoza-Munoz PL, Pawelczak KS, Turchi JJ. Targeting DNA damage sensors for cancer therapy. DNA Repair (Amst) 2025; 149:103841. [PMID: 40339280 DOI: 10.1016/j.dnarep.2025.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
DNA damage occurs from both endogenous and exogenous sources and DNA damaging agents are a mainstay in cancer therapeutics. DNA damage sensors (DDS) are proteins that recognize and bind to unique DNA structures that arise from direct DNA damage or replication stress and are the first step in the DNA damage response (DDR). DNA damage sensors are responsible for recruiting transducer proteins that signal downstream DNA repair pathways. As the initiating proteins, DDS are excellent candidates for anti-cancer drug targeting to limit DDR activation. Here, we review four major DDS: PARP1, RPA, Ku, and the MRN complex. We briefly describe the cellular DDS functions before analyzing the structural mechanisms of DNA damage sensing. Lastly, we examine the current state of the field towards inhibiting each DDS for anti-cancer therapeutics and broadly discuss the therapeutic potential for DDS targeting.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pamela L Mendoza-Munoz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; NERx BioSciences, Indianapolis, IN, United States.
| |
Collapse
|
5
|
Wang C, Han X, Kong S, Zhang S, Ning H, Wu F. Deciphering the mechanisms of PARP inhibitor resistance in prostate cancer: Implications for precision medicine. Biomed Pharmacother 2025; 185:117955. [PMID: 40086424 DOI: 10.1016/j.biopha.2025.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Prostate cancer is a leading malignancy among men. While early-stage prostate cancer can be effectively managed, metastatic prostate cancer remains incurable, with a median survival of 3-5 years. The primary treatment for advanced prostate cancer is androgen deprivation therapy (ADT), but resistance to ADT often leads to castrationresistant prostate cancer (CRPC), presenting a significant therapeutic challenge. The advent of precision medicine has introduced promising new treatments, including PARP inhibitors (PARPi), which target defects in DNA repair mechanisms in cancer cells. PARPi have shown efficacy in treating advanced prostate cancer, especially in patients with metastatic CRPC (mCRPC) harboring homologous recombination (HR)-associated gene mutations. Despite these advancements, resistance to PARPi remains a critical issue. Here, we explored the primary mechanisms of PARPi resistance in prostate cancer. Key resistance mechanisms include homologous recombination recovery through reverse mutations in BRCA genes, BRCA promoter demethylation, and non-degradation of mutated BRCA proteins. The tumor microenvironment and overactivation of the base excision repair pathway also play significant roles in bypassing PARPi-induced synthetic lethality. In addition, we explored the clinical implications and therapeutic strategies to overcome resistance,emphasizing the need for precision medicine approaches. Our findings highlight the need for comprehensive strategies to improve PARPi sensitivity and effectiveness,ultimately aiming to extend patient survival and improve the quality of life for those with advanced prostate cancer. As our understanding of PARPi resistance evolves, more diverse and effective individualized treatment regimens will emerge.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China
| | - Xiaoran Han
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shaoqiu Kong
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shanhua Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Hao Ning
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
6
|
Kim JH, Kim SI, Kim ET, Ha HI, Lee DE, Lee YJ, Lee JY, Kim S, Kim SW, Kim YT, Park SY, Lim MC, Nam EJ. The Association Between Location of BRCA Mutation and Efficacy of PARP Inhibitor as a Frontline Maintenance Therapy in Advanced Epithelial Ovarian Cancer. Cancers (Basel) 2025; 17:756. [PMID: 40075604 PMCID: PMC11899539 DOI: 10.3390/cancers17050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The location of BRCA mutations within functional domains may affect sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapy. This study aimed to evaluate the progression-free survival (PFS) benefit from the PARP inhibitor in relation to the location of mutations in BRCA1/BRCA2 in newly diagnosed ovarian cancer. MATERIALS AND METHODS Patients with advanced stage III-IV epithelial ovarian cancer who had deleterious BRCA1 or BRCA2 were analyzed. PFS and clinical and molecular data were compared between patients who received olaparib or niraparib as frontline maintenance therapy and those who did not. Subgroup analyses were conducted based on the location of BRCA mutations within the functional domain or the ovarian cancer cluster region (OCCR). RESULTS Of the 380 patients, 242 (63.7%) harbored BRCA1 mutation, 137 (36.1%) harbored BRCA2, and one (0.3%) harbored both BRCA1 and BRCA2. With a median follow-up of 35.8 months, the DNA binding domain in BRCA1 (HR, 0.34; 95% CI, 0.15-0.79; p = 0.01) and BRCA2 (HR, 0.25; 95% CI, 0.08-0.78; p = 0.01) demonstrated particularly significant benefit. In patients who harbored BRCA1 mutation in the C-terminal domain (BRCT), no statistically significant PFS benefit from PARP inhibitor was observed (HR, 0.76; 95% CI, 0.39-1.52; p = 0.44). PFS benefit from PARP inhibitor maintenance was observed in both OCCR (HR, 0.49; 95% CI, 0.32-0.74; p < 0.01) and non-OCCR (HR, 0.51; 95% CI, 0.27-0.63; p < 0.01). CONCLUSIONS Frontline PARP inhibitor maintenance therapy demonstrated a significant PFS benefit in patients with BRCA1/2 mutations, with particularly pronounced benefits for those with mutations located in the DBD of BRCA1 and BRCA2. However, the benefit was less evident for patients with BRCA1 mutations located in the BRCT domain.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Center for Gynecologic Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (J.H.K.); (S.-Y.P.)
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.L.); (J.-Y.L.); (S.K.); (S.W.K.); (Y.T.K.)
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Eun Taeg Kim
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Pusan 49267, Republic of Korea;
| | - Hyeong In Ha
- Department of Obstetrics and Gynecology, Pusan University College of Medicine, Yangsan 50612, Republic of Korea;
| | - Dong-eun Lee
- Biostatistics Collaboration Team, Research Core Center, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.L.); (J.-Y.L.); (S.K.); (S.W.K.); (Y.T.K.)
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.L.); (J.-Y.L.); (S.K.); (S.W.K.); (Y.T.K.)
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.L.); (J.-Y.L.); (S.K.); (S.W.K.); (Y.T.K.)
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.L.); (J.-Y.L.); (S.K.); (S.W.K.); (Y.T.K.)
| | - Young Tae Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.L.); (J.-Y.L.); (S.K.); (S.W.K.); (Y.T.K.)
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (J.H.K.); (S.-Y.P.)
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (J.H.K.); (S.-Y.P.)
- Department of Obstetrics and Gynecology, Pusan University College of Medicine, Yangsan 50612, Republic of Korea;
- Cancer Control and Policy, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
- Rare & Paediatric Cancer Branch and Immuno-Oncology Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Eun-Ji Nam
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.L.); (J.-Y.L.); (S.K.); (S.W.K.); (Y.T.K.)
| |
Collapse
|
7
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
8
|
Alradwan I, Zhi P, Zhang T, Lip H, Zetrini A, He C, Henderson JT, Rauth AM, Wu XY. Nanoparticulate drug combination inhibits DNA damage repair and PD-L1 expression in BRCA-mutant and wild type triple-negative breast cancer. J Control Release 2025; 377:661-674. [PMID: 39615752 DOI: 10.1016/j.jconrel.2024.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
The high mortality rate associated with metastatic breast cancer presents a significant global challenge. Inherent and chemotherapy-induced DNA damage repair, alongside immunosuppression, drastically contribute to triple-negative breast cancer (TNBC) relapse and metastasis. While poly (ADP-ribose) polymerase (PARP) inhibitors such as olaparib show effectiveness against BRCA1-mutant TNBC, they may lead to drug resistance and reduced efficacy due to increased programmed death-ligand 1 (PD-L1) expression. Our study explored the use of polymer-lipid nanoparticles (PLN) loaded with doxorubicin (DOX) and oligomeric hyaluronic acid (oHA), functionalized iRGD-peptide for integrins targeting (iRGD-DOX-oHA-PLN), to prevent TNBC immunosuppression, DNA repair, and metastasis. The results demonstrate that the iRGD-DOX-oHA-PLNs efficiently downregulated single and double-strand DNA repair proteins and enhanced DNA damage while decreasing PD-L1 expression compared to olaparib. Accordingly, iRGD-DOX-oHA-PLN treatment showed significantly higher efficiency in reducing levels of primary tumor growth and numbers of metastases to the lung and liver compared to olaparib in vitro and in vivo in both BRCA1-mutant and wild type TNBC orthotopic xenograft models.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada; Advanced Diagnostics and Therapeutics Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Pei Zhi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, 610 University Ave, Toronto M5G 2M9, Ontario, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada.
| |
Collapse
|
9
|
Ben Kacem M, Bright SJ, Moran E, Flint DB, Martinus DKJ, Turner BX, Qureshi I, Kolachina R, Manandhar M, Marinello PC, Shaitelman SF, Sawakuchi GO. PARP inhibition radiosensitizes BRCA1 wildtype and mutated breast cancer to proton therapy. Sci Rep 2024; 14:30897. [PMID: 39730675 DOI: 10.1038/s41598-024-81914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons. Protons (9.9 and 3.85 keV/µm) induced higher cell kill independent of BRCA1 status. PARP inhibition amplified the cell kill effect to both photons and protons (9.9 and 3.85 keV/µm) independent of BRCA1 status. Numbers of γH2AX foci, micronuclei, and cGAS-positive micronuclei were significantly higher in BRCA1-mutated cells. Cell cycle distribution and stress-induced senescence were not affected by PARP inhibition in our cell lines. In vivo, the combination of protons (3.99 keV/µm) and PARP inhibition induced the greatest tumor growth delay and the highest survival. We found that PARP inhibition increases radiosensitization independent of BRCA1 status for both protons and photons. The combination of protons and PARP inhibition was the most effective in decreasing clonogenic cell survival, increasing DNA damage, and delaying tumor growth.
Collapse
Affiliation(s)
- Mariam Ben Kacem
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Scott J Bright
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Emma Moran
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David B Flint
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David K J Martinus
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Broderick X Turner
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ilsa Qureshi
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Rishab Kolachina
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Mandira Manandhar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Poliana C Marinello
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Simona F Shaitelman
- Division of Radiation Oncology, Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gabriel O Sawakuchi
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Gracia B, Montes P, Huang M, Chen J, Karras GI. HSP90 buffers deleterious genetic variations in BRCA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623783. [PMID: 39605638 PMCID: PMC11601394 DOI: 10.1101/2024.11.15.623783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein-folding chaperone HSP90 buffers genetic variation in diverse organisms, but the clinical significance of HSP90 buffering in disease remains unclear. Here, we show that HSP90 buffers mutations in the BRCT domain of BRCA1. HSP90-buffered BRCA1 mutations encode protein variants that retain interactions with partner proteins and rely on HSP90 for protein stability and function in cell survival. Moreover, HSP90-buffered BRCA1 variants confer PARP inhibitor resistance in cancer cell lines. Low-level HSP90 inhibition alleviates this resistance, revealing a cryptic and mutant-specific HSP90-contingent synthetic lethality. Hence, by stabilizing metastable variants across the entirety of the BRCT domain, HSP90 reduces the clinical severity of BRCA1 mutations allowing them to accumulate in populations. We estimate that HSP90 buffers 11% to 28% of known human BRCA1- BRCT missense mutations. Our work extends the clinical significance of HSP90 buffering to a prevalent class of variations in BRCA1 , pioneering its importance in cancer predisposition and therapy resistance.
Collapse
|
11
|
Machacova Z, Chroma K, Lukac D, Protivankova I, Moudry P. DNA polymerase α-primase facilitates PARP inhibitor-induced fork acceleration and protects BRCA1-deficient cells against ssDNA gaps. Nat Commun 2024; 15:7375. [PMID: 39191785 PMCID: PMC11350149 DOI: 10.1038/s41467-024-51667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
PARP inhibitors (PARPi), known for their ability to induce replication gaps and accelerate replication forks, have become potent agents in anticancer therapy. However, the molecular mechanism underlying PARPi-induced fork acceleration has remained elusive. Here, we show that the first PARPi-induced effect on DNA replication is an increased replication fork rate, followed by a secondary reduction in origin activity. Through the systematic knockdown of human DNA polymerases, we identify POLA1 as mediator of PARPi-induced fork acceleration. This acceleration depends on both DNA polymerase α and primase activities. Additionally, the depletion of POLA1 increases the accumulation of replication gaps induced by PARP inhibition, sensitizing cells to PARPi. BRCA1-depleted cells are especially susceptible to the formation of replication gaps under POLA1 inhibition. Accordingly, BRCA1 deficiency sensitizes cells to POLA1 inhibition. Thus, our findings establish the POLA complex as important player in PARPi-induced fork acceleration and provide evidence that lagging strand synthesis represents a targetable vulnerability in BRCA1-deficient cells.
Collapse
Affiliation(s)
- Zuzana Machacova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katarina Chroma
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - David Lukac
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Iva Protivankova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
12
|
Pavani R, Tripathi V, Vrtis KB, Zong D, Chari R, Callen E, Pankajam AV, Zhen G, Matos-Rodrigues G, Yang J, Wu S, Reginato G, Wu W, Cejka P, Walter JC, Nussenzweig A. Structure and repair of replication-coupled DNA breaks. Science 2024; 385:eado3867. [PMID: 38900911 PMCID: PMC11620331 DOI: 10.1126/science.ado3867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Using CRISPR-Cas9 nicking enzymes, we examined the interaction between the replication machinery and single-strand breaks, one of the most common forms of endogenous DNA damage. We show that replication fork collapse at leading-strand nicks generates resected single-ended double-strand breaks (seDSBs) that are repaired by homologous recombination (HR). If these seDSBs are not promptly repaired, arrival of adjacent forks creates double-ended DSBs (deDSBs), which could drive genomic scarring in HR-deficient cancers. deDSBs can also be generated directly when the replication fork bypasses lagging-strand nicks. Unlike deDSBs produced independently of replication, end resection at nick-induced seDSBs and deDSBs is BRCA1-independent. Nevertheless, BRCA1 antagonizes 53BP1 suppression of RAD51 filament formation. These results highlight distinctive mechanisms that maintain replication fork stability.
Collapse
Affiliation(s)
- Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Veenu Tripathi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyle B. Vrtis
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ajith V. Pankajam
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gang Zhen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Jiajie Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuheng Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Giordano Reginato
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Wei Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Petr Cejka
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard University, Boston, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
13
|
Deng Q, Qiang J, Liu C, Ding J, Tu J, He X, Xia J, Peng X, Li S, Chen X, Ma W, Zhang L, Jiang Y, Shao Z, Chen C, Liu S, Xu J, Zhang L. SOSTDC1 Nuclear Translocation Facilitates BTIC Maintenance and CHD1-Mediated HR Repair to Promote Tumor Progression and Olaparib Resistance in TNBC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306860. [PMID: 38864559 PMCID: PMC11304230 DOI: 10.1002/advs.202306860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Breast tumor-initiating cells (BTICs) of triple-negative breast cancer (TNBC) tissues actively repair DNA and are resistant to treatments including chemotherapy, radiotherapy, and targeted therapy. Herein, it is found that a previously reported secreted protein, sclerostin domain containing 1 (SOSTDC1), is abundantly expressed in BTICs of TNBC cells and positively correlated with a poor patient prognosis. SOSTDC1 knockdown impairs homologous recombination (HR) repair, BTIC maintenance, and sensitized bulk cells and BTICs to Olaparib. Mechanistically, following Olaparib treatment, SOSTDC1 translocates to the nucleus in an importin-α dependent manner. Nuclear SOSTDC1 interacts with the N-terminus of the nucleoprotein, chromatin helicase DNA-binding factor (CHD1), to promote HR repair and BTIC maintenance. Furthermore, nuclear SOSTDC1 bound to β-transducin repeat-containing protein (β-TrCP) binding motifs of CHD1 is found, thereby blocking the β-TrCP-CHD1 interaction and inhibiting β-TrCP-mediated CHD1 ubiquitination and degradation. Collectively, these findings identify a novel nuclear SOSTDC1 pathway in regulating HR repair and BTIC maintenance, providing insight into the TNBC therapeutic strategies.
Collapse
Affiliation(s)
- Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Cuicui Liu
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiajun Ding
- Department of ThyroidBreast and Vascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xian Chen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yi‐Zhou Jiang
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunming650201China
- Academy of Biomedical Engineering & The Third Affiliated HospitalKunming Medical UniversityKunming650118China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
14
|
Ramakrishnan N, Weaver TM, Aubuchon LN, Woldegerima A, Just T, Song K, Vindigni A, Freudenthal BD, Verma P. Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells. Nat Commun 2024; 15:6343. [PMID: 39068174 PMCID: PMC11283519 DOI: 10.1038/s41467-024-50673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.
Collapse
Affiliation(s)
- Natasha Ramakrishnan
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Lindsey N Aubuchon
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ayda Woldegerima
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Taylor Just
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kevin Song
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Dominguez-Ortiz J, Álvarez-Gómez RM, Montiel-Manríquez R, Cedro-Tanda A, Alcaraz N, Castro-Hernández C, Bautista-Hinojosa L, Contreras-Espinosa L, Torres-Maldonado L, Fragoso-Ontiveros V, Sánchez-Contreras Y, González-Barrios R, la Fuente-Hernández MAD, Mejía-Aguayo MDLL, Juárez-Figueroa U, Padua-Bracho A, Sosa-León R, Obregon-Serrano G, Vidal-Millán S, Núñez-Martínez PM, Pedroza-Torres A, Nicasio-Arzeta S, Rodríguez A, Luna F, Cisneros-Soberanis F, Frías S, Arriaga-Canon C, Herrera-Montalvo LA. A Molecular Characterization of the Allelic Expression of the BRCA1 Founder Δ9-12 Pathogenic Variant and Its Potential Clinical Relevance in Hereditary Cancer. Int J Mol Sci 2024; 25:6773. [PMID: 38928478 PMCID: PMC11204022 DOI: 10.3390/ijms25126773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to improving cancer risk characterization and effective screening protocols. The only founder mutation described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1Δ9-12), and its description focuses on the gene sequence, but no transcription profiles have been generated for individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients and healthy individuals who were heterozygous for PV BRCA1Δ9-12 by analyzing the differential expression of both alleles compared with the homozygous BRCA1 control group using RT-qPCR, and we describe the isoforms produced by the BRCA1 wild-type and BRCA1Δ9-12 alleles using nanopore long-sequencing. Using the Kruskal-Wallis test, our results showed a similar transcript expression of the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control group. An association between the recurrence and increased expression of both alleles in HBOC patients was also observed. An analysis of the sequences indicated four wild-type isoforms with diagnostic potential for discerning individuals who carry the PV BRCA1Δ9-12 and identifying which of them has developed cancer.
Collapse
Affiliation(s)
- Julieta Dominguez-Ortiz
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
- Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Rosa M. Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Alberto Cedro-Tanda
- Núcleo B de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico;
| | - Nicolás Alcaraz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200 Copenhagen, Denmark;
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Luis Bautista-Hinojosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Leda Torres-Maldonado
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C. Coyoacán, Mexico City 04530, Mexico; (L.T.-M.); (U.J.-F.); (A.R.); (S.F.)
| | - Verónica Fragoso-Ontiveros
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Yuliana Sánchez-Contreras
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Marcela Angélica De la Fuente-Hernández
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - María de la Luz Mejía-Aguayo
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Ulises Juárez-Figueroa
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C. Coyoacán, Mexico City 04530, Mexico; (L.T.-M.); (U.J.-F.); (A.R.); (S.F.)
| | - Alejandra Padua-Bracho
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Rodrigo Sosa-León
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Gabriela Obregon-Serrano
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Silvia Vidal-Millán
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Paulina María Núñez-Martínez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Abraham Pedroza-Torres
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Sergio Nicasio-Arzeta
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80521, USA;
| | - Alfredo Rodríguez
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C. Coyoacán, Mexico City 04530, Mexico; (L.T.-M.); (U.J.-F.); (A.R.); (S.F.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Fernando Luna
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK;
| | - Sara Frías
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C. Coyoacán, Mexico City 04530, Mexico; (L.T.-M.); (U.J.-F.); (A.R.); (S.F.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | - Luis A. Herrera-Montalvo
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| |
Collapse
|
16
|
Yang X, Shang L, Yang L, Sun L, Tuo X, Ma S, Zhao L, Li X, Yang W. A Novel Germline Mutation of BRCA1 and Integrated Analysis With Somatic Mutation in a Chinese Multi-Cancer Family. Oncologist 2024; 29:e837-e842. [PMID: 38159086 PMCID: PMC11144973 DOI: 10.1093/oncolo/oyad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
The presence of mutations in the BRCA1 gene (MIM: 113705) is widely recognized as a significant genetic predisposition for ovarian cancer. This study investigated the genomic mutations in a Chinese family with a history of ovarian, breast, and rectal adenocarcinoma. A novel germline mutation (Phe1695Val) in BRCA1 was identified through whole-exome sequencing. Subsequently, we performed whole-genome sequencing to identify somatic mutations and analyze mutational signatures in individuals carrying the novel germline mutation. Our findings revealed a correlation between somatic mutational signatures and the BRCA1 germline mutation in the proband with ovarian cancer, while no such association was observed in the tumor tissue from the patient with breast cancer. Furthermore, distinct somatic driver mutations were identified, a truncated mutation in the TP53 gene in the ovarian tumor tissue, and a hotspot mutation in the PIK3CA gene in the breast cancer. According to our findings, the BRCA1 F1695V mutation is linked to ovarian cancer susceptibility in the family and causes specific somatic mutational profiles.
Collapse
Affiliation(s)
- Xiling Yang
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Li Shang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Shenzhen Health Development Research and Data Management Center, Shenzhen, Guangdong, People’s Republic of China
| | - Liren Yang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - Landi Sun
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaoqian Tuo
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Sijia Ma
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Le Zhao
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xu Li
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Wenfang Yang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
17
|
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H, Zou D. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer 2024; 23:66. [PMID: 38539161 PMCID: PMC10976737 DOI: 10.1186/s12943-024-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related death. Drug resistance is the bottleneck in ovarian cancer treatment. The increasing use of novel drugs in clinical practice poses challenges for the treatment of drug-resistant ovarian cancer. Continuing to classify drug resistance according to drug type without understanding the underlying mechanisms is unsuitable for current clinical practice. We reviewed the literature regarding various drug resistance mechanisms in ovarian cancer and found that the main resistance mechanisms are as follows: abnormalities in transmembrane transport, alterations in DNA damage repair, dysregulation of cancer-associated signaling pathways, and epigenetic modifications. DNA methylation, histone modifications and noncoding RNA activity, three key classes of epigenetic modifications, constitute pivotal mechanisms of drug resistance. One drug can have multiple resistance mechanisms. Moreover, common chemotherapies and targeted drugs may have cross (overlapping) resistance mechanisms. MicroRNAs (miRNAs) can interfere with and thus regulate the abovementioned pathways. A subclass of miRNAs, "epi-miRNAs", can modulate epigenetic regulators to impact therapeutic responses. Thus, we also reviewed the regulatory influence of miRNAs on resistance mechanisms. Moreover, we summarized recent phase I/II clinical trials of novel drugs for ovarian cancer based on the abovementioned resistance mechanisms. A multitude of new therapies are under evaluation, and the preliminary results are encouraging. This review provides new insight into the classification of drug resistance mechanisms in ovarian cancer and may facilitate in the successful treatment of resistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xin Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueping Zhu
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Zhong
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qingxiu Jiang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ya Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qin Tang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiaoling Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Cong Zhang
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Biological and Pharmaceutical Engineering, School of Medicine, Chongqing University, Chongqing, China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
18
|
Collet L, Hanvic B, Turinetto M, Treilleux I, Chopin N, Le Saux O, Ray-Coquard I. BRCA1/2 alterations and reversion mutations in the area of PARP inhibitors in high grade ovarian cancer: state of the art and forthcoming challenges. Front Oncol 2024; 14:1354427. [PMID: 38544832 PMCID: PMC10965616 DOI: 10.3389/fonc.2024.1354427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 11/11/2024] Open
Abstract
BRCA1/2 genes are part of homologous recombination (HR) DNA repair pathways in charge of error-free double-strand break (DSB) repair. Loss-of-function mutations of BRCA1/2 genes have been associated for a long time with breast and ovarian cancer hereditary syndrome. Recently, polyadenosine diphosphate-ribose polymerase inhibitors (PARPi) have revolutionized the therapeutic landscape of BRCA1/2-mutated tumors, especially of BRCA1/2 high-grade serous ovarian cancer (HGSC), taking advantage of HR deficiency through the synthetic lethality concept. However, PARPi efficiency differs among patients, and most of them will develop resistance, particularly in the relapse setting. In the current proposal, we aim to review primary and secondary resistance to PARPi in HGSC owing to BRCA1/2 alterations. Of note, as several mechanisms of primary or secondary resistance to PARPi have been described, BRCA1/2 reversion mutations that restore HR pathways are by far the most reported. First, the type and location of the BRCA1/2 primary mutation have been associated with PARPi and platinum-salt sensitivity and impact the probability of the occurrence and the type of secondary reversion mutation. Furthermore, the presence of multiple reversion mutations and the variation of allelic frequency under treatment underline the role of intratumor heterogeneity (ITH) in treatment resistance. Of note, circulating tumor DNA might help us to detect and characterize reversion mutations and ITH to finally refine the treatment strategy. Importantly, forthcoming therapeutic strategies, including combination with antiangiogenics or with targeted therapies, may help us delay and overcome PARPi resistance secondary to BRCA1/2 reversion mutations. Also, progression despite PARPi therapy does not preclude PARPi rechallenge in selected patients.
Collapse
Affiliation(s)
- Laetitia Collet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Brunhilde Hanvic
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Olivia Le Saux
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Ray-Coquard
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
19
|
van de Kooij B, Schreuder A, Pavani R, Garzero V, Uruci S, Wendel TJ, van Hoeck A, San Martin Alonso M, Everts M, Koerse D, Callen E, Boom J, Mei H, Cuppen E, Luijsterburg MS, van Vugt MATM, Nussenzweig A, van Attikum H, Noordermeer SM. EXO1 protects BRCA1-deficient cells against toxic DNA lesions. Mol Cell 2024; 84:659-674.e7. [PMID: 38266640 DOI: 10.1016/j.molcel.2023.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/14/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Anne Schreuder
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Garzero
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Sidrit Uruci
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Tiemen J Wendel
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Arne van Hoeck
- Oncode Institute, Utrecht 3521 AL, the Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584 CG, the Netherlands
| | - Marta San Martin Alonso
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Dana Koerse
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jasper Boom
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Edwin Cuppen
- Oncode Institute, Utrecht 3521 AL, the Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584 CG, the Netherlands; Hartwig Medical Foundation, Amsterdam 1098 XH, the Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands.
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands.
| |
Collapse
|
20
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
21
|
Ning Y, Zhang Y, Tian T, Chen Y, Wang J, Lei K, Cui Z. Reclassifying BRCA1 c.4358-2A > G and BRCA2 c.475 + 5G > C variants from "Uncertain Significance" to "Pathogenic" based on minigene assays and clinical evidence. J Cancer Res Clin Oncol 2024; 150:62. [PMID: 38300310 PMCID: PMC10834553 DOI: 10.1007/s00432-023-05597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Pathogenic variants in BRCA genes play a crucial role in the pathogenesis of ovarian cancer. Intronic variants of uncertain significance (VUS) may contribute to pathogenicity by affecting splicing. Currently, the significance of many intronic variants in BRCA has not been clarified, impacting patient treatment strategies and the management of familial cases. METHOD A retrospective study was conducted to analyze BRCA intronic VUS in a cohort of 707 unrelated ovarian cancer patients at a single institution from 2018 to 2023. Three splicing predictors were employed to analyze detected intronic VUS. Variants predicted to have splicing alterations were selected for further validation through minigene assays. Patient and familial investigations were conducted to comprehend cancer incidence within pedigrees and the application of poly (ADP-ribose) polymerase inhibitors (PARPi) by the patients. In accordance with the guidelines of the American College of Medical Genetics and Genomics (ACMG), the intronic VUS were reclassified based on minigene assay results and clinical evidence. RESULT Approximately 9.8% (69/707) of patients were identified as carriers of 67 different VUS in BRCA1/2, with four intronic variants accounting for 6% (4/67) of all VUS. Splicing predictors indicated potential splicing alterations in splicing for BRCA1 c.4358-2A>G and BRCA2 c.475+5G>C variants. Minigene assays utilizing the pSPL3 exon trapping vector revealed that these variants induced changes in splicing sites and frameshift, resulting in premature termination of translation (p. Ala1453Glyfs and p. Pro143Glyfs). According to ACMG guidelines, BRCA1 c.4358-2A>G and BRCA2 c.475+5G>C were reclassified as pathogenic variants. Pedigree investigations were conducted on patients with BRCA1 c.4358-2A>G variant, and the detailed utilization of PARPi provided valuable insights into research on PARPi resistance. CONCLUSION Two intronic VUS were reclassified as pathogenic variants. A precise classification of variants is crucial for the effective treatment and management of both patients and healthy carriers.
Collapse
Affiliation(s)
- Ying Ning
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Yu Zhang
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Tian Tian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Laoshan District, Qingdao, 266000, China
| | - Yu Chen
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Laoshan District, Qingdao, 266000, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Laoshan District, Qingdao, 266000, China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Laoshan District, Qingdao, 266000, China.
| |
Collapse
|
22
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
23
|
Burdett NL, Willis MO, Pandey A, Fereday S, DeFazio A, Bowtell DDL, Christie EL. Small-scale mutations are infrequent as mechanisms of resistance in post-PARP inhibitor tumour samples in high grade serous ovarian cancer. Sci Rep 2023; 13:21884. [PMID: 38072854 PMCID: PMC10711013 DOI: 10.1038/s41598-023-48153-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
While the introduction of poly-(ADP)-ribose polymerase (PARP) inhibitors in homologous recombination DNA repair (HR) deficient high grade serous ovarian, fallopian tube and primary peritoneal cancers (HGSC) has improved patient survival, resistance to PARP inhibitors frequently occurs. Preclinical and translational studies have identified multiple mechanisms of resistance; here we examined tumour samples collected from 26 women following treatment with PARP inhibitors as part of standard of care or their enrolment in clinical trials. Twenty-one had a germline or somatic BRCA1/2 mutation. We performed targeted sequencing of 63 genes involved in DNA repair processes or implicated in ovarian cancer resistance. We found that just three individuals had a small-scale mutation as a definitive resistance mechanism detected, having reversion mutations, while six had potential mechanisms of resistance detected, with alterations related to BRCA1 function and mutations in SHLD2. This study indicates that mutations in genes related to DNA repair are detected in a minority of HGSC patients as genetic mechanisms of resistance. Future research into resistance in HGSC should focus on copy number, transcriptional and epigenetic aberrations, and the contribution of the tumour microenvironment.
Collapse
Affiliation(s)
- Nikki L Burdett
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Box Hill Hospital, Eastern Health, Box Hill, Victoria, 3128, Australia
| | | | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, 2145, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, 2006, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
24
|
Krais JJ, Glass DJ, Chudoba I, Wang Y, Feng W, Simpson D, Patel P, Liu Z, Neumann-Domer R, Betsch RG, Bernhardy AJ, Bradbury AM, Conger J, Yueh WT, Nacson J, Pomerantz RT, Gupta GP, Testa JR, Johnson N. Genetic separation of Brca1 functions reveal mutation-dependent Polθ vulnerabilities. Nat Commun 2023; 14:7714. [PMID: 38001070 PMCID: PMC10673838 DOI: 10.1038/s41467-023-43446-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Homologous recombination (HR)-deficiency induces a dependency on DNA polymerase theta (Polθ/Polq)-mediated end joining, and Polθ inhibitors (Polθi) are in development for cancer therapy. BRCA1 and BRCA2 deficient cells are thought to be synthetic lethal with Polθ, but whether distinct HR gene mutations give rise to equivalent Polθ-dependence, and the events that drive lethality, are unclear. In this study, we utilized mouse models with separate Brca1 functional defects to mechanistically define Brca1-Polθ synthetic lethality. Surprisingly, homozygous Brca1 mutant, Polq-/- cells were viable, but grew slowly and had chromosomal instability. Brca1 mutant cells proficient in DNA end resection were significantly more dependent on Polθ for viability; here, treatment with Polθi elevated RPA foci, which persisted through mitosis. In an isogenic system, BRCA1 null cells were defective, but PALB2 and BRCA2 mutant cells exhibited active resection, and consequently stronger sensitivity to Polθi. Thus, DNA end resection is a critical determinant of Polθi sensitivity in HR-deficient cells, and should be considered when selecting patients for clinical studies.
Collapse
Affiliation(s)
- John J Krais
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - David J Glass
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilse Chudoba
- MetaSystems Probes, GmbH, Industriestr, 68804, Altlussheim, Germany
| | - Yifan Wang
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Wanjuan Feng
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Dennis Simpson
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pooja Patel
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Zemin Liu
- Cytogenetics Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ryan Neumann-Domer
- Cytogenetics Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Robert G Betsch
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Andrea J Bernhardy
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alice M Bradbury
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Jason Conger
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Wei-Ting Yueh
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Joseph Nacson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gaorav P Gupta
- Cancer Control and Prevention Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cytogenetics Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Cancer Control and Prevention Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
25
|
Moro RN, Biswas U, Kharat SS, Duzanic FD, Das P, Stavrou M, Raso MC, Freire R, Chaudhuri AR, Sharan SK, Penengo L. Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15. Nat Commun 2023; 14:6140. [PMID: 37783689 PMCID: PMC10545780 DOI: 10.1038/s41467-023-41801-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
DNA replication and repair defects or genotoxic treatments trigger interferon (IFN)-mediated inflammatory responses. However, whether and how IFN signaling in turn impacts the DNA replication process has remained elusive. Here we show that basal levels of the IFN-stimulated gene 15, ISG15, and its conjugation (ISGylation) are essential to protect nascent DNA from degradation. Moreover, IFNβ treatment restores replication fork stability in BRCA1/2-deficient cells, which strictly depends on topoisomerase-1, and rescues lethality of BRCA2-deficient mouse embryonic stem cells. Although IFNβ activates hundreds of genes, these effects are specifically mediated by ISG15 and ISGylation, as their inactivation suppresses the impact of IFNβ on DNA replication. ISG15 depletion significantly reduces cell proliferation rates in human BRCA1-mutated triple-negative, whereas its upregulation results in increased resistance to the chemotherapeutic drug cisplatin in mouse BRCA2-deficient breast cancer cells, respectively. Accordingly, cells carrying BRCA1/2 defects consistently show increased ISG15 levels, which we propose as an in-built mechanism of drug resistance linked to BRCAness.
Collapse
Affiliation(s)
- Ramona N Moro
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Uddipta Biswas
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Suhas S Kharat
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - Filip D Duzanic
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Prosun Das
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD, Rotterdam, the Netherlands
| | - Maria Stavrou
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Maria C Raso
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland
| | - Raimundo Freire
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200, La Laguna, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD, Rotterdam, the Netherlands
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21702, MD, USA
| | - Lorenza Penengo
- University of Zurich, Institute of Molecular Cancer Research, 8057, Zurich, Switzerland.
| |
Collapse
|
26
|
Garg V, Oza AM. Treatment of Ovarian Cancer Beyond PARP Inhibition: Current and Future Options. Drugs 2023; 83:1365-1385. [PMID: 37737434 PMCID: PMC10581945 DOI: 10.1007/s40265-023-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer death. Improved understanding of the biologic pathways and introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) during the last decade have changed the treatment landscape. This has improved outcomes, but unfortunately half the women with ovarian cancer still succumb to the disease within 5 years of diagnosis. Pathways of resistance to PARPi and chemotherapy have been studied extensively, but there is an unmet need to overcome treatment failure and improve outcome. Major mechanisms of PARPi resistance include restoration of homologous recombination repair activity, alteration of PARP function, stabilization of the replication fork, drug efflux, and activation of alternate pathways. These resistant mechanisms can be targeted to sensitize the resistant ovarian cancer cells either by rechallenging with PARPi, overcoming resistance mechanism or bypassing resistance pathways. Augmenting the PARPi activity by combining it with other targets in the DNA damage response pathway, antiangiogenic agents and immune checkpoint inhibitors can potentially overcome the resistance mechanisms. Methods to bypass resistance include targeting non-cross-resistant pathways acting independent of homologous recombination repair (HRR), modulating tumour microenvironment, and enhancing drug delivery systems such as antibody drug conjugates. In this review, we will discuss the first-line management of ovarian cancer, resistance mechanisms and potential strategies to overcome these.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- , 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
27
|
Gracia B, Montes P, Gutierrez AM, Arun B, Karras GI. Protein-Folding Chaperones Predict Structure-Function Relationships and Cancer Risk in BRCA1 Mutation Carriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557795. [PMID: 37745493 PMCID: PMC10515940 DOI: 10.1101/2023.09.14.557795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Identifying pathogenic mutations and predicting their impact on protein structure, function and phenotype remain major challenges in genome sciences. Protein-folding chaperones participate in structure-function relationships by facilitating the folding of protein variants encoded by mutant genes. Here, we utilize a high-throughput protein-protein interaction assay to test HSP70 and HSP90 chaperone interactions as predictors of pathogenicity for variants in the tumor suppressor BRCA1. Chaperones bind 77% of pathogenic BRCA1-BRCT variants, most of which engaged HSP70 more than HSP90. Remarkably, the magnitude of chaperone binding to variants is proportional to the degree of structural and phenotypic defect induced by BRCA1 mutation. Quantitative chaperone interactions identified BRCA1-BRCT separation-of-function variants and hypomorphic alleles missed by pathogenicity prediction algorithms. Furthermore, increased chaperone binding signified greater cancer risk in human BRCA1 carriers. Altogether, our study showcases the utility of chaperones as quantitative cellular biosensors of variant folding and phenotypic severity. HIGHLIGHTS Chaperones detect an abundance of pathogenic folding variants of BRCA1-BRCT.Degree of chaperone binding reflects severity of structural and phenotypic defect.Chaperones identify separation-of-function and hypomorphic variants. Chaperone interactions indicate penetrance and expressivity of BRCA1 alleles.
Collapse
|
28
|
Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. NATURE CANCER 2023; 4:1239-1257. [PMID: 37653142 DOI: 10.1038/s43018-023-00617-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Ovarian cancer is an aggressive disease that is frequently detected at advanced stages and is initially very responsive to platinum-based chemotherapy. However, the majority of patients relapse following initial surgery and chemotherapy, highlighting the urgent need to develop new therapeutic strategies. In this Review, we outline the main therapeutic principles behind the management of newly diagnosed and recurrent epithelial ovarian cancer and discuss the current landscape of targeted and immune-based approaches.
Collapse
|
29
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
30
|
Pettitt SJ, Shao N, Zatreanu D, Frankum J, Bajrami I, Brough R, Krastev DB, Roumeliotis TI, Choudhary JS, Lorenz S, Rust A, de Bono JS, Yap TA, Tutt ANJ, Lord CJ. A HUWE1 defect causes PARP inhibitor resistance by modulating the BRCA1-∆11q splice variant. Oncogene 2023; 42:2701-2709. [PMID: 37491606 PMCID: PMC10473960 DOI: 10.1038/s41388-023-02782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Although PARP inhibitors (PARPi) now form part of the standard-of-care for the treatment of homologous recombination defective cancers, de novo and acquired resistance limits their overall effectiveness. Previously, overexpression of the BRCA1-∆11q splice variant has been shown to cause PARPi resistance. How cancer cells achieve increased BRCA1-∆11q expression has remained unclear. Using isogenic cells with different BRCA1 mutations, we show that reduction in HUWE1 leads to increased levels of BRCA1-∆11q and PARPi resistance. This effect is specific to cells able to express BRCA1-∆11q (e.g. BRCA1 exon 11 mutant cells) and is not seen in BRCA1 mutants that cannot express BRCA1-∆11q, nor in BRCA2 mutant cells. As well as increasing levels of BRCA1-∆11q protein in exon 11 mutant cells, HUWE1 silencing also restores RAD51 nuclear foci and platinum salt resistance. HUWE1 catalytic domain mutations were also seen in a case of PARPi resistant, BRCA1 exon 11 mutant, high grade serous ovarian cancer. These results suggest how elevated levels of BRCA1-∆11q and PARPi resistance can be achieved, identify HUWE1 as a candidate biomarker of PARPi resistance for assessment in future clinical trials and illustrate how some PARPi resistance mechanisms may only operate in patients with particular BRCA1 mutations.
Collapse
Affiliation(s)
- Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Nan Shao
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jessica Frankum
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ilirjana Bajrami
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | | | | | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Alistair Rust
- The Institute of Cancer Research, London, SW3 6JB, UK
| | - Johann S de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Timothy A Yap
- The Institute of Cancer Research, The Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, UK
- University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | - Andrew N J Tutt
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
31
|
Legrand AJ, Choul-li S, Villeret V, Aumercier M. Poly(ADP-ribose) Polyremase-1 (PARP-1) Inhibition: A Promising Therapeutic Strategy for ETS-Expressing Tumours. Int J Mol Sci 2023; 24:13454. [PMID: 37686260 PMCID: PMC10487777 DOI: 10.3390/ijms241713454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Souhaila Choul-li
- Département de Biologie, Faculté des Sciences, Université Chouaib Doukkali, BP-20, El Jadida 24000, Morocco;
| | - Vincent Villeret
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Marc Aumercier
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
32
|
Nesic K, Krais JJ, Vandenberg CJ, Wang Y, Patel P, Cai KQ, Kwan T, Lieschke E, Ho GY, Barker HE, Bedo J, Casadei S, Farrell A, Radke M, Shield-Artin K, Penington JS, Geissler F, Kyran E, Zhang F, Dobrovic A, Olesen I, Kristeleit R, Oza A, Ratnayake G, Traficante N, Australian Ovarian Cancer Study, DeFazio A, Bowtell DDL, Harding TC, Lin K, Swisher EM, Kondrashova O, Scott CL, Johnson N, Wakefield MJ. BRCA1 secondary splice-site mutations drive exon-skipping and PARP inhibitor resistance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.20.23287465. [PMID: 36993400 PMCID: PMC10055590 DOI: 10.1101/2023.03.20.23287465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BRCA1 splice isoforms Δ11 and Δ11q can contribute to PARP inhibitor (PARPi) resistance by splicing-out the mutation-containing exon, producing truncated, partially-functional proteins. However, the clinical impact and underlying drivers of BRCA1 exon skipping remain undetermined. We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs), predicted in silico to drive exon skipping. Predictions were confirmed using qRT-PCR, RNA sequencing, western blots and BRCA1 minigene modelling. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials. We demonstrate that SSMs drive BRCA1 exon 11 skipping and PARPi resistance, and should be clinically monitored, along with frame-restoring secondary mutations.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | | | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | - Tanya Kwan
- Clovis Oncology Inc., San Francisco, CA, USA
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gwo-Yaw Ho
- School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Holly E. Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Justin Bedo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | | | - Andrew Farrell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marc Radke
- University of Washington, Seattle, WA, USA
| | - Kristy Shield-Artin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jocelyn S. Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Franziska Geissler
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth Kyran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Fan Zhang
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
| | - Inger Olesen
- The Andrew Love Cancer Centre, Barwon Health, Geelong, Victoria, Australia
| | - Rebecca Kristeleit
- Department of Oncology, Guys and St Thomas’ NHS Foundation Trust, London, UK
- National Institute for Health Research, University College London Hospitals Clinical Research Facility, London, UK
| | - Amit Oza
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | - Nadia Traficante
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | | | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council New South Wales, Sydney, New South Wales, Australia
- The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynecological Oncology, Westmead Hospital, Western Sydney Local Health District, New South Wales, Australia
| | - David D. L. Bowtell
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | | | - Kevin Lin
- Clovis Oncology Inc., San Francisco, CA, USA
| | | | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia
| | | | - Matthew J. Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Patterson-Fortin J, Jadhav H, Pantelidou C, Phan T, Grochala C, Mehta AK, Guerriero JL, Wulf GM, Wolpin BM, Stanger BZ, Aguirre AJ, Cleary JM, D'Andrea AD, Shapiro GI. Polymerase θ inhibition activates the cGAS-STING pathway and cooperates with immune checkpoint blockade in models of BRCA-deficient cancer. Nat Commun 2023; 14:1390. [PMID: 36914658 PMCID: PMC10011609 DOI: 10.1038/s41467-023-37096-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Recently developed inhibitors of polymerase theta (POLθ) have demonstrated synthetic lethality in BRCA-deficient tumor models. To examine the contribution of the immune microenvironment to antitumor efficacy, we characterized the effects of POLθ inhibition in immunocompetent models of BRCA1-deficient triple-negative breast cancer (TNBC) or BRCA2-deficient pancreatic ductal adenocarcinoma (PDAC). We demonstrate that genetic POLQ depletion or pharmacological POLθ inhibition induces both innate and adaptive immune responses in these models. POLθ inhibition resulted in increased micronuclei, cGAS/STING pathway activation, type I interferon gene expression, CD8+ T cell infiltration and activation, local paracrine activation of dendritic cells and upregulation of PD-L1 expression. Depletion of CD8+ T cells compromised the efficacy of POLθ inhibition, whereas antitumor effects were augmented in combination with anti-PD-1 immunotherapy. Collectively, our findings demonstrate that POLθ inhibition induces immune responses in a cGAS/STING-dependent manner and provide a rationale for combining POLθ inhibition with immune checkpoint blockade for the treatment of HR-deficient cancers.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Heta Jadhav
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Constantia Pantelidou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Bayer Pharmaceuticals, Cambridge, MA, USA
| | - Tin Phan
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Carter Grochala
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Arpeggio, Boulder, CO, USA
| | - Anita K Mehta
- Department of Surgical Oncology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Sanofi, Cambridge, MA, USA
| | - Jennifer L Guerriero
- Department of Surgical Oncology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Gerburg M Wulf
- Department of Medicine, Division of Hematology-Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Hale Family Center for Pancreatic Cancer Research, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ben Z Stanger
- Department of Medicine, Division of Gastroenterology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Hale Family Center for Pancreatic Cancer Research, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Hale Family Center for Pancreatic Cancer Research, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
34
|
Yamashita N, Morimoto Y, Fushimi A, Ahmad R, Bhattacharya A, Daimon T, Haratake N, Inoue Y, Ishikawa S, Yamamoto M, Hata T, Akiyoshi S, Hu Q, Liu T, Withers H, Liu S, Shapiro GI, Yoshizumi T, Long MD, Kufe D. MUC1-C Dictates PBRM1-Mediated Chronic Induction of Interferon Signaling, DNA Damage Resistance, and Immunosuppression in Triple-Negative Breast Cancer. Mol Cancer Res 2023; 21:274-289. [PMID: 36445328 PMCID: PMC9975675 DOI: 10.1158/1541-7786.mcr-22-0772] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The polybromo-1 (PBRM1) chromatin-targeting subunit of the SWI/SNF PBAF chromatin remodeling complex drives DNA damage resistance and immune evasion in certain cancer cells through mechanisms that remain unclear. STAT1 and IRF1 are essential effectors of type I and II IFN pathways. Here, we report that MUC1-C is necessary for PBRM1 expression and that it forms a nuclear complex with PBRM1 in triple-negative breast cancer (TNBC) cells. Analysis of global transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) profiles further demonstrated that MUC1-C and PBRM1 drive STAT1 and IRF1 expression by increasing chromatin accessibility of promoter-like signatures (PLS) on their respective genes. We also found that MUC1-C, PBRM1, and IRF1 increase the expression and chromatin accessibility on PLSs of the (i) type II IFN pathway IDO1 and WARS genes and (ii) type I IFN pathway RIG-I, MDA5, and ISG15 genes that collectively contribute to DNA damage resistance and immune evasion. In support of these results, targeting MUC1-C in wild-type BRCA TNBC cells enhanced carboplatin-induced DNA damage and the loss of self-renewal capacity. In addition, MUC1-C was necessary for DNA damage resistance, self-renewal, and tumorigenicity in olaparib-resistant BRCA1-mutant TNBC cells. Analysis of TNBC tumors corroborated that (i) MUC1 and PBRM1 are associated with decreased responsiveness to chemotherapy and (ii) MUC1-C expression is associated with the depletion of tumor-infiltrating lymphocytes (TIL). These findings demonstrate that MUC1-C activates PBRM1, and thereby chromatin remodeling of IFN-stimulated genes that promote chronic inflammation, DNA damage resistance, and immune evasion. IMPLICATIONS MUC1-C is necessary for PBRM1-driven chromatin remodeling in chronic activation of IFN pathway genes that promote DNA damage resistance and immunosuppression.
Collapse
Affiliation(s)
- Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atsushi Fushimi
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Rehan Ahmad
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yuka Inoue
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Ishikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Masaaki Yamamoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hata
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Sayuri Akiyoshi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Qiang Hu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Authors: Donald Kufe, Dana-Farber Cancer Institute, 450 Brookline Avenue, D830, Boston, MA 02215. E-mail: ; and Mark D. Long,
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
- Corresponding Authors: Donald Kufe, Dana-Farber Cancer Institute, 450 Brookline Avenue, D830, Boston, MA 02215. E-mail: ; and Mark D. Long,
| |
Collapse
|
35
|
Burdett NL, Willis MO, Alsop K, Hunt AL, Pandey A, Hamilton PT, Abulez T, Liu X, Hoang T, Craig S, Fereday S, Hendley J, Garsed DW, Milne K, Kalaria S, Marshall A, Hood BL, Wilson KN, Conrads KA, Pishas KI, Ananda S, Scott CL, Antill Y, McNally O, Mileshkin L, Hamilton A, Au-Yeung G, Devereux L, Thorne H, Bild A, Bateman NW, Maxwell GL, Chang JT, Conrads TP, Nelson BH, Bowtell DDL, Christie EL. Multiomic analysis of homologous recombination-deficient end-stage high-grade serous ovarian cancer. Nat Genet 2023; 55:437-450. [PMID: 36849657 DOI: 10.1038/s41588-023-01320-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2023] [Indexed: 03/01/2023]
Abstract
High-grade serous ovarian cancer (HGSC) is frequently characterized by homologous recombination (HR) DNA repair deficiency and, while most such tumors are sensitive to initial treatment, acquired resistance is common. We undertook a multiomics approach to interrogate molecular diversity in end-stage disease, using multiple autopsy samples collected from 15 women with HR-deficient HGSC. Patients had polyclonal disease, and several resistance mechanisms were identified within most patients, including reversion mutations and HR restoration by other means. We also observed frequent whole-genome duplication and global changes in immune composition with evidence of immune escape. This analysis highlights diverse evolutionary changes within HGSC that evade therapy and ultimately overwhelm individual patients.
Collapse
Affiliation(s)
- Nikki L Burdett
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medical Oncology, Eastern Health, Box Hill, Victoria, Australia
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, Annandale, Victoria, USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Tamara Abulez
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Xuan Liu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stuart Craig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Ashley Marshall
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Katlin N Wilson
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kathleen I Pishas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sumitra Ananda
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medical Oncology, Western Health, St Albans, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, St Albans, Victoria, Australia
- Epworth Healthcare, East Melbourne, Victoria, Australia
| | - Clare L Scott
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Yoland Antill
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
- Department of Medical Oncology, Peninsula health, Frankston, Victoria, Australia
| | - Orla McNally
- The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Linda Mileshkin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anne Hamilton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- The Royal Women's Hospital, Parkville, Victoria, Australia
| | - George Au-Yeung
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa Devereux
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrea Bild
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, Annandale, Victoria, USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
36
|
Guantay L, Garro C, Siri S, Pansa MF, Ghidelli-Disse S, Paviolo N, Racca A, Nicotra V, Radu C, Bocco JL, Felice R, Jansson KH, Remlinger K, Amador A, Stronach E, Coleman K, Muelbaier M, Drewes G, Gloger I, Madauss K, García M, Gottifredi V, Soria G. Deoxycytidine kinase (dCK) inhibition is synthetic lethal with BRCA2 deficiency. Drug Resist Updat 2023; 67:100932. [PMID: 36706533 DOI: 10.1016/j.drup.2023.100932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
BRCA2 is a well-established cancer driver in several human malignancies. While the remarkable success of PARP inhibitors proved the clinical potential of targeting BRCA deficiencies, the emergence of resistance mechanisms underscores the importance of seeking novel Synthetic Lethal (SL) targets for future drug development efforts. In this work, we performed a BRCA2-centric SL screen with a collection of plant-derived compounds from South America. We identified the steroidal alkaloid Solanocapsine as a selective SL inducer, and we were able to substantially increase its potency by deriving multiple analogs. The use of two complementary chemoproteomic approaches led to the identification of the nucleotide salvage pathway enzyme deoxycytidine kinase (dCK) as Solanocapsine's target responsible for its BRCA2-linked SL induction. Additional confirmatory evidence was obtained by using the highly specific dCK inhibitor (DI-87), which induces SL in multiple BRCA2-deficient and KO contexts. Interestingly, dCK-induced SL is mechanistically different from the one induced by PARP inhibitors. dCK inhibition generates substantially lower levels of DNA damage, and cytotoxic phenotypes are associated exclusively with mitosis, thus suggesting that the fine-tuning of nucleotide supply in mitosis is critical for the survival of BRCA2-deficient cells. Moreover, by using a xenograft model of contralateral tumors, we show that dCK impairment suffices to trigger SL in-vivo. Taken together, our findings unveil dCK as a promising new target for BRCA2-deficient cancers, thus setting the ground for future therapeutic alternatives to PARP inhibitors.
Collapse
Affiliation(s)
- Laura Guantay
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Sebastián Siri
- Fundación Instituto Leloir - CONICET, Buenos Aires, Argentina
| | - María Florencia Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | | | - Natalia Paviolo
- Fundación Instituto Leloir - CONICET, Buenos Aires, Argentina
| | - Ana Racca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Nicotra
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Caius Radu
- University of California, Los Angeles, CA, United States
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rosana Felice
- GlaxoSmithKline, Southern Cone LatAm, Buenos Aires, Argentina
| | - Keith H Jansson
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Katja Remlinger
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Alejandro Amador
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Euan Stronach
- GlaxoSmithKline, Global Health R&D, Stevenage, United Kingdom
| | - Kevin Coleman
- GlaxoSmithKline, Synthetic Lethal RU, Waltham, MA, United States
| | | | - Gerard Drewes
- Cellzome GmbH - a GSK Company, 69117 Heidelberg, Germany
| | - Isro Gloger
- GlaxoSmithKline, Global Health R&D, Stevenage, United Kingdom
| | - Kevin Madauss
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Manuela García
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
37
|
Ye J, Wu J, Liu B. Therapeutic strategies of dual-target small molecules to overcome drug resistance in cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188866. [PMID: 36842765 DOI: 10.1016/j.bbcan.2023.188866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/28/2023]
Abstract
Despite some advances in targeted therapeutics of human cancers, curative cancer treatment still remains a tremendous challenge due to the occurrence of drug resistance. A variety of underlying resistance mechanisms to targeted cancer drugs have recently revealed that the dual-target therapeutic strategy would be an attractive avenue. Compared to drug combination strategies, one agent simultaneously modulating two druggable targets generally shows fewer adverse reactions and lower toxicity. As a consequence, the dual-target small molecule has been extensively explored to overcome drug resistance in cancer therapy. Thus, in this review, we focus on summarizing drug resistance mechanisms of cancer cells, such as enhanced drug efflux, deregulated cell death, DNA damage repair, and epigenetic alterations. Based upon the resistance mechanisms, we further discuss the current therapeutic strategies of dual-target small molecules to overcome drug resistance, which will shed new light on exploiting more intricate mechanisms and relevant dual-target drugs for future cancer therapeutics.
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhao Wu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
38
|
van de Kooij B, Schreuder A, Pavani RS, Garzero V, Van Hoeck A, San Martin Alonso M, Koerse D, Wendel TJ, Callen E, Boom J, Mei H, Cuppen E, Nussenzweig A, van Attikum H, Noordermeer SM. EXO1-mediated DNA repair by single-strand annealing is essential for BRCA1-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529205. [PMID: 37720033 PMCID: PMC10503826 DOI: 10.1101/2023.02.24.529205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Deficiency for the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR) leads to chromosomal instability and diseases such as cancer. Yet, defective HR also results in vulnerabilities that can be exploited for targeted therapy. Here, we identify such a vulnerability and show that BRCA1-deficient cells are dependent on the long-range end-resection factor EXO1 for survival. EXO1 loss results in DNA replication-induced lesions decorated by poly(ADP-ribose)-chains. In cells that lack both BRCA1 and EXO1, this is accompanied by unresolved DSBs due to impaired single-strand annealing (SSA), a DSB repair process that requires the activity of both proteins. In contrast, BRCA2-deficient cells have increased SSA, also in the absence of EXO1, and hence are not dependent on EXO1 for survival. In agreement with our mechanistic data, BRCA1-mutated tumours have elevated EXO1 expression and contain more genomic signatures of SSA compared to BRCA1-proficient tumours. Collectively, our data indicate that EXO1 is a promising novel target for treatment of BRCA1-deficient tumours.
Collapse
|
39
|
Zhao Q, Ni J, Dong J, Cheng X, Xiao L, Xue Q, Xu X, Guo W, Chen X. Platinum Resistance After PARPi Resistance in a gBRCAmt Recurrent Ovarian Cancer Patient: a Case Report. Reprod Sci 2023; 30:615-621. [PMID: 35943701 DOI: 10.1007/s43032-022-01037-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
As the most lethal gynecological malignant tumor, ovarian cancer is prone to recurrence and drug resistance. Poly(ADP-ribose) polymerase inhibitors are known to be effective in ovarian cancer patients as maintenance treatment, especially in patients with BRCA mutation. The current controversy is whether the use of poly(ADP-ribose) polymerase inhibitors may affect subsequent platinum sensitivity. A Chinese female patient diagnosed with high-grade serous ovarian cancer experienced five platinum-sensitive relapses. After obtaining informed consent from the patient, we performed next-generation gene sequencing and detected a germline BRCA1 pathologic mutation. When the patient achieved partial response with platinum after the fifth platinum-sensitive relapse, exploratory posterior-line maintenance therapy was performed due to her genotype. But the patient rapidly progressed to platinum resistance after poly(ADP-ribose) polymerase inhibitor resistance. In a gBRCAmt patient with platinum-sensitive recurrent ovarian cancer, olaparib as exploratory posterior-line maintenance treatment is barely effective and may affect the response to subsequent platinum therapy.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42# Baiziting Street, Jiangsu, 210009, Nanjing, People's Republic of China
| | - Jing Ni
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42# Baiziting Street, Jiangsu, 210009, Nanjing, People's Republic of China
| | - Jiayin Dong
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42# Baiziting Street, Jiangsu, 210009, Nanjing, People's Republic of China
| | - Xianzhong Cheng
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42# Baiziting Street, Jiangsu, 210009, Nanjing, People's Republic of China
| | - Li Xiao
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42# Baiziting Street, Jiangsu, 210009, Nanjing, People's Republic of China
| | - Qi Xue
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42# Baiziting Street, Jiangsu, 210009, Nanjing, People's Republic of China
| | - Xia Xu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42# Baiziting Street, Jiangsu, 210009, Nanjing, People's Republic of China
| | - Wenwen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan Road, Jiangsu, 210011, Nanjing, People's Republic of China
| | - Xiaoxiang Chen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42# Baiziting Street, Jiangsu, 210009, Nanjing, People's Republic of China.
| |
Collapse
|
40
|
Wu Y, Xu S, Cheng S, Yang J, Wang Y. Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status. J Ovarian Res 2023; 16:6. [PMID: 36611214 PMCID: PMC9826575 DOI: 10.1186/s13048-023-01094-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
As a kind of gynecological tumor, ovarian cancer is not as common as cervical cancer and breast cancer, but its malignant degree is higher. Despite the increasingly mature treatment of ovarian cancer, the five-year survival rate of patients is still less than 50%. Based on the concept of synthetic lethality, poly (ADP- ribose) polymerase (PARP) inhibitors target tumor cells with defects in homologous recombination repair(HRR), the most significant being the target gene Breast cancer susceptibility genes(BRCA). PARP inhibitors capture PARP-1 protein at the site of DNA damage to destroy the original reaction, causing the accumulation of PARP-DNA nucleoprotein complexes, resulting in DNA double-strand breaks(DSBs) and cell death. PARP inhibitors have been approved for the treatment of ovarian cancer for several years and achieved good results. However, with the widespread use of PARP inhibitors, more and more attention has been paid to drug resistance and side effects. Therefore, further research is needed to understand the mechanism of PARP inhibitors, to be familiar with the adverse reactions of the drug, to explore the markers of its efficacy and prognosis, and to deal with its drug resistance. This review elaborates the use of PARP inhibitors in ovarian cancer.
Collapse
Affiliation(s)
- Yongsong Wu
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China ,grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiani Yang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| | - Yu Wang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| |
Collapse
|
41
|
O'Connor MJ, Forment JV. Mechanisms of PARP Inhibitor Resistance. Cancer Treat Res 2023; 186:25-42. [PMID: 37978129 DOI: 10.1007/978-3-031-30065-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) represent the first medicines based on the targeting of the DNA damage response (DDR). PARPi have become standard of care for first-line maintenance treatment in ovarian cancer and have also been approved in other cancer indications including breast, pancreatic and prostate. Despite their efficacy, resistance to PARPi has been reported clinically and represents a growing patient population with unmet clinical need. Here, we describe the various mechanisms of PARPi resistance that have been identified in pre-clinical models and in the clinic.
Collapse
Affiliation(s)
- Mark J O'Connor
- Oncology R&D, AstraZeneca, Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| | - Josep V Forment
- Oncology R&D, AstraZeneca, Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| |
Collapse
|
42
|
Lee EK, Liu JF. Rational Combinations of PARP Inhibitors with HRD-Inducing Molecularly Targeted Agents. Cancer Treat Res 2023; 186:171-188. [PMID: 37978136 DOI: 10.1007/978-3-031-30065-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cancers with wild-type BRCA, homologous recombination proficiency, or de novo or acquired resistance to PARP inhibition represent a growing population of patients who may benefit from combinatorial PARP inhibitor strategies. We review targeted inhibitors of angiogenesis, epigenetic regulators, and PI3K, MAPK, and other cellular signaling pathways as inducers of homologous recombination deficiency, providing support for the use of PARP inhibitors in contexts not previously considered susceptible to PARP inhibition.
Collapse
|
43
|
Jackson LM, Moldovan GL. Mechanisms of PARP1 inhibitor resistance and their implications for cancer treatment. NAR Cancer 2022; 4:zcac042. [PMID: 36568963 PMCID: PMC9773381 DOI: 10.1093/narcan/zcac042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The discovery of synthetic lethality as a result of the combined loss of PARP1 and BRCA has revolutionized the treatment of DNA repair-deficient cancers. With the development of PARP inhibitors, patients displaying germline or somatic mutations in BRCA1 or BRCA2 were presented with a novel therapeutic strategy. However, a large subset of patients do not respond to PARP inhibitors. Furthermore, many of those who do respond eventually acquire resistance. As such, combating de novo and acquired resistance to PARP inhibitors remains an obstacle in achieving durable responses in patients. In this review, we touch on some of the key mechanisms of PARP inhibitor resistance, including restoration of homologous recombination, replication fork stabilization and suppression of single-stranded DNA gap accumulation, as well as address novel approaches for overcoming PARP inhibitor resistance.
Collapse
Affiliation(s)
- Lindsey M Jackson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
44
|
Mosler T, Baymaz HI, Gräf JF, Mikicic I, Blattner G, Bartlett E, Ostermaier M, Piccinno R, Yang J, Voigt A, Gatti M, Pellegrino S, Altmeyer M, Luck K, Ahel I, Roukos V, Beli P. PARP1 proximity proteomics reveals interaction partners at stressed replication forks. Nucleic Acids Res 2022; 50:11600-11618. [PMID: 36350633 PMCID: PMC9723622 DOI: 10.1093/nar/gkac948] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
PARP1 mediates poly-ADP-ribosylation of proteins on chromatin in response to different types of DNA lesions. PARP inhibitors are used for the treatment of BRCA1/2-deficient breast, ovarian, and prostate cancer. Loss of DNA replication fork protection is proposed as one mechanism that contributes to the vulnerability of BRCA1/2-deficient cells to PARP inhibitors. However, the mechanisms that regulate PARP1 activity at stressed replication forks remain poorly understood. Here, we performed proximity proteomics of PARP1 and isolation of proteins on stressed replication forks to map putative PARP1 regulators. We identified TPX2 as a direct PARP1-binding protein that regulates the auto-ADP-ribosylation activity of PARP1. TPX2 interacts with DNA damage response proteins and promotes homology-directed repair of DNA double-strand breaks. Moreover, TPX2 mRNA levels are increased in BRCA1/2-mutated breast and prostate cancers, and high TPX2 expression levels correlate with the sensitivity of cancer cells to PARP-trapping inhibitors. We propose that TPX2 confers a mitosis-independent function in the cellular response to replication stress by interacting with PARP1.
Collapse
Affiliation(s)
| | - H Irem Baymaz
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Justus F Gräf
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Ivan Mikicic
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | - Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | | | - Jiwen Yang
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich CH-8057, Switzerland
| | - Stefania Pellegrino
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich CH-8057, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich CH-8057, Switzerland
| | - Katja Luck
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
45
|
Shah JB, Pueschl D, Wubbenhorst B, Fan M, Pluta J, D'Andrea K, Hubert AP, Shilan JS, Zhou W, Kraya AA, Llop Guevara A, Ruan C, Serra V, Balmaña J, Feldman M, Morin PJ, Nayak A, Maxwell KN, Domchek SM, Nathanson KL. Analysis of matched primary and recurrent BRCA1/2 mutation-associated tumors identifies recurrence-specific drivers. Nat Commun 2022; 13:6728. [PMID: 36344544 PMCID: PMC9640723 DOI: 10.1038/s41467-022-34523-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Recurrence is a major cause of death among BRCA1/2 mutation carriers with breast (BrCa) and ovarian cancers (OvCa). Herein we perform multi-omic sequencing on 67 paired primary and recurrent BrCa and OvCa from 27 BRCA1/2 mutation carriers to identify potential recurrence-specific drivers. PARP1 amplifications are identified in recurrences (False Discovery Rate q = 0.05), and PARP1 is significantly overexpressed across primary BrCa and recurrent BrCa and OvCa, independent of amplification status. RNA sequencing analysis finds two BRCA2 isoforms, BRCA2-201/Long and BRCA2-001/Short, respectively predicted to be sensitive and insensitive to nonsense-mediated decay. BRCA2-001/Short is expressed more frequently in recurrences and associated with reduced overall survival in breast cancer (87 vs. 121 months; Hazard Ratio = 2.5 [1.18-5.5]). Loss of heterozygosity (LOH) status is discordant in 25% of patient's primary and recurrent tumors, with switching between both LOH and lack of LOH found. Our study reveals multiple potential drivers of recurrent disease in BRCA1/2 mutation-associated cancer, improving our understanding of tumor evolution and suggesting potential biomarkers.
Collapse
Affiliation(s)
- Jennifer B Shah
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dana Pueschl
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mengyao Fan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna P Hubert
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jake S Shilan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenting Zhou
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam A Kraya
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alba Llop Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Catherine Ruan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michael Feldman
- Division of Surgical Pathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pat J Morin
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anupma Nayak
- Division of Surgical Pathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kara N Maxwell
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susan M Domchek
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Classen S, Rahlf E, Jungwirth J, Albers N, Hebestreit LP, Zielinski A, Poole L, Groth M, Koch P, Liehr T, Kankel S, Cordes N, Petersen C, Rothkamm K, Pospiech H, Borgmann K. Partial Reduction in BRCA1 Gene Dose Modulates DNA Replication Stress Level and Thereby Contributes to Sensitivity or Resistance. Int J Mol Sci 2022; 23:13363. [PMID: 36362151 PMCID: PMC9656774 DOI: 10.3390/ijms232113363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.
Collapse
Affiliation(s)
- Sandra Classen
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elena Rahlf
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Jungwirth
- Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Nina Albers
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Luca Philipp Hebestreit
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexandra Zielinski
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lena Poole
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Groth
- CF Next-Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Philipp Koch
- CF Life Science Computing, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Bautzner Landstr. 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
47
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
48
|
Clarke TL, Mostoslavsky R. DNA repair as a shared hallmark in cancer and ageing. Mol Oncol 2022; 16:3352-3379. [PMID: 35834102 PMCID: PMC9490147 DOI: 10.1002/1878-0261.13285] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence demonstrates that DNA damage and genome instability play a crucial role in ageing. Mammalian cells have developed a wide range of complex and well‐orchestrated DNA repair pathways to respond to and resolve many different types of DNA lesions that occur from exogenous and endogenous sources. Defects in these repair pathways lead to accelerated or premature ageing syndromes and increase the likelihood of cancer development. Understanding the fundamental mechanisms of DNA repair will help develop novel strategies to treat ageing‐related diseases. Here, we revisit the processes involved in DNA damage repair and how these can contribute to diseases, including ageing and cancer. We also review recent mechanistic insights into DNA repair and discuss how these insights are being used to develop novel therapeutic strategies for treating human disease. We discuss the use of PARP inhibitors in the clinic for the treatment of breast and ovarian cancer and the challenges associated with acquired drug resistance. Finally, we discuss how DNA repair pathway‐targeted therapeutics are moving beyond PARP inhibition in the search for ever more innovative and efficacious cancer therapies.
Collapse
Affiliation(s)
- Thomas L Clarke
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, 02114, Boston, MA, USA.,The Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, 02114, Boston, MA, USA.,The Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
| |
Collapse
|
49
|
Rose PG. Ovarian cancer recurrence: is the definition of platinum sensitivity modified by PARPi, bevacizumab or other intervening treatments? : a clinical perspective. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:415-423. [PMID: 35800381 PMCID: PMC9255234 DOI: 10.20517/cdr.2022.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
In view of the high risk of recurrent disease in stage III and IV ovarian cancer following primary first-line chemotherapy, a variety of maintenance and consolidation treatment strategies have been developed. These have included: radiation, intravenous or intraperitoneal chemotherapy, targeted therapies, and immunotherapy. Popular at this time is the use of Poly-adenosine ribose polymerase (PARP) inhibitors and bevacizumab as maintenance therapy. What effect these maintenance or consolidation therapies have on subsequent response to therapy, specifically platinum-based chemotherapy, is only beginning to be studied. In this manuscript, we review the impact of PARP inhibitors and bevacizumab as well as radiation and maintenance chemotherapy on subsequent response to treatment. Prior use of bevacizumab does not appear to adversely affect subsequent response to platinum-based chemotherapy or platinum-based chemotherapy with bevacizumab. Prior therapy with PARP inhibitors induces platinum resistance to subsequent platinum-based therapy and negates classic predictors of response such as platinum-free interval and breast cancer susceptibility gene (BRCA) mutational status.
Collapse
Affiliation(s)
- Peter G Rose
- Section of Gynecologic Oncology, Women's Health Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
50
|
Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules 2022; 12:biom12070928. [PMID: 35883484 PMCID: PMC9312812 DOI: 10.3390/biom12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1 suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this regulation on normal cellular function and in human diseases.
Collapse
|