1
|
Zhang J, Wu D, Zhang Y, Feng X, Gao H. DNA methylation dynamics in male germline development in Brassica Rapa. MOLECULAR HORTICULTURE 2025; 5:16. [PMID: 40033451 DOI: 10.1186/s43897-024-00137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/13/2024] [Indexed: 03/05/2025]
Abstract
Dynamic DNA methylation represses transposable elements (TEs) and regulates gene activity, playing a pivotal role in plant development. Although substantial progress has been made in understanding DNA methylation reprogramming during germline development in Arabidopsis thaliana, whether similar mechanisms exist in other dicot plants remains unclear. Here, we analyzed DNA methylation levels in meiocytes, microspores, and pollens of Brassica Rapa using whole-genome bisulfite sequencing (WGBS). Global DNA methylation analysis revealed similar CHH methylation reprogramming compared to Arabidopsis, while distinct patterns were observed in the dynamics of global CG and CHG methylation in B. rapa. Differentially methylated region (DMR) analysis identified specifically methylated loci in the male sex cells of B. Rapa with a stronger tendency to target genes, similar to observations in Arabidopsis. Additionally, we found that the activity and genomic targeting preference of the small RNA-directed DNA methylation (RdDM) were altered during B. Rapa male germline development. A subset of long terminal repeat (LTR) TEs were activated, possibly due to the dynamic regulation of DNA methylation during male sexual development in B. Rapa. These findings provided new insights into the evolution of epigenetic reprogramming mechanisms in plants.
Collapse
Affiliation(s)
- Jun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yating Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoqi Feng
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, 3400, Austria.
| | - Hongbo Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Dziasek K, Santos-González J, Wang K, Qiu Y, Zhu J, Rigola D, Nijbroek K, Köhler C. Dosage-sensitive maternal siRNAs determine hybridization success in Capsella. NATURE PLANTS 2024; 10:1969-1983. [PMID: 39528633 DOI: 10.1038/s41477-024-01844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Hybrid seed failure arising from wide crosses between plant species is a recurring obstacle in plant breeding, impeding the transfer of desirable traits. This postzygotic reproductive barrier primarily occurs in the endosperm, a tissue that nourishes the embryo and functions similarly to the placenta in mammals. We found that incompatible seeds show a loss of DNA methylation and chromatin condensation in the endosperm, similar to seeds lacking maternal RNA polymerase IV activity. This similarity is linked to a decrease in small interfering RNAs in the endosperm (sirenRNAs), maternal RNA polymerase IV-dependent short interfering RNAs that regulate DNA methylation. Several AGAMOUS-like MADS-box transcription factor genes (AGLs), key regulators of endosperm development, are targeted by sirenRNAs in cis and in trans. This finding aligns with the enrichment of AGL target genes among deregulated genes. We propose that hybrid seed failure results from reduced maternal sirenRNAs combined with increased AGL expression, leading to abnormal gene regulation in the endosperm.
Collapse
Affiliation(s)
- Katarzyna Dziasek
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Kai Wang
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yichun Qiu
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Jiali Zhu
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden.
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
4
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
5
|
Tonosaki K, Susaki D, Morinaka H, Ono A, Nagata H, Furuumi H, Nonomura KI, Sato Y, Sugimoto K, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Multilayered epigenetic control of persistent and stage-specific imprinted genes in rice endosperm. NATURE PLANTS 2024; 10:1231-1245. [PMID: 39080502 DOI: 10.1038/s41477-024-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
In angiosperms, epigenetic profiles for genomic imprinting are established before fertilization. However, the causal relationships between epigenetic modifications and imprinted expression are not fully understood. In this study, we classified 'persistent' and 'stage-specific' imprinted genes on the basis of time-course transcriptome analysis in rice (Oryza sativa) endosperm and compared them to epigenetic modifications at a single time point. While the levels of epigenetic modifications are relatively low in stage-specific imprinted genes, they are considerably higher in persistent imprinted genes. Overall trends revealed that the maternal alleles of maternally expressed imprinted genes are activated by DNA demethylation, while the maternal alleles of paternally expressed imprinted genes with gene body methylation (gbM) are silenced by DNA demethylation and H3K27me3 deposition, and these regions are associated with an enriched motif related to Tc/Mar-Stowaway. Our findings provide insight into the stability of genomic imprinting and the potential variations associated with endosperm development, different cell types and parental genotypes.
Collapse
Grants
- 20K15504 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K15145 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04756 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K23585 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05175 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02170 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02320 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | | | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
6
|
Florez-Rueda AM, Miguel CM, Figueiredo DD. Comparative transcriptomics of seed nourishing tissues: uncovering conserved and divergent pathways in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1134-1157. [PMID: 38709819 DOI: 10.1111/tpj.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
The evolutionary and ecological success of spermatophytes is intrinsically linked to the seed habit, which provides a protective environment for the initial development of the new generation. This environment includes an ephemeral nourishing tissue that supports embryo growth. In gymnosperms this tissue originates from the asexual proliferation of the maternal megagametophyte, while in angiosperms it is a product of fertilization, and is called the endosperm. The emergence of these nourishing tissues is of profound evolutionary value, and they are also food staples for most of the world's population. Here, using Orthofinder to infer orthologue genes among newly generated and previously published datasets, we provide a comparative transcriptomic analysis of seed nourishing tissues from species of several angiosperm clades, including those of early diverging lineages, as well as of one gymnosperm. Our results show that, although the structure and composition of seed nourishing tissues has seen significant divergence along evolution, there are signatures that are conserved throughout the phylogeny. Conversely, we identified processes that are specific to species within the clades studied, and thus illustrate their functional divergence. With this, we aimed to provide a foundation for future studies on the evolutionary history of seed nourishing structures, as well as a resource for gene discovery in future functional studies.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Karl-Liebknechts-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Célia M Miguel
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Lisboa, Portugal
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
7
|
Cherubino Ribeiro TH, Baldrich P, de Oliveira RR, Fernandes-Brum CN, Mathioni SM, de Sousa Cardoso TC, de Souza Gomes M, do Amaral LR, Pimenta de Oliveira KK, Dos Reis GL, Meyers BC, Chalfun-Junior A. The floral development of the allotetraploid Coffea arabica L. correlates with a small RNA dynamic reprogramming. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1848-1863. [PMID: 38488203 DOI: 10.1111/tpj.16713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Noncoding and coding RNAs are key regulators of plant growth, development, and stress responses. To investigate the types of transcripts accumulated during the vegetative to reproductive transition and floral development in the Coffea arabica L., we sequenced small RNA libraries from eight developmental stages, up to anthesis. We combined these data with messenger RNA and PARE sequencing of two important development stages that marks the transition of an apparent latent to a rapid growth stage. In addition, we took advantage of multiple in silico tools to characterize genomic loci producing small RNAs such as phasiRNAs, miRNAs, and tRFs. Our differential and co-expression analysis showed that some types of small RNAs such as tRNAs, snoRNAs, snRNAs, and phasiRNAs preferentially accumulate in a stage-specific manner. Members of the miR482/miR2118 superfamily and their 21-nucleotide phasiRNAs originating from resistance genes show a robust co-expression pattern that is maintained across all the evaluated developmental stages. Finally, the majority of miRNAs accumulate in a family stage-specific manner, related to modulated hormonal responses and transcription factor expression.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | | | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| | - Christiane Noronha Fernandes-Brum
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| | | | - Thaís Cunha de Sousa Cardoso
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, Lavras, 38700-128, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, Lavras, 38700-128, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, Lavras, 38700-128, MG, Brazil
| | - Kellen Kauanne Pimenta de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| | - Gabriel Lasmar Dos Reis
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
- Division of Plant Sciences and Technology, University of Missouri-Columbia, Columbia, MI, 65211, USA
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| |
Collapse
|
8
|
Bente H, Köhler C. Molecular basis and evolutionary drivers of endosperm-based hybridization barriers. PLANT PHYSIOLOGY 2024; 195:155-169. [PMID: 38298124 PMCID: PMC11060687 DOI: 10.1093/plphys/kiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.
Collapse
Affiliation(s)
- Heinrich Bente
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
9
|
Dew-Budd KJ, Chow HT, Kendall T, David BC, Rozelle JA, Mosher RA, Beilstein MA. Mating system is associated with seed phenotypes upon loss of RNA-directed DNA methylation in Brassicaceae. PLANT PHYSIOLOGY 2024; 194:2136-2148. [PMID: 37987565 DOI: 10.1093/plphys/kiad622] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction. However, the developmental consequence of RdDM has been difficult to dissect because disruption of RdDM does not result in overt phenotypes in Arabidopsis (Arabidopsis thaliana), where the pathway has been most thoroughly studied. In contrast, Brassica rapa mutants lacking RdDM have a severe seed production defect, which is determined by the maternal sporophytic genotype. To explore the factors that underlie the different phenotypes of these species, we produced RdDM mutations in 3 additional members of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora. Among these 3 species, only mutations in the obligate outcrosser, C. grandiflora, displayed a seed production defect similar to Brassica rapa mutants, suggesting that mating system is a key determinant for reproductive phenotypes in RdDM mutants.
Collapse
Affiliation(s)
- Kelly J Dew-Budd
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Hiu Tung Chow
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Timmy Kendall
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Brandon C David
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - James A Rozelle
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Dong X, Luo H, Yao J, Guo Q, Yu S, Ruan Y, Li F, Jin W, Meng D. The conservation of allelic DNA methylation and its relationship with imprinting in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1376-1389. [PMID: 37935439 PMCID: PMC10901201 DOI: 10.1093/jxb/erad440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Genomic imprinting refers to allele-specific expression of genes depending on parental origin, and it is regulated by epigenetic modifications. Intraspecific allelic variation for imprinting has been detected; however, the intraspecific genome-wide allelic epigenetic variation in maize and its correlation with imprinting variants remain unclear. Here, three reciprocal hybrids were generated by crossing Zea mays inbred lines CAU5, B73, and Mo17 in order to examine the intraspecific conservation of the imprinted genes in the kernel. The majority of imprinted genes exhibited intraspecific conservation, and these genes also exhibited interspecific conservation (rice, sorghum, and Arabidopsis) and were enriched in some specific pathways. By comparing intraspecific allelic DNA methylation in the endosperm, we found that nearly 15% of DNA methylation existed as allelic variants. The intraspecific whole-genome correlation between DNA methylation and imprinted genes indicated that DNA methylation variants play an important role in imprinting variants. Disruption of two conserved imprinted genes using CRISPR/Cas9 editing resulted in a smaller kernel phenotype. Our results shed light on the intraspecific correlation of DNA methylation variants and variation for imprinting in maize, and show that imprinted genes play an important role in kernel development.
Collapse
Affiliation(s)
- Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, Liaoning, China
| | - Haishan Luo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jiabin Yao
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Qingfeng Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, Liaoning, China
| | - Fenghai Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Department of Agronomy, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Dexuan Meng
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| |
Collapse
|
11
|
Ren W, Wang H, Du Y, Li Y, Feng Z, Zhou X, Kang G, Shu Q, Guo T, Guo H, Yu L, Jin W, Yang F, Li J, Ma J, Li W, Xu C, Chen X, Liu X, Yang C, Liu L, Zhou L. Multi-generation study of heavy ion beam-induced mutations and agronomic trait variations to accelerate rice breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1213807. [PMID: 37416884 PMCID: PMC10322207 DOI: 10.3389/fpls.2023.1213807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Heavy ion beam (HIB) is an effective physical mutagen that has been widely used in plant mutational breeding. Systemic knowledge of the effects caused by different HIB doses at developmental and genomic levels will facilitate efficient breeding for crops. Here we examined the effects of HIB systematically. Kitaake rice seeds were irradiated by ten doses of carbon ion beams (CIB, 25 - 300 Gy), which is the most widely used HIB. We initially examined the growth, development and photosynthetic parameters of the M1 population and found that doses exceeding 125 Gy caused significant physiological damages to rice. Subsequently, we analyzed the genomic variations in 179 M2 individuals from six treatments (25 - 150 Gy) via whole-genome sequencing (WGS). The mutation rate peaks at 100 Gy (2.66×10-7/bp). Importantly, we found that mutations shared among different panicles of the same M1 individual are at low ratios, validating the hypothesis that different panicles may be derived from different progenitor cells. Furthermore, we isolated 129 mutants with distinct phenotypic variations, including changes in agronomic traits, from 11,720 M2 plants, accounting for a 1.1% mutation rate. Among them, about 50% possess stable inheritance in M3. WGS data of 11 stable M4 mutants, including three lines with higher yields, reveal their genomic mutational profiles and candidate genes. Our results demonstrate that HIB is an effective tool that facilitates breeding, that the optimal dose range for rice is 67 - 90% median lethal dose (LD50), and that the mutants isolated here can be further used for functional genomic research, genetic analysis, and breeding.
Collapse
Affiliation(s)
- Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhui Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guisen Kang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huijun Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixia Yu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Jin
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Fu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingpeng Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wenjian Li
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoli Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenan Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Luxiang Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Chow HT, Mosher RA. Small RNA-mediated DNA methylation during plant reproduction. THE PLANT CELL 2023; 35:1787-1800. [PMID: 36651080 DOI: 10.1093/plcell/koad010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 05/30/2023]
Abstract
Reproductive tissues are a rich source of small RNAs, including several classes of short interfering (si)RNAs that are restricted to this stage of development. In addition to RNA polymerase IV-dependent 24-nt siRNAs that trigger canonical RNA-directed DNA methylation, abundant reproductive-specific siRNAs are produced from companion cells adjacent to the developing germ line or zygote and may move intercellularly before inducing methylation. In some cases, these siRNAs are produced via non-canonical biosynthesis mechanisms or from sequences with little similarity to transposons. While the precise role of these siRNAs and the methylation they trigger is unclear, they have been implicated in specifying a single megaspore mother cell, silencing transposons in the male germ line, mediating parental dosage conflict to ensure proper endosperm development, hypermethylation of mature embryos, and trans-chromosomal methylation in hybrids. In this review, we summarize the current knowledge of reproductive siRNAs, including their biosynthesis, transport, and function.
Collapse
Affiliation(s)
- Hiu Tung Chow
- The School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721-0036, USA
| | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721-0036, USA
| |
Collapse
|
13
|
Dong X, Luo H, Yao J, Guo Q, Yu S, Zhang X, Cheng X, Meng D. Characterization of Genes That Exhibit Genotype-Dependent Allele-Specific Expression and Its Implications for the Development of Maize Kernel. Int J Mol Sci 2023; 24:ijms24054766. [PMID: 36902194 PMCID: PMC10002780 DOI: 10.3390/ijms24054766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Heterosis or hybrid vigor refers to the superior phenotypic traits of hybrids relative to their parental inbred lines. An imbalance between the expression levels of two parental alleles in the F1 hybrid has been suggested as a mechanism of heterosis. Here, based on genome-wide allele-specific expression analysis using RNA sequencing technology, 1689 genes exhibiting genotype-dependent allele-specific expression (genotype-dependent ASEGs) were identified in the embryos, and 1390 genotype-dependent ASEGs in the endosperm, of three maize F1 hybrids. Of these ASEGs, most were consistent in different tissues from one hybrid cross, but nearly 50% showed allele-specific expression from some genotypes but not others. These genotype-dependent ASEGs were mostly enriched in metabolic pathways of substances and energy, including the tricarboxylic acid cycle, aerobic respiration, and energy derivation by oxidation of organic compounds and ADP binding. Mutation and overexpression of one ASEG affected kernel size, which indicates that these genotype-dependent ASEGs may make important contributions to kernel development. Finally, the allele-specific methylation pattern on genotype-dependent ASEGs indicated that DNA methylation plays a potential role in the regulation of allelic expression for some ASEGs. In this study, a detailed analysis of genotype-dependent ASEGs in the embryo and endosperm of three different maize F1 hybrids will provide an index of genes for future research on the genetic and molecular mechanism of heterosis.
Collapse
Affiliation(s)
- Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| | - Haishan Luo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiabin Yao
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingfeng Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| | - Xipeng Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| | - Dexuan Meng
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence:
| |
Collapse
|
14
|
Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo Mutator insertion alleles are imprinted in maize. PLANT PHYSIOLOGY 2023; 191:299-316. [PMID: 36173333 PMCID: PMC9806621 DOI: 10.1093/plphys/kiac459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 05/20/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.
Collapse
Affiliation(s)
- Tong Li
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Liangwei Yin
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Claire E Stoll
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
15
|
Burgess D, Chow HT, Grover JW, Freeling M, Mosher RA. Ovule siRNAs methylate protein-coding genes in trans. THE PLANT CELL 2022; 34:3647-3664. [PMID: 35781738 PMCID: PMC9516104 DOI: 10.1093/plcell/koac197] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/24/2022] [Indexed: 05/31/2023]
Abstract
Twenty-four-nucleotide (nt) small interfering RNAs (siRNAs) maintain asymmetric DNA methylation at thousands of euchromatic transposable elements in plant genomes in a process called RNA-directed DNA methylation (RdDM). RdDM is dispensable for growth and development in Arabidopsis thaliana, but is required for reproduction in other plants, such as Brassica rapa. The 24-nt siRNAs are abundant in maternal reproductive tissue, due largely to overwhelming expression from a few loci in the ovule and developing seed coat, termed siren loci. A recent study showed that 24-nt siRNAs produced in the anther tapetal tissue can methylate male meiocyte genes in trans. Here we show that in B. rapa, a similar process takes place in female tissue. siRNAs are produced from gene fragments embedded in some siren loci, and these siRNAs can trigger methylation in trans at related protein-coding genes. This trans-methylation is associated with silencing of some target genes and may be responsible for seed abortion in RdDM mutants. Furthermore, we demonstrate that a consensus sequence in at least two families of DNA transposons is associated with abundant siren expression, most likely through recruitment of CLASSY3, a putative chromatin remodeler. This research describes a mechanism whereby RdDM influences gene expression and sheds light on the role of RdDM during plant reproduction.
Collapse
|
16
|
Wang L, Xu D, Zeng L, Yang DL. The Rise and Fall of Billionaire siRNAs during Reproductive Development in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:1957. [PMID: 35956435 PMCID: PMC9370656 DOI: 10.3390/plants11151957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
RNA polymerase IV-dependent siRNAs, usually 24 nt in length, function in the RNA-directed DNA methylation that is responsible for de novo methylation in plants. We analyzed 24 nt siRNAs in inflorescences and found that among the 20,200 24 nt siRNA clusters, the top 0.81% highly expressed clusters accounted for more than 68% of the 24 nt siRNA reads in inflorescences. We named the highly expressed siRNAs as billionaire siRNAs (bill-siRNAs) and the less-expressed siRNAs as pauper siRNAs (pau-siRNAs). The bill-siRNAs in inflorescences are mainly derived from the ovary. Female gametes produced more bill-siRNAs than male gametes. In embryos and seedlings developed from fertilized egg cells, the bill-siRNAs from gametes disappeared. The endosperm, which develops from the fertilized central cell, also contained no bill-siRNAs from gametes but did contain newly and highly expressed siRNAs produced in different regions. In contrast, bill-siRNAs from the ovaries were maintained in the seed coat. The biosynthesis of bill-siRNAs in various tissues and cells is dependent on OsRDR2 (RNA-dependent RNA polymerase 2) and Pol IV (DNA-dependent RNA polymerase IV). Similar to the pau-siRNAs, the first base of bill-siRNAs is enriched at adenine, and bill-siRNAs can direct DNA methylation in various tissues.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (L.W.); (D.X.)
| | - Dachao Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (L.W.); (D.X.)
| | - Longjun Zeng
- Yichun Academy of Sciences, Yichun 336000, China;
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (L.W.); (D.X.)
| |
Collapse
|
17
|
Iwasaki M, Penfield S, Lopez-Molina L. Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:355-378. [PMID: 35138879 DOI: 10.1146/annurev-arplant-102820-090750] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luis Lopez-Molina
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
19
|
Xu Q, Wu L, Luo Z, Zhang M, Lai J, Li L, Springer NM, Li Q. DNA demethylation affects imprinted gene expression in maize endosperm. Genome Biol 2022; 23:77. [PMID: 35264226 PMCID: PMC8905802 DOI: 10.1186/s13059-022-02641-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background DNA demethylation occurs in many species and is involved in diverse biological processes. However, the occurrence and role of DNA demethylation in maize remain unknown. Results We analyze loss-of-function mutants of two major genes encoding DNA demethylases. No significant change in DNA methylation has been detected in these mutants. However, we detect increased DNA methylation levels in the mutants around genes and some transposons. The increase in DNA methylation is accompanied by alteration in gene expression, with a tendency to show downregulation, especially for the genes that are preferentially expressed in endosperm. Imprinted expression of both maternally and paternally expressed genes changes in F1 hybrid with the mutant as female and the wild-type as male parental line, but not in the reciprocal hybrid. This alteration in gene expression is accompanied by allele-specific DNA methylation differences, suggesting that removal of DNA methylation of the maternal allele is required for the proper expression of these imprinted genes. Finally, we demonstrate that hypermethylation in the double mutant is associated with reduced binding of transcription factor to its target, and altered gene expression. Conclusions Our results suggest that active removal of DNA methylation is important for transcription factor binding and proper gene expression in maize endosperm.
Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02641-x.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Leiming Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixiang Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100094, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
20
|
Nagata H, Ono A, Tonosaki K, Kawakatsu T, Sato Y, Yano K, Kishima Y, Kinoshita T. Temporal changes in transcripts of miniature inverted-repeat transposable elements during rice endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1035-1047. [PMID: 35128739 PMCID: PMC9314911 DOI: 10.1111/tpj.15698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The repression of transcription from transposable elements (TEs) by DNA methylation is necessary to maintain genome integrity and prevent harmful mutations. However, under certain circumstances, TEs may escape from the host defense system and reactivate their transcription. In Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), DNA demethylases target the sequences derived from TEs in the central cell, the progenitor cell for the endosperm in the female gametophyte. Genome-wide DNA demethylation is also observed in the endosperm after fertilization. In the present study, we used a custom microarray to survey the transcripts generated from TEs during rice endosperm development and at selected time points in the embryo as a control. The expression patterns of TE transcripts are dynamically up- and downregulated during endosperm development, especially those of miniature inverted-repeat TEs (MITEs). Some TE transcripts were directionally controlled, whereas the other DNA transposons and retrotransposons were not. We also discovered the NUCLEAR FACTOR Y binding motif, CCAAT, in the region near the 5' terminal inverted repeat of Youren, one of the transcribed MITEs in the endosperm. Our results uncover dynamic changes in TE activity during endosperm development in rice.
Collapse
Affiliation(s)
- Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
- Faculty of AgricultureIwate University3‐18‐8 UedaMoriokaIwate020‐8550Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization3‐1‐3 Kan‐nondaiTsukubaIbaraki305‐8604Japan
| | - Yutaka Sato
- Genetic Strains Research CenterNational Institute of GeneticsMishima, Shizuoka411‐8540Japan
| | - Kentaro Yano
- Department of Life SciencesSchool of Agriculture, Meiji University1‐1‐1 Higashi‐mitaKawasaki214‐8571Japan
| | - Yuji Kishima
- Research Faculty of AgricultureHokkaido UniversityKita‐9 Nishi‐9Kita‐ku, Sapporo060‐8589Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| |
Collapse
|
21
|
Decoding the sorghum methylome: understanding epigenetic contributions to agronomic traits. Biochem Soc Trans 2022; 50:583-596. [PMID: 35212360 PMCID: PMC9022969 DOI: 10.1042/bst20210908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
DNA methylation is a chromatin modification that plays an essential role in regulating gene expression and genome stability and it is typically associated with gene silencing and heterochromatin. Owing to its heritability, alterations in the patterns of DNA methylation have the potential to provide for epigenetic inheritance of traits. Contemporary epigenomic technologies provide information beyond sequence variation and could supply alternative sources of trait variation for improvement in crops such as sorghum. Yet, compared with other species such as maize and rice, the sorghum DNA methylome is far less well understood. The distribution of CG, CHG, and CHH methylation in the genome is different compared with other species. CG and CHG methylation levels peak around centromeric segments in the sorghum genome and are far more depleted in the gene dense chromosome arms. The genes regulating DNA methylation in sorghum are also yet to be functionally characterised; better understanding of their identity and functional analysis of DNA methylation machinery mutants in diverse genotypes will be important to better characterise the sorghum methylome. Here, we catalogue homologous genes encoding methylation regulatory enzymes in sorghum based on genes in Arabidopsis, maize, and rice. Discovering variation in the methylome may uncover epialleles that provide extra information to explain trait variation and has the potential to be applied in epigenome-wide association studies or genomic prediction. DNA methylation can also improve genome annotations and discover regulatory elements underlying traits. Thus, improving our knowledge of the sorghum methylome can enhance our understanding of the molecular basis of traits and may be useful to improve sorghum performance.
Collapse
|
22
|
Li C, Gent JI, Xu H, Fu H, Russell SD, Sundaresan V. Resetting of the 24-nt siRNA landscape in rice zygotes. Genome Res 2022; 32:309-323. [PMID: 34949668 PMCID: PMC8805726 DOI: 10.1101/gr.275981.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/19/2021] [Indexed: 11/24/2022]
Abstract
The zygote, a totipotent stem cell, is crucial to the life cycle of sexually reproducing organisms. It is produced by the fusion of two differentiated cells-the egg and sperm, which in plants have radically different siRNA transcriptomes from each other and from multicellular embryos. Owing to technical challenges, the epigenetic changes that accompany the transition from differentiated gametes to totipotent zygote are poorly understood. Because siRNAs serve as both regulators and outputs of the epigenome, we characterized small RNA transcriptomes of zygotes from rice. Zygote small RNAs exhibit extensive maternal carryover and an apparent lack of paternal contribution, indicated by absence of sperm signature siRNAs. Zygote formation is accompanied by widespread redistribution of 24-nt siRNAs relative to gametes, such that ∼70% of the zygote siRNA loci do not overlap any egg cell siRNA loci. Newly detected siRNA loci in zygote are gene-proximal and not associated with centromeric heterochromatin, similar to canonical siRNAs, in sharp contrast to gametic siRNA loci that are gene-distal and heterochromatic. In addition, zygote but not egg siRNA loci are associated with high DNA methylation in the mature embryo. Thus, the zygote begins transitioning before the first embryonic division to an siRNA profile that is associated with future RdDM in embryogenesis. These findings indicate that, in addition to changes in gene expression, the transition to totipotency in the plant zygote is accompanied by resetting of the epigenetic reprogramming that occurred during gamete formation.
Collapse
Affiliation(s)
- Chenxin Li
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Hengping Xu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Hong Fu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Scott D Russell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, California 95616, USA
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
23
|
Meijer A, De Meyer T, Vandepoele K, Kyndt T. Spatiotemporal expression profile of novel and known small RNAs throughout rice plant development focussing on seed tissues. BMC Genomics 2022; 23:44. [PMID: 35012466 PMCID: PMC8750796 DOI: 10.1186/s12864-021-08264-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 02/10/2023] Open
Abstract
Background Small RNAs (sRNAs) regulate numerous plant processes directly related to yield, such as disease resistance and plant growth. To exploit this yield-regulating potential of sRNAs, the sRNA profile of one of the world’s most important staple crops – rice – was investigated throughout plant development using next-generation sequencing. Results Root and leaves were investigated at both the vegetative and generative phase, and early-life sRNA expression was characterized in the embryo and endosperm. This led to the identification of 49,505 novel sRNAs and 5581 tRNA-derived sRNAs (tsRNAs). In all tissues, 24 nt small interfering RNAs (siRNAs) were highly expressed and associated with euchromatic, but not heterochromatic transposable elements. Twenty-one nt siRNAs deriving from genic regions in the endosperm were exceptionally highly expressed, mimicking previously reported expression levels of 24 nt siRNAs in younger endosperm samples. In rice embryos, sRNA content was highly diverse while tsRNAs were underrepresented, possibly due to snoRNA activity. Publicly available mRNA expression and DNA methylation profiles were used to identify putative siRNA targets in embryo and endosperm. These include multiple genes related to the plant hormones gibberellic acid and ethylene, and to seed phytoalexin and iron content. Conclusions This work introduces multiple sRNAs as potential regulators of rice yield and quality, identifying them as possible targets for the continuous search to optimize rice production. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08264-z.
Collapse
Affiliation(s)
- Anikó Meijer
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Ghent, Belgium. .,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.
| | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Zhou M, Coruh C, Xu G, Martins LM, Bourbousse C, Lambolez A, Law JA. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis. Nat Commun 2022; 13:244. [PMID: 35017514 PMCID: PMC8752594 DOI: 10.1038/s41467-021-27690-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation shapes the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As is evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that CLASSY1-4 (CLSY1-4), four locus-specific regulators of DNA methylation, also control tissue-specific methylation patterns, with the most striking pattern observed in ovules where CLSY3 and CLSY4 control DNA methylation at loci with a highly conserved DNA motif. On a more global scale, we demonstrate that specific clsy mutants are sufficient to shift the epigenetic landscape between tissues. Together, these findings reveal substantial epigenetic diversity between tissues and assign these changes to specific CLSY proteins, elucidating how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development. CLASSY (CLSY) proteins regulate DNA methylation at specific loci in the Arabidopsis genome. Here the authors show that the CLSYs also control tissue-specific DNA methylation, including at siren loci in ovules, and that the lack of an individual CLSYs can shift the epigenetic landscape between tissues.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.,Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Guanghui Xu
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Laura M Martins
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Clara Bourbousse
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.,Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Alice Lambolez
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyō-ku, Tōkyō, 113-8654, Japan
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA. .,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
25
|
Zhang Z, Yu S, Li J, Zhu Y, Jiang S, Xia H, Zhou Y, Sun D, Liu M, Li C, Zhu Y, Ruan Y, Dong X. Epigenetic modifications potentially controlling the allelic expression of imprinted genes in sunflower endosperm. BMC PLANT BIOLOGY 2021; 21:570. [PMID: 34863098 PMCID: PMC8642925 DOI: 10.1186/s12870-021-03344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/26/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Genomic imprinting is an epigenetic phenomenon mainly occurs in endosperm of flowering plants. Genome-wide identification of imprinted genes have been completed in several dicot Cruciferous plant and monocot crops. RESULTS Here, we analyzed global patterns of allelic gene expression in developing endosperm of sunflower which belongs to the composite family. Totally, 691 imprinted loci candidates were identified in 12 day-after-pollination sunflower endosperm including 79 maternally expressed genes (MEG) and 596 paternally expressed genes (PEG), 6 maternally expressed noncoding RNAs (MNC) and 10 paternally expressed noncoding RNAs (PNC). And a clear clustering of imprinted genes throughout the rapeseed genome was identified. Generally, imprinting in sunflower is conserved within a species, but intraspecific variation also was detected. Limited loci in sunflower are imprinted in other several different species. The DNA methylation pattern around imprinted genes were investigated in embryo and endosperm tissues. In CG context, the imprinted genes were significantly associated with differential methylated regions exhibiting hypomethylation in endosperm and hypermethylation in embryo, which indicated that the maternal demethylation in CG context potentially induce the genomic imprinting in endosperm. CONCLUSION Our study would be helpful for understanding of genomic imprinting in plants and provide potential basis for further research in imprinting in sunflower.
Collapse
Affiliation(s)
- Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haoran Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yue Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Daqiu Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
| |
Collapse
|
26
|
Zhou S, Li X, Liu Q, Zhao Y, Jiang W, Wu A, Zhou DX. DNA demethylases remodel DNA methylation in rice gametes and zygote and are required for reproduction. MOLECULAR PLANT 2021; 14:1569-1583. [PMID: 34116223 DOI: 10.1016/j.molp.2021.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/07/2021] [Accepted: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Fertilization constitutes a critical step in the plant life cycle during which the gamete genomes undergo chromatin dynamics in preparation for embryogenesis. In mammals, parental chromatin is extensively reprogrammed through the global erasure of DNA methylation. However, in flowering plants it remains unclear whether and how DNA methylation is remodeled in gametes and after fertilization in the zygote. In this study, we characterize DNA methylation patterns and investigate the function of DNA glycosylases in rice eggs, sperm, and unicellular zygotes and during embryogenesis. We found that DNA methylation is locally reconfigured after fertilization and is intensified during embryogenesis. Genetic, epigenomic, and transcriptomic analysis revealed that three rice DNA glycosylases, DNG702, DNG701, and DNG704, demethylate DNA at distinct genomic regions in the gametes and the zygote, and are required for zygotic gene expression and development. Collectively, these results indicate that active DNA demethylation takes place in the gametes and the zygote to locally remodel DNA methylation, which is critical for egg and zygote gene expression and reproduction in rice.
Collapse
Affiliation(s)
- Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xue Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Wei Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Anqi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China; Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
27
|
Rodrigues JA, Hsieh PH, Ruan D, Nishimura T, Sharma MK, Sharma R, Ye X, Nguyen ND, Nijjar S, Ronald PC, Fischer RL, Zilberman D. Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting. Proc Natl Acad Sci U S A 2021; 118:e2104445118. [PMID: 34272287 PMCID: PMC8307775 DOI: 10.1073/pnas.2104445118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parent-of-origin-dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin-specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA-producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions-the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Deling Ruan
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Toshiro Nishimura
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Manoj K Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Rita Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - XinYi Ye
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Nicholas D Nguyen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Sukhranjan Nijjar
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
28
|
Florez-Rueda AM, Fiscalini F, Roth M, Grossniklaus U, Städler T. Endosperm and Seed Transcriptomes Reveal Possible Roles for Small RNA Pathways in Wild Tomato Hybrid Seed Failure. Genome Biol Evol 2021; 13:6278300. [PMID: 34009298 PMCID: PMC8358227 DOI: 10.1093/gbe/evab107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Crosses between the wild tomato species Solanum peruvianum and Solanum chilense result in hybrid seed failure (HSF), characterized by endosperm misdevelopment and embryo arrest. We previously showed that genomic imprinting, the parent-of-origin–dependent expression of alleles, is perturbed in the hybrid endosperm, with many of the normally paternally expressed genes losing their imprinted status. Here, we report transcriptome-based analyses of gene and small RNA (sRNA) expression levels. We identified 2,295 genes and 387 sRNA clusters as differentially expressed when comparing reciprocal hybrid seed to seeds and endosperms from the two within-species crosses. Our analyses uncovered a pattern of overdominance in endosperm gene expression in both hybrid cross directions, in marked contrast to the patterns of sRNA expression in whole seeds. Intriguingly, patterns of increased gene expression resemble the previously reported increased maternal expression proportions in hybrid endosperms. We identified physical clusters of sRNAs; differentially expressed sRNAs exhibit reduced transcript abundance in hybrid seeds of both cross directions. Moreover, sRNAs map to genes coding for key proteins involved in epigenetic regulation of gene expression, suggesting a regulatory feedback mechanism. We describe examples of genes that appear to be targets of sRNA-mediated gene silencing; in these cases, reduced sRNA abundance is concomitant with increased gene expression in hybrid seeds. Our analyses also show that S. peruvianum dominance impacts gene and sRNA expression in hybrid seeds. Overall, our study indicates roles for sRNA-mediated epigenetic regulation in HSF between closely related wild tomato species.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland.,Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Flurin Fiscalini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Morgane Roth
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Thomas Städler
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
29
|
Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima ST, Furuumi H, Nonomura KI, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. THE PLANT CELL 2021; 33:85-103. [PMID: 33751094 PMCID: PMC8136911 DOI: 10.1093/plcell/koaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/29/2020] [Indexed: 05/22/2023]
Abstract
In angiosperms, endosperm development comprises a series of developmental transitions controlled by genetic and epigenetic mechanisms that are initiated after double fertilization. Polycomb repressive complex 2 (PRC2) is a key component of these mechanisms that mediate histone H3 lysine 27 trimethylation (H3K27me3); the action of PRC2 is well described in Arabidopsis thaliana but remains uncertain in cereals. In this study, we demonstrate that mutation of the rice (Oryza sativa) gene EMBRYONIC FLOWER2a (OsEMF2a), encoding a zinc-finger containing component of PRC2, causes an autonomous endosperm phenotype involving proliferation of the central cell nuclei with separate cytoplasmic domains, even in the absence of fertilization. Detailed cytological and transcriptomic analyses revealed that the autonomous endosperm can produce storage compounds, starch granules, and protein bodies specific to the endosperm. These events have not been reported in Arabidopsis. After fertilization, we observed an abnormally delayed developmental transition in the endosperm. Transcriptome and H3K27me3 ChIP-seq analyses using endosperm from the emf2a mutant identified downstream targets of PRC2. These included >100 transcription factor genes such as type-I MADS-box genes, which are likely required for endosperm development. Our results demonstrate that OsEMF2a-containing PRC2 controls endosperm developmental programs before and after fertilization.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Kunisada
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Nishino
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Saku T Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masaki Endo
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
| | - Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Taiji Kawakatsu
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| |
Collapse
|
30
|
Liu Y, Jing X, Zhang H, Xiong J, Qiao Y. Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca. Genes (Basel) 2021; 12:genes12030380. [PMID: 33800118 PMCID: PMC7999015 DOI: 10.3390/genes12030380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting has drawn increasing attention in plant biology in recent years. At present, hundreds of imprinted genes have been identified in various plants, and some of them have been reported to be evolutionarily conserved in plant species. In this research, 17 candidate genes in Fragaria vesca were obtained based on the homologous imprinted genes in Arabidopsis thaliana and other species. We further constructed reciprocal crosses of diploid strawberry (F. vesca) using the varieties 10-41 and 18-86 as the parents to investigate the conservation of these imprinted genes. Potentially informative single nucleotide polymorphisms (SNPs) were used as molecular markers of two parents obtained from candidate imprinted genes which have been cloned and sequenced. Meanwhile, we analyzed the SNP site variation ratios and parent-of-origin expression patterns of candidate imprinted genes at 10 days after pollination (DAP) endosperm and embryo for the hybrids of reciprocal cross, respectively. A total of five maternally expressed genes (MEGs), i.e., FvARI8, FvKHDP-2, FvDRIP2, FvBRO1, and FvLTP3, were identified in the endosperm, which did not show imprinting in the embryo. Finally, tissues expression analysis indicated that the five imprinted genes excluding FvDRIP2 mainly expressed in the endosperm. This is the first report on imprinted genes of Fragaria, and we provide a simple and rapid method based on homologous conservation to screen imprinted genes. The present study will provide a basis for further study of function and mechanism of genomic imprinting in F. vesca.
Collapse
|
31
|
Liu X, Luo J, Li T, Yang H, Wang P, Su L, Zheng Y, Bao C, Zhou C. SDG711 Is Involved in Rice Seed Development through Regulation of Starch Metabolism Gene Expression in Coordination with Other Histone Modifications. RICE (NEW YORK, N.Y.) 2021; 14:25. [PMID: 33666740 PMCID: PMC7936014 DOI: 10.1186/s12284-021-00467-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/17/2021] [Indexed: 05/22/2023]
Abstract
SDG711 is a histone H3K27me2/3 transmethylase in rice, a homolog of CLF in Arabidopsis, and plays key roles in regulating flowering time and panicle development. In this work, we investigated the role of SDG711 in rice seed development. Overexpression and downregulation of SDG711 lead to a decrease and increase in the expression level of genes related to starch accumulation, resulting in smaller seeds or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development, and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of the endosperm. Our results suggest that the crosstalk between SDG711-mediated H3K27me3 and H3K4me3, and H3K9ac are involved in starch accumulation to control normal seed development.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China.
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Lufang Su
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Yu Zheng
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Chun Bao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
32
|
Kumar S, Mohapatra T. Dynamics of DNA Methylation and Its Functions in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:596236. [PMID: 34093600 PMCID: PMC8175986 DOI: 10.3389/fpls.2021.596236] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/19/2021] [Indexed: 05/20/2023]
Abstract
Epigenetic modifications in DNA bases and histone proteins play important roles in the regulation of gene expression and genome stability. Chemical modification of DNA base (e.g., addition of a methyl group at the fifth carbon of cytosine residue) switches on/off the gene expression during developmental process and environmental stresses. The dynamics of DNA base methylation depends mainly on the activities of the writer/eraser guided by non-coding RNA (ncRNA) and regulated by the developmental/environmental cues. De novo DNA methylation and active demethylation activities control the methylation level and regulate the gene expression. Identification of ncRNA involved in de novo DNA methylation, increased DNA methylation proteins guiding DNA demethylase, and methylation monitoring sequence that helps maintaining a balance between DNA methylation and demethylation is the recent developments that may resolve some of the enigmas. Such discoveries provide a better understanding of the dynamics/functions of DNA base methylation and epigenetic regulation of growth, development, and stress tolerance in crop plants. Identification of epigenetic pathways in animals, their existence/orthologs in plants, and functional validation might improve future strategies for epigenome editing toward climate-resilient, sustainable agriculture in this era of global climate change. The present review discusses the dynamics of DNA methylation (cytosine/adenine) in plants, its functions in regulating gene expression under abiotic/biotic stresses, developmental processes, and genome stability.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | |
Collapse
|
33
|
Kirov I, Omarov M, Merkulov P, Dudnikov M, Gvaramiya S, Kolganova E, Komakhin R, Karlov G, Soloviev A. Genomic and Transcriptomic Survey Provides New Insight into the Organization and Transposition Activity of Highly Expressed LTR Retrotransposons of Sunflower ( Helianthus annuus L.). Int J Mol Sci 2020; 21:E9331. [PMID: 33297579 PMCID: PMC7730604 DOI: 10.3390/ijms21239331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
LTR retrotransposons (RTEs) play a crucial role in plant genome evolution and adaptation. Although RTEs are generally silenced in somatic plant tissues under non-stressed conditions, some expressed RTEs (exRTEs) escape genome defense mechanisms. As our understanding of exRTE organization in plants is rudimentary, we systematically surveyed the genomic and transcriptomic organization and mobilome (transposition) activity of sunflower (Helianthus annuus L.) exRTEs. We identified 44 transcribed RTEs in the sunflower genome and demonstrated their distinct genomic features: more recent insertion time, longer open reading frame (ORF) length, and smaller distance to neighboring genes. We showed that GAG-encoding ORFs are present at significantly higher frequencies in exRTEs, compared with non-expressed RTEs. Most exRTEs exhibit variation in copy number among sunflower cultivars and one exRTE Gagarin produces extrachromosomal circular DNA in seedling, demonstrating recent and ongoing transposition activity. Nanopore direct RNA sequencing of full-length RTE RNA revealed complex patterns of alternative splicing in RTE RNAs, resulting in isoforms that carry ORFs for distinct RTE proteins. Together, our study demonstrates that tens of expressed sunflower RTEs with specific genomic organization shape the hidden layer of the transcriptome, pointing to the evolution of specific strategies that circumvent existing genome defense mechanisms.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| | - Murad Omarov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
- Faculty of Computer Science, National Research University Higher School of Economics, Pokrovsky Boulvar 11, 109028 Moscow, Russia
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| | - Sofya Gvaramiya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
| | - Elizaveta Kolganova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
| | - Roman Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
| | - Gennady Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.O.); (P.M.); (M.D.); (S.G.); (E.K.); (R.K.); (G.K.); (A.S.)
| |
Collapse
|
34
|
Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 2020; 20:739-761. [PMID: 33089419 DOI: 10.1007/s10142-020-00756-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Epigenetics is defined as changes in gene expression that are not associated with changes in DNA sequence but due to the result of methylation of DNA and post-translational modifications to the histones. These epigenetic modifications are known to regulate gene expression by bringing changes in the chromatin state, which underlies plant development and shapes phenotypic plasticity in responses to the environment and internal cues. This review articulates the role of histone modifications and DNA methylation in modulating biotic and abiotic stresses, as well as crop improvement. It also highlights the possibility of engineering epigenomes and epigenome-based predictive models for improving agronomic traits.
Collapse
|
35
|
Abundant expression of maternal siRNAs is a conserved feature of seed development. Proc Natl Acad Sci U S A 2020; 117:15305-15315. [PMID: 32541052 DOI: 10.1073/pnas.2001332117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In Brassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression during B. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.
Collapse
|
36
|
Lu Y, Zhou DX, Zhao Y. Understanding epigenomics based on the rice model. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1345-1363. [PMID: 31897514 DOI: 10.1007/s00122-019-03518-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
The purpose of this paper provides a comprehensive overview of the recent researches on rice epigenomics, including DNA methylation, histone modifications, noncoding RNAs, and three-dimensional genomics. The challenges and perspectives for future research in rice are discussed. Rice as a model plant for epigenomic studies has much progressed current understanding of epigenetics in plants. Recent results on rice epigenome profiling and three-dimensional chromatin structure studies reveal specific features and implication in gene regulation during rice plant development and adaptation to environmental changes. Results on rice chromatin regulator functions shed light on mechanisms of establishment, recognition, and resetting of epigenomic information in plants. Cloning of several rice epialleles associated with important agronomic traits highlights importance of epigenomic variation in rice plant growth, fitness, and yield. In this review, we summarize and analyze recent advances in rice epigenomics and discuss challenges and directions for future research in the field.
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University Paris-Saclay, 91405, Orsay, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
37
|
Fujino K, Ikegaya T. A novel genotype DATTO5 developed using the five genes exhibits the fastest heading date designed in rice. BREEDING SCIENCE 2020; 70:193-199. [PMID: 32523401 PMCID: PMC7272244 DOI: 10.1270/jsbbs.19113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/07/2019] [Indexed: 06/11/2023]
Abstract
The optimization of heading date is a key aspect for maximizing grain productivity in cereal crops including rice. The combinations of genes for heading date, a quantitative trait, are a major driver in the wide adaptability of cultivated rice worldwide. Here, we identified a novel QTL, qDTH3 (quantitative trait locus for days-to-heading on chromosome 3), for early flowering time in the F2 population derived from a cross between Hoshinoyume (HS) and Daichinohoshi (DH) among local rice populations with extremely early heading date. The DH allele at qDTH3, qDTH3DH , headed 2.7 days earlier than the HS allele at qDTH3, qDTH3HS . We sought to design a genotype for earlier heading date by pyramiding of five heading date genes. We designated this aggregate of the five genes as DATTO5. Plants with DATTO5 were selected from the F2 population derived from a cross between DH and HShd5, which is a near-isogenic line carrying a loss-of-function of days to heading 8 in a genetic background of HS. Plants with DATTO5 exhibited earlier heading date but reduced fitness, including shorter culm and panicle length and fewer seeds compared with HS, as a representative local rice variety with extremely early heading date.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, Hokkaido 062-8555, Japan
| | - Tomohito Ikegaya
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, Hokkaido 062-8555, Japan
| |
Collapse
|
38
|
Abstract
In this review, Batista and Köhler revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting. Genomic imprinting is an epigenetic phenomenon leading to parentally biased gene expression. Throughout the years, extensive efforts have been made to characterize the epigenetic marks underlying imprinting in animals and plants. As a result, DNA methylation asymmetries between parental genomes emerged as the primary factor controlling the imprinting status of many genes. Nevertheless, the data accumulated so far suggest that this process cannot solely explain the imprinting of all genes. In this review, we revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
39
|
Nakamura M, Köhler C, Hennig L. Tissue-specific transposon-associated small RNAs in the gymnosperm tree, Norway spruce. BMC Genomics 2019; 20:997. [PMID: 31856707 PMCID: PMC6923980 DOI: 10.1186/s12864-019-6385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are regulatory molecules impacting on gene expression and transposon activity. MicroRNAs (miRNAs) are responsible for tissue-specific and environmentally-induced gene repression. Short interfering RNAs (siRNA) are constitutively involved in transposon silencing across different type of tissues. The male gametophyte in angiosperms has a unique set of sRNAs compared to vegetative tissues, including phased siRNAs from intergenic or genic regions, or epigenetically activated siRNAs. This is contrasted by a lack of knowledge about the sRNA profile of the male gametophyte of gymnosperms. RESULTS Here, we isolated mature pollen from male cones of Norway spruce and investigated its sRNA profiles. While 21-nt sRNAs is the major size class of sRNAs in needles, in pollen 21-nt and 24-nt sRNAs are the most abundant size classes. Although the 24-nt sRNAs were exclusively derived from TEs in pollen, both 21-nt and 24-nt sRNAs were associated with TEs. We also investigated sRNAs from somatic embryonic callus, which has been reported to contain 24-nt sRNAs. Our data show that the 24-nt sRNA profiles are tissue-specific and differ between pollen and cell culture. CONCLUSION Our data reveal that gymnosperm pollen, like angiosperm pollen, has a unique sRNA profile, differing from vegetative leaf tissue. Thus, our results reveal that angiosperm and gymnosperm pollen produce new size classes not present in vegetative tissues; while in angiosperm pollen 21-nt sRNAs are generated, in the gymnosperm Norway spruce 24-nt sRNAs are generated. The tissue-specific production of distinct TE-derived sRNAs in angiosperms and gymnosperms provides insights into the diversification process of sRNAs in TE silencing pathways between the two groups of seed plants.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
40
|
Han Q, Bartels A, Cheng X, Meyer A, An YQC, Hsieh TF, Xiao W. Epigenetics Regulates Reproductive Development in Plants. PLANTS 2019; 8:plants8120564. [PMID: 31810261 PMCID: PMC6963493 DOI: 10.3390/plants8120564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Seed, resulting from reproductive development, is the main nutrient source for human beings, and reproduction has been intensively studied through genetic, molecular, and epigenetic approaches. However, how different epigenetic pathways crosstalk and integrate to regulate seed development remains unknown. Here, we review the recent progress of epigenetic changes that affect chromatin structure, such as DNA methylation, polycomb group proteins, histone modifications, and small RNA pathways in regulating plant reproduction. In gametogenesis of flowering plants, epigenetics is dynamic between the companion cell and gametes. Cytosine DNA methylation occurs in CG, CHG, CHH contexts (H = A, C, or T) of genes and transposable elements, and undergoes dynamic changes during reproduction. Cytosine methylation in the CHH context increases significantly during embryogenesis, reaches the highest levels in mature embryos, and decreases as the seed germinates. Polycomb group proteins are important transcriptional regulators during seed development. Histone modifications and small RNA pathways add another layer of complexity in regulating seed development. In summary, multiple epigenetic pathways are pivotal in regulating seed development. It remains to be elucidated how these epigenetic pathways interplay to affect dynamic chromatin structure and control reproduction.
Collapse
Affiliation(s)
- Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Xi Cheng
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Angela Meyer
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, Donald Danforth Plant Science Center, MO 63132, USA;
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA;
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Correspondence: ; Tel.: +1-314-977-2547
| |
Collapse
|
41
|
Jain R, Jenkins J, Shu S, Chern M, Martin JA, Copetti D, Duong PQ, Pham NT, Kudrna DA, Talag J, Schackwitz WS, Lipzen AM, Dilworth D, Bauer D, Grimwood J, Nelson CR, Xing F, Xie W, Barry KW, Wing RA, Schmutz J, Li G, Ronald PC. Genome sequence of the model rice variety KitaakeX. BMC Genomics 2019; 20:905. [PMID: 31775618 PMCID: PMC6882167 DOI: 10.1186/s12864-019-6262-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The availability of thousands of complete rice genome sequences from diverse varieties and accessions has laid the foundation for in-depth exploration of the rice genome. One drawback to these collections is that most of these rice varieties have long life cycles, and/or low transformation efficiencies, which limits their usefulness as model organisms for functional genomics studies. In contrast, the rice variety Kitaake has a rapid life cycle (9 weeks seed to seed) and is easy to transform and propagate. For these reasons, Kitaake has emerged as a model for studies of diverse monocotyledonous species. RESULTS Here, we report the de novo genome sequencing and analysis of Oryza sativa ssp. japonica variety KitaakeX, a Kitaake plant carrying the rice XA21 immune receptor. Our KitaakeX sequence assembly contains 377.6 Mb, consisting of 33 scaffolds (476 contigs) with a contig N50 of 1.4 Mb. Complementing the assembly are detailed gene annotations of 35,594 protein coding genes. We identified 331,335 genomic variations between KitaakeX and Nipponbare (ssp. japonica), and 2,785,991 variations between KitaakeX and Zhenshan97 (ssp. indica). We also compared Kitaake resequencing reads to the KitaakeX assembly and identified 219 small variations. The high-quality genome of the model rice plant KitaakeX will accelerate rice functional genomics. CONCLUSIONS The high quality, de novo assembly of the KitaakeX genome will serve as a useful reference genome for rice and will accelerate functional genomics studies of rice and other species.
Collapse
Affiliation(s)
- Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, One Shields Avenue, Davis, CA, 95616, USA.,Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jerry Jenkins
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Shengqiang Shu
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, One Shields Avenue, Davis, CA, 95616, USA.,Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joel A Martin
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.,Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Phat Q Duong
- Department of Plant Pathology and the Genome Center, University of California, One Shields Avenue, Davis, CA, 95616, USA.,Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nikki T Pham
- Department of Plant Pathology and the Genome Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - David A Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.,BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.,BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wendy S Schackwitz
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Anna M Lipzen
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - David Dilworth
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Diane Bauer
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Jane Grimwood
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Catherine R Nelson
- Department of Plant Pathology and the Genome Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Feng Xing
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kerrie W Barry
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.,BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.,International Rice Research Institute, Genetic Resource Center, Los Baños, Laguna, Philippines
| | - Jeremy Schmutz
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Guotian Li
- Department of Plant Pathology and the Genome Center, University of California, One Shields Avenue, Davis, CA, 95616, USA. .,Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,The Provincial Key Lab of Plant Pathology of Hubei Province and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, One Shields Avenue, Davis, CA, 95616, USA. .,Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
42
|
Harris KD, Lloyd JPB, Domb K, Zilberman D, Zemach A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 2019; 12:62. [PMID: 31601251 PMCID: PMC6786280 DOI: 10.1186/s13072-019-0307-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation of active genes, also known as gene body methylation, is found in many animal and plant genomes. Despite this, the transcriptional and developmental role of such methylation remains poorly understood. Here, we explore the dynamic range of DNA methylation in honey bee, a model organism for gene body methylation. RESULTS Our data show that CG methylation in gene bodies globally fluctuates during honey bee development. However, these changes cause no gene expression alterations. Intriguingly, despite the global alterations, tissue-specific CG methylation patterns of complete genes or exons are rare, implying robust maintenance of genic methylation during development. Additionally, we show that CG methylation maintenance fluctuates in somatic cells, while reaching maximum fidelity in sperm cells. Finally, unlike universally present CG methylation, we discovered non-CG methylation specifically in bee heads that resembles such methylation in mammalian brain tissue. CONCLUSIONS Based on these results, we propose that gene body CG methylation can oscillate during development if it is kept to a level adequate to preserve function. Additionally, our data suggest that heightened non-CG methylation is a conserved regulator of animal nervous systems.
Collapse
Affiliation(s)
- Keith D Harris
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - James P B Lloyd
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Katherine Domb
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Center, Norwich, UK.
| | - Assaf Zemach
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
43
|
Abstract
DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so-called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions.
Collapse
|
44
|
Hornslien KS, Miller JR, Grini PE. Regulation of Parent-of-Origin Allelic Expression in the Endosperm. PLANT PHYSIOLOGY 2019; 180:1498-1519. [PMID: 31064812 PMCID: PMC6752901 DOI: 10.1104/pp.19.00320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 05/22/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon established in the gametes prior to fertilization that causes differential expression of parental alleles, mainly in the endosperm of flowering plants. The overlap between previously identified panels of imprinted genes is limited. To investigate imprinting, we used high-resolution sequencing data acquired with sequence-capture technology. We present a bioinformatics pipeline to assay parent-of-origin allele-specific expression and report more than 300 loci with parental expression bias in Arabidopsis (Arabidopsis thaliana). In most cases, the level of expression from maternal and paternal alleles was not binary, instead supporting a differential dosage hypothesis for the evolution of imprinting in plants. To address imprinting regulation, we systematically employed mutations in regulative epigenetic pathways suggested to be major players in the process. We established the mechanistic mode of imprinting for more than 50 loci regulated by DNA methylation and Polycomb-dependent histone methylation. However, the imprinting patterns of most genes were not affected by these mechanisms. To this end, we also demonstrated that the RNA-directed DNA methylation pathway alone does not substantially influence imprinting patterns, suggesting that more complex epigenetic pathways regulate most of the identified imprinted genes.
Collapse
Affiliation(s)
- Karina S Hornslien
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jason R Miller
- College of Natural Sciences and Mathematics, Shepherd University, Shepherdstown, West Virginia 25443-5000
- J. Craig Venter Institute, Rockville, Maryland 20850
| | - Paul E Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
45
|
He S, Vickers M, Zhang J, Feng X. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. eLife 2019; 8:42530. [PMID: 31135340 PMCID: PMC6594752 DOI: 10.7554/elife.42530] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell - vegetative cell (VC) - of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.
Collapse
Affiliation(s)
- Shengbo He
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
46
|
Abstract
Epigenetic reprogramming is required for proper regulation of gene expression in eukaryotic organisms. In Arabidopsis, active DNA demethylation is crucial for seed viability, pollen function, and successful reproduction. The DEMETER (DME) DNA glycosylase initiates localized DNA demethylation in vegetative and central cells, so-called companion cells that are adjacent to sperm and egg gametes, respectively. In rice, the central cell genome displays local DNA hypomethylation, suggesting that active DNA demethylation also occurs in rice; however, the enzyme responsible for this process is unknown. One candidate is the rice REPRESSOR OF SILENCING 1a (ROS1a) gene, which is related to DME and is essential for rice seed viability and pollen function. Here, we report genome-wide analyses of DNA methylation in wild-type and ros1a mutant sperm and vegetative cells. We find that the rice vegetative cell genome is locally hypomethylated compared with sperm by a process that requires ROS1a activity. We show that many ROS1a target sequences in the vegetative cell are hypomethylated in the rice central cell, suggesting that ROS1a also demethylates the central cell genome. Similar to Arabidopsis, we show that sperm non-CG methylation is indirectly promoted by DNA demethylation in the vegetative cell. These results reveal that DNA glycosylase-mediated DNA demethylation processes are conserved in Arabidopsis and rice, plant species that diverged 150 million years ago. Finally, although global non-CG methylation levels of sperm and egg differ, the maternal and paternal embryo genomes show similar non-CG methylation levels, suggesting that rice gamete genomes undergo dynamic DNA methylation reprogramming after cell fusion.
Collapse
|
47
|
Liu J, Li J, Liu HF, Fan SH, Singh S, Zhou XR, Hu ZY, Wang HZ, Hua W. Genome-wide screening and analysis of imprinted genes in rapeseed (Brassica napus L.) endosperm. DNA Res 2019; 25:629-640. [PMID: 30272113 PMCID: PMC6289790 DOI: 10.1093/dnares/dsy030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/09/2018] [Indexed: 12/28/2022] Open
Abstract
Species-specific genomic imprinting is an epigenetic phenomenon leading to parent-of-origin-specific differential expression of maternally and paternally inherited alleles. To date, no studies of imprinting have been reported in rapeseed, a tetraploid species. Here, we analysed global patterns of allelic gene expression in developing rapeseed endosperms from reciprocal crosses between inbred lines YN171 and 93275. A total of 183 imprinted genes, consisting of 167 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs), were identified from 14,394 genes found to harbour diagnostic SNPs between the parental lines. Some imprinted genes were validated in different endosperm stages and other parental combinations by RT-PCR analysis. A clear clustering of imprinted genes throughout the rapeseed genome was identified, which was different from most other plants. Methylation analysis of 104 out of the 183 imprinted genes showed that 11 genes (7 MEGs and 4 PEGs) harboured differentially methylated regions (DMRs). Unexpectedly, only 1 MEG out of these 11 genes had a DMR that exhibited high CG methylation rate in paternal allele and had big difference between parent alleles. These results extend our understanding of gene imprinting in plants and provide potential avenues for further research in imprinted genes.
Collapse
Affiliation(s)
- Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Hong-Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Shi-Hang Fan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Surinder Singh
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Xue-Rong Zhou
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Zhi-Yong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Han-Zhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| |
Collapse
|
48
|
Trujillo JT, Seetharam AS, Hufford MB, Beilstein MA, Mosher RA. Evidence for a Unique DNA-Dependent RNA Polymerase in Cereal Crops. Mol Biol Evol 2018; 35:2454-2462. [PMID: 30053133 PMCID: PMC6188566 DOI: 10.1093/molbev/msy146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gene duplication is an important driver for the evolution of new genes and protein functions. Duplication of DNA-dependent RNA polymerase (Pol) II subunits within plants led to the emergence of RNA Pol IV and V complexes, each of which possess unique functions necessary for RNA-directed DNA Methylation. Comprehensive identification of Pol V subunit orthologs across the monocot radiation revealed a duplication of the largest two subunits within the grasses (Poaceae), including critical cereal crops. These paralogous Pol subunits display sequence conservation within catalytic domains, but their carboxy terminal domains differ in length and character of the Ago-binding platform, suggesting unique functional interactions. Phylogenetic analysis of the catalytic region indicates positive selection on one paralog following duplication, consistent with retention via neofunctionalization. Positive selection on residue pairs that are predicted to interact between subunits suggests that paralogous subunits have evolved specific assembly partners. Additional Pol subunits as well as Pol-interacting proteins also possess grass-specific paralogs, supporting the hypothesis that a novel Pol complex with distinct function has evolved in the grass family, Poaceae.
Collapse
Affiliation(s)
- Joshua T Trujillo
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ
| | | | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| | - Mark A Beilstein
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ
- The School of Plant Sciences, The University of Arizona, Tucson, AZ
| | - Rebecca A Mosher
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ
- The School of Plant Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
49
|
Chen C, Li T, Zhu S, Liu Z, Shi Z, Zheng X, Chen R, Huang J, Shen Y, Luo S, Wang L, Liu QQ, E Z. Characterization of Imprinted Genes in Rice Reveals Conservation of Regulation and Imprinting with Other Plant Species. PLANT PHYSIOLOGY 2018; 177:1754-1771. [PMID: 29914891 PMCID: PMC6084669 DOI: 10.1104/pp.17.01621] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon by which certain genes display differential expression in a parent-of-origin-dependent manner. Hundreds of imprinted genes have been identified from several plant species. Here, we identified, with a high level of confidence, 208 imprinted gene candidates from rice (Oryza sativa). Imprinted genes of rice showed limited association with the transposable elements, which contrasts with findings from Arabidopsis (Arabidopsis thaliana). Generally, imprinting in rice is conserved within a species, but intraspecific variation also was detected. The imprinted rice genes do not show signatures of selection, which suggests that domestication has had a limited evolutionary consequence on genomic imprinting. Although conservation of imprinting in plants is limited, we show that some loci are imprinted in several different species. Moreover, our results suggest that different types of epigenetic regulation can be established either before or after fertilization. Imprinted 24-nucleotide small RNAs and their neighboring genes tend to express alleles from different parents. This association was not observed between 21-nucleotide small RNAs and their neighboring genes. Together, our findings suggest that the regulation of imprinting can be diverse, and genomic imprinting has evolutionary and biological significance.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China, 225009
| | - Tingting Li
- China National Rice Research Institute, Hangzhou, China, 311401
| | - Shan Zhu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China, 330200
| | - Zehou Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China, 610041
| | - Zhenyuan Shi
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China, 225009
| | - Xiaoming Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facilities for Crop Gene Resources and Genetic Improvement, Beijing, China, 100081
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China, 300381
| | - Jianfeng Huang
- Shanghai Biotechnology Corporation, Shanghai, China, 201203
| | - Yi Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 210014
| | - Shiyou Luo
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China, 330200
| | - Lei Wang
- China National Rice Research Institute, Hangzhou, China, 311401
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China, 225009
| | - Zhiguo E
- China National Rice Research Institute, Hangzhou, China, 311401
| |
Collapse
|
50
|
Erdmann RM, Satyaki PRV, Klosinska M, Gehring M. A Small RNA Pathway Mediates Allelic Dosage in Endosperm. Cell Rep 2018; 21:3364-3372. [PMID: 29262317 DOI: 10.1016/j.celrep.2017.11.078] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/18/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
Balance between maternal and paternal genomes within the triploid endosperm is necessary for normal seed development. The majority of endosperm genes are expressed in a 2:1 maternal:paternal ratio, reflecting genomic DNA content. Here, we find that the 2:1 transcriptional ratio is, unexpectedly, actively regulated. In A. thaliana and A. lyrata, endosperm 24-nt small RNAs are reduced in transposable elements and enriched in genes compared with the embryo. We find an inverse relationship between the parent of origin of sRNAs and mRNAs, with genes more likely to be associated with maternally than paternally biased sRNAs. Disruption of the Pol IV sRNA pathway causes a shift toward maternal allele mRNA expression for many genes. Furthermore, paternal inheritance of an RNA Pol IV mutation is sufficient to rescue seed abortion caused by excess paternal genome dosage. Thus, RNA Pol IV mediates the transcriptional balance between maternally and paternally inherited genomes in endosperm.
Collapse
Affiliation(s)
- Robert M Erdmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Maja Klosinska
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|