1
|
Titoli S, Barra V, Gargano S, Di Leonardo A, Melfi R. RNA editing applied to cystic fibrosis: RESTORE can target G542X CFTR mRNA and revert the nonsense mutation. Gene 2025; 951:149384. [PMID: 40054708 DOI: 10.1016/j.gene.2025.149384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Nonsense mutations in the CFTR gene are responsible for approximately 8 % of cystic fibrosis (CF) cases worldwide. The consequent premature termination of translation leads to the production of a truncated and non-functional CFTR protein. Despite the intensive research in the field, these patients cannot benefit from specific and approved therapies yet. To address this issue, in this study we evaluated a potential therapeutic strategy to overcome the nonsense G542X (UGG > UGA) mutation in the CFF-16HBEge human bronchial epithelial cells by restoring the full-length CFTR protein. METHODS We applied the RESTORE (Recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing) approach, based on specifically designed antisense RNA oligonucleotides (ASOs) to recruit endogenous ADAR (adenosine deaminase acting on RNA) enzymes. The ADAR's recruitment to the target CFTR mRNA is expected to promote the deamination of adenosine (A) into inosine (I) within the premature termination codon (UGA). As the ribosome reads the inosine as guanosine (G), the stop codon could be recoded as a tryptophan (UGG), thereby allowing the synthesis of a full-length CFTR protein, albeit with a different amino acid. RESULTS Our results indicate that in the CFF-16HBEge G542X cell line, the transfection of a specific ASO allows the rescue of the CFTR transcript and protein expression, compared to the untransfected mutated cells. Next generation sequencing of CFTR cDNA also confirmed the occurrence of the expected RNA editing outcome. CONCLUSIONS The obtained results suggest that the RESTORE approach might be explored as a promising strategy to treating nonsense mutations in CFTR, potentially contributing to novel therapeutic options for CF patients.
Collapse
Affiliation(s)
- Simona Titoli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Serena Gargano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy; Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, Palermo 90128, Italy.
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| |
Collapse
|
2
|
Merdler-Rabinowicz R, Dadush A, Patiyal S, Rajagopal PS, Daya G, Ben-Aroya S, Schäffer A, Eisenberg E, Ruppin E, Levanon E. A systematic evaluation of the therapeutic potential of endogenous-ADAR editors in cancer prevention and treatment. NAR Cancer 2025; 7:zcaf016. [PMID: 40330550 PMCID: PMC12053386 DOI: 10.1093/narcan/zcaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/10/2025] [Accepted: 05/05/2025] [Indexed: 05/08/2025] Open
Abstract
Adenosine deaminases acting on RNA (ADAR) enzymes constitute a natural cellular mechanism that induces A-to-I(G) editing, introducing genetic changes at the RNA level. Recently, interest in the endogenous-ADAR editor has emerged for correcting genetic mutations, consisting of a programmed oligonucleotide that attracts the native ADAR, thereby offering opportunities for medical therapy. Here, we systematically chart the scope of cancer mutations that endogenous-ADAR can correct. First, analyzing germline single nucleotide variants in cancer predisposition genes, we find that endogenous-ADAR can revert a fifth of them, reducing the risk of cancer development later in life. Second, examining somatic mutations across various cancer types, we find that it has the potential to correct at least one driver mutation in over a third of the samples, suggesting a promising future treatment strategy. We also highlight key driver mutations that are amenable to endogenous-ADAR, and are thus of special clinical interest. As using endogenous-ADAR entails delivering relatively small payloads, the prospects of delivering endogenous-ADAR to various cancers seem promising. We expect that the large scope of correctable mutations that are systematically charted here for the first time will pave the way for a new era of cancer treatment options.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, 5290002, Israel
| | - Ariel Dadush
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, 5290002, Israel
| | - Sumeet Patiyal
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Padma Sheila Rajagopal
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Gulzar N Daya
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Shay Ben-Aroya
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Alejandro A Schäffer
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
3
|
Luo H, Yao J, Zhang R. Harnessing RNA base editing for diverse applications in RNA biology and RNA therapeutics. ADVANCED BIOTECHNOLOGY 2025; 3:11. [PMID: 40198443 PMCID: PMC11979053 DOI: 10.1007/s44307-025-00063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Recent advancements in molecular engineering have established RNA-based technologies as powerful tools for both fundamental research and translational applications. Among the various RNA-based technologies developed, RNA base editing has recently emerged as a groundbreaking advancement. It primarily involves the conversion of adenosine (A) to inosine (I) and cytidine (C) to uridine (U), which are mediated by ADAR and APOBEC enzymes, respectively. RNA base editing has been applied in both biological research and therapeutic contexts. It enables site-directed editing within target transcripts, offering reversible, dose-dependent effects, in contrast to the permanent or heritable changes associated with DNA base editing. Additionally, RNA editing-based profiling of RNA-binding protein (RBP) binding sites facilitates transcriptome-wide mapping of RBP-RNA interactions in specific tissues and at the single-cell level. Furthermore, RNA editing-based sensors have been utilized to express effector proteins in response to specific RNA species. As RNA base editing technologies continue to evolve, we anticipate that they will significantly drive advancements in RNA therapeutics, synthetic biology, and biological research.
Collapse
Affiliation(s)
- Hui Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jing Yao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
4
|
Sun Y, Cao Y, Song Y, Li J, Hou Y, Huang W, Xie G, Yang W, Zhang R. Improved RNA base editing with guide RNAs mimicking highly edited endogenous ADAR substrates. Nat Biotechnol 2025:10.1038/s41587-025-02628-6. [PMID: 40181169 DOI: 10.1038/s41587-025-02628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Adenosine deaminase acting on RNA (ADAR)-mediated RNA base editing offers a safer alternative to genome editing for specific clinical applications because of nonpermanent editing of targets. Current guide RNA (gRNA) designs feature a fully complementary specificity domain with an A-C mismatch at the targeted adenosine. However, perfectly matched dsRNA is not the most effective ADAR substrate. Here we introduce MIRROR (mimicking inverted repeats to recruit ADARs using engineered oligoribonucleotides), an approach that implements structural motifs derived from highly edited inverted Alu repeats in human tissues to enable rational gRNA design for ADAR recruitment. We demonstrated that MIRROR is applicable to both short chemically synthesized gRNAs with modifications and long biologically generated gRNAs and surpasses current state-of-the-art approaches in both gRNA forms. It enhances editing efficiency by up to 5.7-fold in multiple human cell types and primary hepatocytes from an alpha-1 antitrypsin deficiency mouse model. Our findings improve programmable RNA editing in vitro and in vivo by rational design through the screening of highly edited natural substrate mimics.
Collapse
Affiliation(s)
- Yuanfan Sun
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong Cao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yulong Song
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jin Li
- RecoRNA Biotechnology, Guangzhou, China
| | | | - Wen Huang
- RecoRNA Biotechnology, Guangzhou, China
| | | | | | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Reautschnig P, Fruhner C, Wahn N, Wiegand CP, Kragness S, Yung JF, Hofacker DT, Fisk J, Eidelman M, Waffenschmidt N, Feige M, Pfeiffer LS, Schulz AE, Füll Y, Levanon EY, Mandel G, Stafforst T. Precise in vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA. Nat Biotechnol 2025; 43:545-557. [PMID: 38997581 PMCID: PMC11994451 DOI: 10.1038/s41587-024-02313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/17/2024] [Indexed: 07/14/2024]
Abstract
Recruiting the endogenous editing enzyme adenosine deaminase acting on RNA (ADAR) with tailored guide RNAs for adenosine-to-inosine (A-to-I) RNA base editing is promising for safely manipulating genetic information at the RNA level. However, the precision and efficiency of editing are often compromised by bystander off-target editing. Here, we find that in 5'-UAN triplets, which dominate bystander editing, G•U wobble base pairs effectively mitigate off-target events while maintaining high on-target efficiency. This strategy is universally applicable to existing A-to-I RNA base-editing systems and complements other suppression methods such as G•A mismatches and uridine (U) depletion. Combining wobble base pairing with a circularized format of the CLUSTER approach achieves highly precise and efficient editing (up to 87%) of a disease-relevant mutation in the Mecp2 transcript in cell culture. Virus-mediated delivery of the guide RNA alone realizes functional MeCP2 protein restoration in the central nervous system of a murine Rett syndrome model with editing yields of up to 19% and excellent bystander control in vivo.
Collapse
Affiliation(s)
- Philipp Reautschnig
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Nicolai Wahn
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Charlotte P Wiegand
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Sabrina Kragness
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - John F Yung
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Daniel T Hofacker
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Jenna Fisk
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Michelle Eidelman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Nils Waffenschmidt
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Maximilian Feige
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Annika E Schulz
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Yvonne Füll
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Gail Mandel
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University of Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence (EXC2180) Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Li H, Qiu Y, Song B, Quan X, Zhang D, Li X, Yang J, Liu X, Zeng Z, Jing J, Yin S, Dai Q, Wang L, Han H, Ye H, Sun Z, Cheng Y, Zhang X, Du B, Liu M, Li D. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. Nat Biotechnol 2025:10.1038/s41587-025-02610-2. [PMID: 40164763 DOI: 10.1038/s41587-025-02610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Tunable and reversible regulation of exogenous and endogenous gene expression would be useful for improving the safety and efficacy of gene therapy. Current chemically inducible systems are limited by the rapid diffusion and extended metabolism of small molecules, and associated side effects. Here we develop a photoactivatable RNA adenosine base editor (PA-rABE) by harnessing a compact Cas13 variant and a split ADAR2 deaminase fused with the Magnets system, which is activated through blue-light-induced dimerization. PA-rABE achieves highly efficient editing on endogenous RNA with minimal bystander editing and off-target effects. By editing a phosphorylation site of the endogenous CTNNB1 gene, PA-rABE stabilizes the β-catenin protein and activates Wnt signaling in vivo. Using adeno-associated virus vectors to deliver PA-rABE along with an hF9 variant containing a premature termination codon, we show amelioration of clotting defects in hemophilia B mice upon illumination. In summary, PA-rABE offers a controlled RNA base-editing technology for diverse biomedical applications, enabling reversible and spatiotemporally specific modulation.
Collapse
Affiliation(s)
- Huiying Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Yuhao Qiu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Bowen Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xinyi Quan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xinru Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Jingyun Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xiaohong Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Zhiyang Zeng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Qi Dai
- Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Honghui Han
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xueli Zhang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
- BRL Medicine Inc., Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
| |
Collapse
|
7
|
Li G, Chen G, Yuan GH, Wei J, Ni Q, Wu J, Yang B, Yang L, Chen J. Specific and efficient RNA A-to-I editing through cleavage of an ADAR inhibitor. Nat Biotechnol 2025:10.1038/s41587-025-02591-2. [PMID: 40140558 DOI: 10.1038/s41587-025-02591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/13/2025] [Indexed: 03/28/2025]
Abstract
RNA editing can be a promising therapeutic approach. However, ectopic expression of RNA editing enzymes has been shown to trigger off-target editing. Here we identified adenosine deaminase acting on RNA (ADAR) inhibitors (ADIs) that suppress the activity of the fused ADAR2 deamination domain (ADAR2DD). Using these specific ADIs, we develop an RNA transformer adenosine base editor (RtABE) with high specificity. Fusing ADI to ADAR2DD, RtABE remains inactive until it binds to its target site. After binding to the target site, ADI is cleaved from ADAR2DD, and RtABE becomes active. RtABE can induce efficient editing in broad sequence contexts, including UAN, AAN, CAN and GAN. Using an adeno-associated virus for delivery of RtABE enables therapeutic RNA correction and restoration of α-L-iduronidase activity in Hurler syndrome mice with no substantial off-target editing. RtABE is a specific and efficient RNA editing system with a broad scope that may be a better alternative to existing RNA editing tools.
Collapse
Affiliation(s)
- Guangye Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guo Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Guo-Hua Yuan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qingyang Ni
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bei Yang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
8
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Ai X, Ding S, Zhou S, Du F, Liu S, Cui X, Dong J, Huang X, Tang Z. Enhancing RNA editing efficiency and specificity with engineered ADAR2 guide RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102447. [PMID: 39967855 PMCID: PMC11834095 DOI: 10.1016/j.omtn.2025.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
RNA editing is a prospective therapeutic approach for correcting harmful mutations, offering the benefits of reversibility and tunability without permanently modifying the genome. However, the relatively low enzymatic activity and the occurrence of off-target editing events present significant challenges, limiting its utility. In response to this limitation, we introduced a novel strategy: strand displacement-responsive ADAR system for RNA editing (SPRING) by adding a "blocking sequence" to form a hairpin guide RNA. This modification significantly improves the efficiency of site-directed RNA editing (SDRE) at various target sites. Furthermore, the use of hairpin guide RNA within the SPRING system enhances the specificity of RNA editing through competitive reactions during target hybridization. In principle, this approach can be employed across various ADAR-based editing systems, offering a novel RNA-editing platform with wide-ranging potential for research, therapy, and biotech applications.
Collapse
Affiliation(s)
- Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Sheng Ding
- School of Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610052, China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shuai Liu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
10
|
McMahon M, Maquat LE. Exploring the therapeutic potential of modulating nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 2025; 31:333-348. [PMID: 39667907 PMCID: PMC11874985 DOI: 10.1261/rna.080334.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Discovered more than four decades ago, nonsense-mediated mRNA decay (NMD) plays a fundamental role in the regulation of gene expression and is a major contributor to numerous diseases. With advanced technologies, several novel approaches aim to directly circumvent the effects of disease-causing frameshift and nonsense mutations. Additional therapeutics aim to globally dampen the NMD pathway in diseases associated with pathway hyperactivation, one example being Fragile X syndrome. In other cases, therapeutics have been designed to hijack or inhibit the cellular NMD machinery to either activate or obviate transcript-specific NMD by modulating pre-mRNA splicing. Here, we discuss promising approaches employed to regulate NMD for therapeutic purposes and highlight potential challenges in future clinical development. We are optimistic that the future of developing target-specific and global modulators of NMD (inhibitors as well as activators) is bright and will revolutionize the treatment of many genetic disorders, especially those with high unmet medical need.
Collapse
Affiliation(s)
- Mary McMahon
- ReviR Therapeutics, Brisbane, California 94005, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
11
|
Jaruga P, Kant M, Dizdaroglu M. Production, Isolation, and Characterization of Stable Isotope-Labeled Standards for Mass Spectrometric Measurements of Oxidatively-Damaged Nucleosides in RNA. ACS OMEGA 2025; 10:1519-1530. [PMID: 39829548 PMCID: PMC11740632 DOI: 10.1021/acsomega.4c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
RNA undergoes oxidatively induced damage in living organisms analogous to DNA. RNA is even more vulnerable to damage than DNA due to its greater abundance, single-strandedness, lack of repair and chromatin proteins shield, and instability, among other effects. RNA damage can adversely affect gene expression, leading to protein synthesis alterations, cell death, and other detrimental biological consequences. Growing indications suggest the involvement of oxidatively induced RNA damage in the pathogenesis of various human diseases, aging, and age-related diseases. Oxidatively induced damage can cause modifications to all four heterocyclic bases in RNA. Precise measurement of such modifications in RNA is essential for understanding the biological effects of oxidatively induced RNA damage. In the past, mass spectrometry has been used for this purpose. In mass spectrometric measurements, the use of stable isotope-labeled analogues of analytes as internal standards is essential for accurate quantifications. Past work utilized a stable isotope-labeled analogue of 8-hydroxyguanosine only as an internal standard. Thus, far, no stable isotope-labeled analogues of other oxidatively modified RNA nucleosides were available. In the present work, we report on the preparation, isolation, and characterization of the 13C- and 15N-labeled analogues of a variety of modified pyrimidine- and purine-derived RNA nucleosides. We also show the application of these internal standards for the measurement of oxidatively induced RNA damage in several commercially available RNA samples and in DNA along with DNA damage.
Collapse
Affiliation(s)
- Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
12
|
Salvador PJ, Dugan NM, Ouye R, Beal PA. En masse evaluation of RNA guides (EMERGe) for ADARs. Methods Enzymol 2025; 710:131-152. [PMID: 39870442 PMCID: PMC12014283 DOI: 10.1016/bs.mie.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in duplex RNA, and through the delivery of guide RNAs, can be directed to edit specific adenosine sites. As ADARs are endogenously expressed in humans, their editing capacities hold therapeutic potential and allow us to target disease-relevant sequences in RNA through the rationale design of guide RNAs. However, current design principles are not suitable for difficult-to-edit target sites, posing challenges to unlocking the full therapeutic potential of this approach. This chapter discusses how we circumvent this barrier through an in vitro screening method, En Masse Evaluation of RNA Guides (EMERGe), which enables comprehensive screening of ADAR substrate libraries and facilitates the identification of editing-enabling guide strands for specific adenosines. From library generation and screening to next generation sequencing (NGS) data analysis to verification experiments, we describe how a sequence of interest can be identified through this high-throughput screening method. Furthermore, we discuss downstream applications of selected guide sequences, challenges in maximizing library coverage, and potential to couple the screen with machine learning or deep learning models.
Collapse
Affiliation(s)
- Prince J Salvador
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States
| | - Natalie M Dugan
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States
| | - Randall Ouye
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States.
| |
Collapse
|
13
|
Eidelman M, Eisenberg E, Levanon EY. Global quantification of off-target activity by base editors. Methods Enzymol 2024; 713:255-270. [PMID: 40250956 DOI: 10.1016/bs.mie.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Base editors are engineered deaminases combined with CRISPR components. These engineered deaminases are designed to target specific sites within DNA or RNA to make a precise change in the molecule. In therapeutics, they hold promise for correcting mutations associated with genetic diseases. However, a key challenge is minimizing unintended edits at off-target sites, which could lead to harmful mutations. Researchers are actively addressing this concern through a variety of optimization efforts that aim to improve the precision of base editors and minimize off-target activity. Here, we examine the various types of off-target activity, and the methods used to evaluate them. Current methods for finding off-target activity focus on identifying similar sequences in the genome or in the transcriptome, assuming the guide RNA misdirects the editor. The main method presented here, that was originally developed to quantify editing levels mediated by the ADAR enzyme, takes a different approach, investigating the inherent activity of base editors themselves, which might lead to off-target edits beyond sequence similarity. The editing index tool quantifies global off-target editing, eliminates the need to detect individual off-target sites, and allows for assessment of the global load of mutations.
Collapse
Affiliation(s)
- Michelle Eidelman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
14
|
Bhakta S, Tsukahara T. Restoration of G to A mutated transcripts using the MS2-ADAR1 system. Methods Enzymol 2024; 710:229-240. [PMID: 39870447 DOI: 10.1016/bs.mie.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications. Gene-encoded information can be altered, and functionally diverse proteins produced from a single gene by restoration of point-mutated RNA molecules using SDRE. Adenosine deaminase acting on RNA (ADAR) is an RNA-editing enzyme, that can specifically convert adenosine (A) residues to inosines (I), which are translated as guanosine (G). MS2 system along with ADAR1 deaminase domain can target a particular A and repair G to A mutations. In this study, we used the RNA binding MS2 coat protein fused with the ADAR1 deaminase domain controlled by the CMV promoter, and a 19 bp guide RNA (complementary to the target mRNA sequence) engineered with 6 × MS2 stem-loops downstream or 1 × MS2 stem-loop (double MS2) on either side, controlled by the U6 promoter. When the EGFP TGG codon (tryptophan) was altered to an amber (TAG), opal (TGA), or ochre (TAA) stop codon, the modified ADAR1 deaminase domain could convert A-to-I (G) at the edited sites. It is anticipated that successful establishment of this technique will result in a new era in gene therapy, allowing remarkably efficient gene repair, even in vivo.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan; Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan.
| |
Collapse
|
15
|
Ai X, Tang Z. Aptazyme-directed A-to-I RNA editing. Methods Enzymol 2024; 710:267-283. [PMID: 39870449 DOI: 10.1016/bs.mie.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods. Moreover, ADAR-based RNA editing tools are less likely to elicit immune reactions because ADAR proteins are of human origin, and their small size makes them relatively easy to incorporate into gene therapy vectors, such as adeno-associated virus vectors (AAVs), which have limited space. Despite the promise of RNA editing as a therapeutic approach, precise temporal and spatial control of RNA editing is still lacking. Therefore, we have developed a small molecule-inducible RNA editing strategy by incorporating aptazymes into the guide RNA of the BoxB-λN-ADAR system. This chapter provides detailed protocols for targeted RNA editing by ADAR deaminases using aptazyme-based guide RNAs controlled by exogenous small molecules, marking the earliest use of aptazymes to regulate RNA editing strategies. Once small molecules are added or removed, aptazymes trigger self-cleavage to release the guide RNA, thus achieving small molecule-controlled RNA editing. To satisfy different RNA editing applications, we have realized the conditional activation and deactivation of A-to-I RNA editing of target mRNA using switch aptazymes. We provide step-by-step protocols for constructing guide RNA plasmids for regulatory purposes and conducting small molecule-induced RNA regulatory editing experiments in cells.
Collapse
Affiliation(s)
- Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China.
| |
Collapse
|
16
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
17
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. Nat Commun 2024; 15:10287. [PMID: 39604381 PMCID: PMC11603292 DOI: 10.1038/s41467-024-54629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Mauricio A Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Daniel K Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Marcus B Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
18
|
Chen C, Qi LS. Precision Transcriptome Editing. ACS Synth Biol 2024; 13:3487-3496. [PMID: 39435985 PMCID: PMC12050085 DOI: 10.1021/acssynbio.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Manipulating RNA species in mammalian cells has emerged as an important strategy for precise gene expression control. Here we review recent advances in precision transcriptome editing with a focus on tools that engineer specific transcripts for abundance, translation, base editing, alternative isoforms, and chemical modifications. While some of these methods have demonstrated efficiency in therapeutically relevant cellular or in vivo models, most require further study on their clinical safety and efficacy. Precision transcriptome engineering holds great potential for both mechanistic study of RNA biology and future gene and cell-based therapeutic applications.
Collapse
Affiliation(s)
- Crystal Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158
| |
Collapse
|
19
|
Wang Y, Liu KI, Liu MM, Ooi KH, Nguyen TA, Chee JE, Teo SXD, He S, Tay JWD, Teo SY, Liew KS, Ge XY, Ng ZJ, Avagyan H, Liu H, Yi Z, Chang K, Kok EPL, Chen R, Yau CE, Koh JW, Wan Y, Tan MH. A circularly permuted CasRx platform for efficient, site-specific RNA editing. Nat Biotechnol 2024:10.1038/s41587-024-02430-w. [PMID: 39385008 DOI: 10.1038/s41587-024-02430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Inactive Cas13 orthologs have been fused to a mutant human ADAR2 deaminase domain at the C terminus to enable programmable adenosine-to-inosine (A-to-I) RNA editing in selected transcripts. Although promising, existing RNA-editing tools generally suffer from a trade-off between efficacy and specificity, and off-target editing remains an unsolved problem. Here we describe the development of an optimized RNA-editing platform by rational protein engineering, CasRx-based Programmable Editing of RNA Technology (xPERT). We demonstrate that the topological rearrangement of a CasRx K940L mutant by circular permutation results in a robust scaffold for the tethering of a deaminase domain. We benchmark our tool against the REPAIR system and show that xPERT exhibits strong on-target activity like REPAIRv1 but low off-target editing like REPAIRv2. Our xPERT platform can be used to alter RNA sequence information without risking genome damage, effect temporary cellular changes and customize protein function.
Collapse
Affiliation(s)
- Yuanming Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaiwen Ivy Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Mengying Mandy Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kean Hean Ooi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tram Anh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Jiunn En Chee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shun Xiang Danny Teo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, Singapore
| | - Shan He
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jie Wen Douglas Tay
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Seok Yee Teo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kai Shin Liew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Xiao Yu Ge
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Zhi Jian Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Hasmik Avagyan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Hao Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Zirong Yi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Keziah Chang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Eng Piew Louis Kok
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Runjia Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- National Junior College, Singapore, Singapore
| | - Chun En Yau
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Hwa Chong Institution, Singapore, Singapore
| | - Jun Wei Koh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Hwa Chong Institution, Singapore, Singapore
| | - Yue Wan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
20
|
Chung CS, Kou Y, Shemtov SJ, Verheijen BM, Flores I, Love K, Del Dosso A, Thorwald MA, Liu Y, Hicks D, Sun Y, Toney RG, Carrillo L, Nguyen MM, Biao H, Jin Y, Jauregui AM, Quiroz JD, Head E, Moore DL, Simpson S, Thomas KW, Coba MP, Li Z, Benayoun BA, Rosenthal JJC, Kennedy SR, Quadrato G, Gout JF, Chen L, Vermulst M. Transcript errors generate amyloid-like proteins in huwman cells. Nat Commun 2024; 15:8676. [PMID: 39375347 PMCID: PMC11458900 DOI: 10.1038/s41467-024-52886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Aging is characterized by the accumulation of proteins that display amyloid-like behavior. However, the molecular mechanisms by which these proteins arise remain unclear. Here, we demonstrate that amyloid-like proteins are produced in a variety of human cell types, including stem cells, brain organoids and fully differentiated neurons by mistakes that occur in messenger RNA molecules. Some of these mistakes generate mutant proteins already known to cause disease, while others generate proteins that have not been observed before. Moreover, we show that these mistakes increase when cells are exposed to DNA damage, a major hallmark of human aging. When taken together, these experiments suggest a mechanistic link between the normal aging process and age-related diseases.
Collapse
Affiliation(s)
- Claire S Chung
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yi Kou
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Sarah J Shemtov
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Bert M Verheijen
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Ilse Flores
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Kayla Love
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Ashley Del Dosso
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Max A Thorwald
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yuchen Liu
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Daniel Hicks
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yingwo Sun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Renaldo G Toney
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Lucy Carrillo
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Megan M Nguyen
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Huang Biao
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Yuxin Jin
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | | | | | - Elizabeth Head
- University of California Irvine, Department of Pathology and Laboratory Medicine, Irvine, USA
| | - Darcie L Moore
- University of Wisconsin, Department of Neuroscience, Madison, USA
| | - Stephen Simpson
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Kelley W Thomas
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Marcelo P Coba
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Zhongwei Li
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Bérénice A Benayoun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | | | - Scott R Kennedy
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Giorgia Quadrato
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Jean-Francois Gout
- Mississippi State University, Department of Biology, Mississippi State, USA
| | - Lin Chen
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA.
| |
Collapse
|
21
|
Ashrafi AM, Mukherjee A, Saadati A, Matysik FM, Richtera L, Adam V. Enhancing the substrate selectivity of enzyme mimetics in biosensing and bioassay: Novel approaches. Adv Colloid Interface Sci 2024; 331:103233. [PMID: 38924801 DOI: 10.1016/j.cis.2024.103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A substantial development in nanoscale materials possessing catalytic activities comparable with natural enzymes has been accomplished. Their advantages were owing to the excellent sturdiness in an extreme environment, possibilities of their large-scale production resulting in higher profitability, and easy manipulation for modification. Despite these advantages, the main challenge for artificial enzyme mimetics is the lack of substrate selectivity where natural enzymes flourish. This review addresses this vital problem by introducing substrate selectivity strategies to three classes of artificial enzymes: molecularly imprinted polymers, nanozymes (NZs), and DNAzymes. These rationally designed strategies enhance the substrate selectivity and are discussed and exemplified throughout the review. Various functional mechanisms associated with applying enzyme mimetics in biosensing and bioassays are also given. Eventually, future directives toward enhancing the substrate selectivity of biomimetics and related challenges are discussed and evaluated based on their efficiency and convenience in biosensing and bioassays.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czech Republic.
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnici 835, 252 41 Dolni Brezany, Czech Republic.
| | - Arezoo Saadati
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University Regensburg, 93053 Regensburg, Germany.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
22
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558319. [PMID: 37781609 PMCID: PMC10541143 DOI: 10.1101/2023.09.18.558319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W. Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Daniel K. Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Marcus B. Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn NY 11201
| |
Collapse
|
23
|
Cheng H, Yu J, Wong CC. Adenosine-to-Inosine RNA editing in cancer: molecular mechanisms and downstream targets. Protein Cell 2024:pwae039. [PMID: 39126156 DOI: 10.1093/procel/pwae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/12/2024] Open
Abstract
Adenosine-to-Inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| |
Collapse
|
24
|
Kiran Kumar KD, Singh S, Schmelzle SM, Vogel P, Fruhner C, Hanswillemenke A, Brun A, Wettengel J, Füll Y, Funk L, Mast V, Botsch JJ, Reautschnig P, Li JB, Stafforst T. An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification. Nat Commun 2024; 15:6615. [PMID: 39103360 DOI: 10.1038/s41467-024-50395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
RNA base editing relies on the introduction of adenosine-to-inosine changes into target RNAs in a highly programmable manner in order to repair disease-causing mutations. Here, we propose that RNA base editing could be broadly applied to perturb protein function by removal of regulatory phosphorylation and acetylation sites. We demonstrate the feasibility on more than 70 sites in various signaling proteins and identify key determinants for high editing efficiency and potent down-stream effects. For the JAK/STAT pathway, we demonstrate both, negative and positive regulation. To achieve high editing efficiency over a broad codon scope, we applied an improved version of the SNAP-ADAR tool. The transient nature of RNA base editing enables the comparably fast (hours to days), dose-dependent (thus partial) and reversible manipulation of regulatory sites, which is a key advantage over DNA (base) editing approaches. In summary, PTM interference might become a valuable field of application of RNA base editing.
Collapse
Affiliation(s)
| | - Shubhangi Singh
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Paul Vogel
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Adrian Brun
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jacqueline Wettengel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Yvonne Füll
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lukas Funk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Valentin Mast
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - J Josephine Botsch
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philipp Reautschnig
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine University Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Morais P, Zhang R, Yu YT. Therapeutic Nonsense Suppression Modalities: From Small Molecules to Nucleic Acid-Based Approaches. Biomedicines 2024; 12:1284. [PMID: 38927491 PMCID: PMC11201248 DOI: 10.3390/biomedicines12061284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nonsense mutations are genetic mutations that create premature termination codons (PTCs), leading to truncated, defective proteins in diseases such as cystic fibrosis, neurofibromatosis type 1, Dravet syndrome, Hurler syndrome, Beta thalassemia, inherited bone marrow failure syndromes, Duchenne muscular dystrophy, and even cancer. These mutations can also trigger a cellular surveillance mechanism known as nonsense-mediated mRNA decay (NMD) that degrades the PTC-containing mRNA. The activation of NMD can attenuate the consequences of truncated, defective, and potentially toxic proteins in the cell. Since approximately 20% of all single-point mutations are disease-causing nonsense mutations, it is not surprising that this field has received significant attention, resulting in a remarkable advancement in recent years. In fact, since our last review on this topic, new examples of nonsense suppression approaches have been reported, namely new ways of promoting the translational readthrough of PTCs or inhibiting the NMD pathway. With this review, we update the state-of-the-art technologies in nonsense suppression, focusing on novel modalities with therapeutic potential, such as small molecules (readthrough agents, NMD inhibitors, and molecular glue degraders); antisense oligonucleotides; tRNA suppressors; ADAR-mediated RNA editing; targeted pseudouridylation; and gene/base editing. While these various modalities have significantly advanced in their development stage since our last review, each has advantages (e.g., ease of delivery and specificity) and disadvantages (manufacturing complexity and off-target effect potential), which we discuss here.
Collapse
Affiliation(s)
- Pedro Morais
- Drug Metabolism and Pharmacokinetics, Research and Development, Bayer Pharmaceuticals, 42113 Wuppertal, Germany
| | - Rui Zhang
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| |
Collapse
|
26
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
27
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
28
|
Ashley CN, Broni E, Miller WA. ADAR Family Proteins: A Structural Review. Curr Issues Mol Biol 2024; 46:3919-3945. [PMID: 38785511 PMCID: PMC11120146 DOI: 10.3390/cimb46050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This review aims to highlight the structures of ADAR proteins that have been crucial in the discernment of their functions and are relevant to future therapeutic development. ADAR proteins can correct or diversify genetic information, underscoring their pivotal contribution to protein diversity and the sophistication of neuronal networks. ADAR proteins have numerous functions in RNA editing independent roles and through the mechanisms of A-I RNA editing that continue to be revealed. Provided is a detailed examination of the ADAR family members-ADAR1, ADAR2, and ADAR3-each characterized by distinct isoforms that offer both structural diversity and functional variability, significantly affecting RNA editing mechanisms and exhibiting tissue-specific regulatory patterns, highlighting their shared features, such as double-stranded RNA binding domains (dsRBD) and a catalytic deaminase domain (CDD). Moreover, it explores ADARs' extensive roles in immunity, RNA interference, and disease modulation, demonstrating their ambivalent nature in both the advancement and inhibition of diseases. Through this comprehensive analysis, the review seeks to underline the potential of targeting ADAR proteins in therapeutic strategies, urging continued investigation into their biological mechanisms and health implications.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
29
|
Witzenberger M, Schwartz S. Directing RNA-modifying machineries towards endogenous RNAs: opportunities and challenges. Trends Genet 2024; 40:313-325. [PMID: 38350740 DOI: 10.1016/j.tig.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Over 170 chemical modifications can be naturally installed on RNA, all of which are catalyzed by dedicated machineries. These modifications can alter RNA sequence structure, stability, and translation as well as serving as quality control marks that record aspects of RNA processing. The diverse roles played by RNAs within cells has motivated endeavors to exogenously introduce RNA modifications at target sites for diverse purposes ranging from recording RNA:protein interactions to therapeutic applications. Here, we discuss these applications and the approaches that have been employed to engineer RNA-modifying machineries, and highlight persisting challenges and perspectives.
Collapse
Affiliation(s)
- Monika Witzenberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| |
Collapse
|
30
|
Zhang D, Zhu L, Gao Y, Wang Y, Li P. RNA editing enzymes: structure, biological functions and applications. Cell Biosci 2024; 14:34. [PMID: 38493171 PMCID: PMC10944622 DOI: 10.1186/s13578-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
With the advancement of sequencing technologies and bioinformatics, over than 170 different RNA modifications have been identified. However, only a few of these modifications can lead to base pair changes, which are called RNA editing. RNA editing is a ubiquitous modification in mammalian transcriptomes and is an important co/posttranscriptional modification that plays a crucial role in various cellular processes. There are two main types of RNA editing events: adenosine to inosine (A-to-I) editing, catalyzed by ADARs on double-stranded RNA or ADATs on tRNA, and cytosine to uridine (C-to-U) editing catalyzed by APOBECs. This article provides an overview of the structure, function, and applications of RNA editing enzymes. We discuss the structural characteristics of three RNA editing enzyme families and their catalytic mechanisms in RNA editing. We also explain the biological role of RNA editing, particularly in innate immunity, cancer biogenesis, and antiviral activity. Additionally, this article describes RNA editing tools for manipulating RNA to correct disease-causing mutations, as well as the potential applications of RNA editing enzymes in the field of biotechnology and therapy.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
31
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Song J, Luo N, Dong L, Peng J, Yi C. RNA base editors: The emerging approach of RNA therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1844. [PMID: 38576085 DOI: 10.1002/wrna.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
RNA-based therapeutics offer a flexible and reversible approach for treating genetic disorders, such as antisense oligonucleotides, RNA interference, aptamers, mRNA vaccines, and RNA editing. In recent years, significant advancements have been made in RNA base editing to correct disease-relevant point mutations. These achievements have significantly influenced the fields of biotechnology, biomedical research and therapeutics development. In this article, we provide a comprehensive overview of the design and performance of contemporary RNA base editors, including A-to-I, C-to-U, A-to-m6A, and U-to-Ψ. We compare recent innovative developments and highlight their applications in disease-relevant contexts. Lastly, we discuss the limitations and future prospects of utilizing RNA base editing for therapeutic purposes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Nan Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Liting Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| |
Collapse
|
33
|
Song J, Zhuang Y, Yi C. Programmable RNA base editing via targeted modifications. Nat Chem Biol 2024; 20:277-290. [PMID: 38418907 DOI: 10.1038/s41589-023-01531-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editors are powerful tools in biology and hold great promise for the treatment of human diseases. Advanced DNA base editing tools, such as cytosine base editor and adenine base editor, have been developed to correct permanent mistakes in genetic material. However, undesired off-target edits would also be permanent, which poses a considerable risk for therapeutics. Alternatively, base editing at the RNA level is capable of correcting disease-causing mutations but does not lead to lasting genotoxic effects. RNA base editors offer temporary and reversible therapies and have been catching on in recent years. Here, we summarize some emerging RNA editors based on A-to-inosine, C-to-U and U-to-pseudouridine changes. We review the programmable RNA-targeting systems as well as modification enzyme-based effector proteins and highlight recent technological breakthroughs. Finally, we compare editing tools, discuss limitations and opportunities, and provide insights for the future directions of RNA base editing.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Dadush A, Merdler-Rabinowicz R, Gorelik D, Feiglin A, Buchumenski I, Pal LR, Ben-Aroya S, Ruppin E, Levanon EY. DNA and RNA base editors can correct the majority of pathogenic single nucleotide variants. NPJ Genom Med 2024; 9:16. [PMID: 38409211 PMCID: PMC10897195 DOI: 10.1038/s41525-024-00397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we also present several factors that affect applicability such as bystander and off-target occurrences. For cases where editing the mismatched nucleotide is not feasible, we introduce an approach that calculates the optimal substitution of the deleterious amino acid with a new amino acid, further expanding the scope of applicability. As personalized therapy is rapidly advancing, our demonstration that most SNVs can be treated by base editing is of high importance. The data provided will serve as a comprehensive resource for those seeking to design therapeutic base editors and study their potential in curing genetic diseases.
Collapse
Affiliation(s)
- Ariel Dadush
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Rona Merdler-Rabinowicz
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Gorelik
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Ariel Feiglin
- Skip Therapeutics Ltd, 2 Ilan Ramon St, Ness Ziona, Israel
| | | | - Lipika R Pal
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shay Ben-Aroya
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
35
|
Schmitt-Ulms C, Kayabolen A, Manero-Carranza M, Zhou N, Donnelly K, Nuccio SP, Kato K, Nishimasu H, Gootenberg JS, Abudayyeh OO. Programmable RNA writing with trans-splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578223. [PMID: 38352602 PMCID: PMC10862893 DOI: 10.1101/2024.01.31.578223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
RNA editing offers the opportunity to introduce either stable or transient modifications to nucleic acid sequence without permanent off-target effects, but installation of arbitrary edits into the transcriptome is currently infeasible. Here, we describe Programmable RNA Editing & Cleavage for Insertion, Substitution, and Erasure (PRECISE), a versatile RNA editing method for writing RNA of arbitrary length and sequence into existing pre-mRNAs via 5' or 3' trans-splicing. In trans-splicing, an exogenous template is introduced to compete with the endogenous pre-mRNA, allowing for replacement of upstream or downstream exon sequence. Using Cas7-11 cleavage of pre-mRNAs to bias towards editing outcomes, we boost the efficiency of RNA trans-splicing by 10-100 fold, achieving editing rates between 5-50% and 85% on endogenous and reporter transcripts, respectively, while maintaining high-fidelity. We demonstrate PRECISE editing across 11 distinct endogenous transcripts of widely varying expression levels, showcasing more than 50 types of edits, including all 12 possible transversions and transitions, insertions ranging from 1 to 1,863 nucleotides, and deletions. We show high efficiency replacement of exon 4 of MECP2, addressing most mutations that drive the Rett Syndrome; editing of SHANK3 transcripts, a gene involved in Autism; and replacement of exon 1 of HTT, removing the hallmark repeat expansions of Huntington's disease. Whole transcriptome sequencing reveals the high precision of PRECISE editing and lack of off-target trans-splicing activity. Furthermore, we combine payload engineering and ribozymes for protein-free, high-efficiency trans-splicing, with demonstrated efficiency in editing HTT exon 1 via AAV delivery. We show that the high activity of PRECISE editing enables editing in non-dividing neurons and patient-derived Huntington's disease fibroblasts. PRECISE editing markedly broadens the scope of genetic editing, is straightforward to deliver over existing gene editing tools like prime editing, lacks permanent off-targets, and can enable any type of genetic edit large or small, including edits not otherwise possible with existing RNA base editors, widening the spectrum of addressable diseases.
Collapse
Affiliation(s)
- Cian Schmitt-Ulms
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alisan Kayabolen
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcos Manero-Carranza
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nathan Zhou
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keira Donnelly
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sabrina Pia Nuccio
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kazuki Kato
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jonathan S. Gootenberg
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omar O. Abudayyeh
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Medina-Munoz HC, Kofman E, Jagannatha P, Boyle EA, Yu T, Jones KL, Mueller JR, Lykins GD, Doudna AT, Park SS, Blue SM, Ranzau BL, Kohli RM, Komor AC, Yeo GW. Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies. Nat Commun 2024; 15:875. [PMID: 38287010 PMCID: PMC10825223 DOI: 10.1038/s41467-024-45009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.
Collapse
Affiliation(s)
- Hugo C Medina-Munoz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Evan A Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten L Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Grace D Lykins
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew T Doudna
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel S Park
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brodie L Ranzau
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Chen JL, Leeder WM, Morais P, Adachi H, Yu YT. Pseudouridylation-mediated gene expression modulation. Biochem J 2024; 481:1-16. [PMID: 38174858 DOI: 10.1042/bcj20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | | | | | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| |
Collapse
|
38
|
Budzko L, Hoffa-Sobiech K, Jackowiak P, Figlerowicz M. Engineered deaminases as a key component of DNA and RNA editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102062. [PMID: 38028200 PMCID: PMC10661471 DOI: 10.1016/j.omtn.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Hoffa-Sobiech
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
39
|
Zambrano-Mila MS, Witzenberger M, Rosenwasser Z, Uzonyi A, Nir R, Ben-Aroya S, Levanon EY, Schwartz S. Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2. Nat Commun 2023; 14:8212. [PMID: 38081817 PMCID: PMC10713624 DOI: 10.1038/s41467-023-43633-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Millions of adenosines are deaminated throughout the transcriptome by ADAR1 and/or ADAR2 at varying levels, raising the question of what are the determinants guiding substrate specificity and how these differ between the two enzymes. We monitor how secondary structure modulates ADAR2 vs ADAR1 substrate selectivity, on the basis of systematic probing of thousands of synthetic sequences transfected into cell lines expressing exclusively ADAR1 or ADAR2. Both enzymes induce symmetric, strand-specific editing, yet with distinct offsets with respect to structural disruptions: -26 nt for ADAR2 and -35 nt for ADAR1. We unravel the basis for these differences in offsets through mutants, domain-swaps, and ADAR homologs, and find it to be encoded by the differential RNA binding domain (RBD) architecture. Finally, we demonstrate that this offset-enhanced editing can allow an improved design of ADAR2-recruiting therapeutics, with proof-of-concept experiments demonstrating increased on-target and potentially decreased off-target editing.
Collapse
Affiliation(s)
- Marlon S Zambrano-Mila
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Monika Witzenberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Zohar Rosenwasser
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Erez Y Levanon
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel.
| |
Collapse
|
40
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
41
|
Hu W, Yang B, Xiao Q, Wang Y, Shuai Y, Zhao G, Zhang L, Deng Z, He X, Liu G. Characterization of a promiscuous DNA sulfur binding domain and application in site-directed RNA base editing. Nucleic Acids Res 2023; 51:10782-10794. [PMID: 37702119 PMCID: PMC10602919 DOI: 10.1093/nar/gkad743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.
Collapse
Affiliation(s)
- Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Bingxu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuting Shuai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
42
|
Medina-Munoz HC, Kofman E, Jagannatha P, Boyle EA, Yu T, Jones KL, Mueller JR, Lykins GD, Doudna AT, Park SS, Blue SM, Ranzau BL, Kohli RM, Komor AC, Yeo GW. Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.558915. [PMID: 37808757 PMCID: PMC10557582 DOI: 10.1101/2023.09.25.558915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.
Collapse
Affiliation(s)
- Hugo C. Medina-Munoz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Evan A. Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten L. Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R. Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Grace D. Lykins
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew T. Doudna
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel S. Park
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M. Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brodie L. Ranzau
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Rahul M. Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Latifi N, Mack AM, Tellioglu I, Di Giorgio S, Stafforst T. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S. Nucleic Acids Res 2023; 51:e84. [PMID: 37462074 PMCID: PMC10450179 DOI: 10.1093/nar/gkad598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Site-directed RNA base editing enables the transient and dosable change of genetic information and represents a recent strategy to manipulate cellular processes, paving ways to novel therapeutic modalities. While tools to introduce adenosine-to-inosine changes have been explored quite intensively, the engineering of precise and programmable tools for cytidine-to-uridine editing is somewhat lacking behind. Here we demonstrate that the cytidine deaminase domain evolved from the ADAR2 adenosine deaminase, taken from the RESCUE-S tool, provides very efficient and highly programmable editing when changing the RNA targeting mechanism from Cas13-based to SNAP-tag-based. Optimization of the guide RNA chemistry further allowed to dramatically improve editing yields in the difficult-to-edit 5'-CCN sequence context thus improving the substrate scope of the tool. Regarding editing efficiency, SNAP-CDAR-S outcompeted the RESCUE-S tool clearly on all tested targets, and was highly superior in perturbing the β-catenin pathway. NGS analysis showed similar, moderate global off-target A-to-I and C-to-U editing for both tools.
Collapse
Affiliation(s)
- Ngadhnjim Latifi
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Aline Maria Mack
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Irem Tellioglu
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Engineering, University of Heidelberg, 69120 Heidelberg, Germany
| | - Salvatore Di Giorgio
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine University Tuebingen, Germany
| |
Collapse
|
44
|
Azad MTA, Qulsum U, Tsukahara T. Examination of Factors Affecting Site-Directed RNA Editing by the MS2-ADAR1 Deaminase System. Genes (Basel) 2023; 14:1584. [PMID: 37628635 PMCID: PMC10454654 DOI: 10.3390/genes14081584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) have double-stranded RNA binding domains and a deaminase domain (DD). We used the MS2 system and specific guide RNAs to direct ADAR1-DD to target adenosines in the mRNA encoding-enhanced green fluorescence protein. Using this system in transfected HEK-293 cells, we evaluated the effects of changing the length and position of the guide RNA on the efficiency of conversion of amber (TAG) and ochre (TAA) stop codons to tryptophan (TGG) in the target. Guide RNAs of 19, 21 and 23 nt were positioned upstream and downstream of the MS2-RNA, providing a total of six guide RNAs. The upstream guide RNAs were more functionally effective than the downstream guide RNAs, with the following hierarchy of efficiency: 21 nt > 23 nt > 19 nt. The highest editing efficiency was 16.6%. Off-target editing was not detected in the guide RNA complementary region but was detected 50 nt downstream of the target. The editing efficiency was proportional to the amount of transfected deaminase but inversely proportional to the amount of the transfected guide RNA. Our results suggest that specific RNA editing requires precise optimization of the ratio of enzyme, guide RNA, and target RNA.
Collapse
Affiliation(s)
- Md Thoufic Anam Azad
- Area of Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi City 923-1292, Ishikawa, Japan; (M.T.A.A.)
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Umme Qulsum
- Area of Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi City 923-1292, Ishikawa, Japan; (M.T.A.A.)
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Toshifumi Tsukahara
- Area of Bioscience, Biotechnology and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi City 923-1292, Ishikawa, Japan; (M.T.A.A.)
- GeCoRT Co., Ltd., 2-11-2 Takashima, Nishi-ku, Yokohama 220-0011, Kanagawa, Japan
| |
Collapse
|
45
|
Chiavetta RF, Titoli S, Barra V, Cancemi P, Melfi R, Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci 2023; 24:10940. [PMID: 37446121 DOI: 10.3390/ijms241310940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
It is reported that about 10% of cystic fibrosis (CF) patients worldwide have nonsense (stop) mutations in the CFTR gene, which cause the premature termination of CFTR protein synthesis, leading to a truncated and non-functional protein. To address this issue, we investigated the possibility of rescuing the CFTR nonsense mutation (UGA) by sequence-specific RNA editing in CFTR mutant CFF-16HBEge, W1282X, and G542X human bronchial cells. We used two different base editor tools that take advantage of ADAR enzymes (adenosine deaminase acting on RNA) to edit adenosine to inosine (A-to-I) within the mRNA: the REPAIRv2 (RNA Editing for Programmable A to I Replacement, version 2) and the minixABE (A to I Base Editor). Immunofluorescence experiments show that both approaches were able to recover the CFTR protein in the CFTR mutant cells. In addition, RT-qPCR confirmed the rescue of the CFTR full transcript. These findings suggest that site-specific RNA editing may efficiently correct the UGA premature stop codon in the CFTR transcript in CFF-16HBEge, W1282X, and G542X cells. Thus, this approach, which is safer than acting directly on the mutated DNA, opens up new therapeutic possibilities for CF patients with nonsense mutations.
Collapse
Affiliation(s)
- Roberta F Chiavetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Simona Titoli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
46
|
Yuan J, Xu L, Bao HJ, Wang JL, Zhao Y, Chen S. Biological roles of A-to-I editing: implications in innate immunity, cell death, and cancer immunotherapy. J Exp Clin Cancer Res 2023; 42:149. [PMID: 37328893 DOI: 10.1186/s13046-023-02727-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing, a key RNA modification widely found in eukaryotes, is catalyzed by adenosine deaminases acting on RNA (ADARs). Such RNA editing destabilizes endogenous dsRNAs, which are subsequently recognized by the sensors of innate immune and other proteins as autologous dsRNAs. This prevents the activation of innate immunity and type I interferon-mediated responses, thereby reducing the downstream cell death induced by the activation of the innate immune sensing system. ADARs-mediated editing can also occur in mRNAs and non-coding RNAs (ncRNAs) in different species. In mRNAs, A-to-I editing may lead to missense mutations and the selective splicing of coding regions. Meanwhile, in ncRNAs, A-to-I editing may affect targeting and disrupt ncRNAs maturation, leading to anomalous cell proliferation, invasion, and responses to immunotherapy. This review highlights the biological functions of A-to-I editing, its role in regulating innate immunity and cell death, and its potential molecular significance in tumorigenesis and cancer targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Li Xu
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China.
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China.
| |
Collapse
|
47
|
Ogasawara S, Ebashi S. RNA Overwriting of Cellular mRNA by Cas13b-Directed RNA-Dependent RNA Polymerase of Influenza A Virus. Int J Mol Sci 2023; 24:10000. [PMID: 37373148 DOI: 10.3390/ijms241210000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Dysregulation of mRNA processing results in diseases such as cancer. Although RNA editing technologies attract attention as gene therapy for repairing aberrant mRNA, substantial sequence defects arising from mis-splicing cannot be corrected by existing techniques using adenosine deaminase acting on RNA (ADAR) due to the limitation of adenosine-to-inosine point conversion. Here, we report an RNA editing technology called "RNA overwriting" that overwrites the sequence downstream of a designated site on the target RNA by utilizing the RNA-dependent RNA polymerase (RdRp) of the influenza A virus. To enable RNA overwriting within living cells, we developed a modified RdRp by introducing H357A and E361A mutations in the polymerase basic 2 of RdRp and fusing the C-terminus with catalytically inactive Cas13b (dCas13b). The modified RdRp knocked down 46% of the target mRNA and further overwrote 21% of the mRNA. RNA overwriting is a versatile editing technique that can perform various modifications, including addition, deletion, and mutation introduction, and thus allow for repair of the aberrant mRNA produced by dysregulation of mRNA processing, such as mis-splicing.
Collapse
Affiliation(s)
- Shinzi Ogasawara
- Department of Biology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Sae Ebashi
- Department of Biology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
48
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Zhang Y, Feng D, Mu G, Wang Q, Wang J, Luo Y, Tang X. Light-triggered site-directed RNA editing by endogenous ADAR1 with photolabile guide RNA. Cell Chem Biol 2023:S2451-9456(23)00149-6. [PMID: 37295425 DOI: 10.1016/j.chembiol.2023.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/21/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
RNA A-to-I editing is a post-transcriptional modification pervasively occurring in cells. Artificial intervention of A-to-I editing at specific sites of RNA could also be achieved with guide RNA and exogenous ADAR enzymes. In contrast to previous fused SNAP-ADAR enzymes for light-driven RNA A-to-I editing, we developed photo-caged antisense guide RNA oligonucleotides with simple 3'-terminal cholesterol modification, and successfully achieved light-triggered site-specific RNA A-to-I editing for the first time utilizing endogenous ADAR enzymes. Our caged A-to-I editing system effectively implemented light-dependent point mutation of mRNA transcripts of both exogenous and endogenous genes in living cells and 3D tumorspheres, as well as spatial regulation of EGFP expression, which provides a new approach for precise manipulation of RNA editing.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Di Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guanqun Mu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yun Luo
- Shanghai Primerna Biotechnology Co. Ltd, Shanghai 201600, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
50
|
Jiang K, Koob J, Chen XD, Krajeski RN, Zhang Y, Volf V, Zhou W, Sgrizzi SR, Villiger L, Gootenberg JS, Chen F, Abudayyeh OO. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat Biotechnol 2023; 41:698-707. [PMID: 36302988 DOI: 10.1038/s41587-022-01534-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Programmable approaches to sense and respond to the presence of specific RNAs in biological systems have broad applications in research, diagnostics, and therapeutics. Here we engineer a programmable RNA-sensing technology, reprogrammable ADAR sensors (RADARS), which harnesses RNA editing by adenosine deaminases acting on RNA (ADAR) to gate translation of a cargo protein by the presence of endogenous RNA transcripts. Introduction of a stop codon in a guide upstream of the cargo makes translation contingent on binding of an endogenous transcript to the guide, leading to ADAR editing of the stop codon and allowing translational readthrough. Through systematic sensor engineering, we achieve 277 fold improvement in sensor activation and engineer RADARS with diverse cargo proteins, including luciferases, fluorescent proteins, recombinases, and caspases, enabling detection sensitivity on endogenous transcripts expressed at levels as low as 13 transcripts per million. We show that RADARS are functional as either expressed DNA or synthetic mRNA and with either exogenous or endogenous ADAR. We apply RADARS in multiple contexts, including tracking transcriptional states, RNA-sensing-induced cell death, cell-type identification, and control of synthetic mRNA translation.
Collapse
Affiliation(s)
- Kaiyi Jiang
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeremy Koob
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xi Dawn Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Systems, Synthetic, and Quantitative Biology Program, Harvard Medical School, Boston, MA, USA
| | - Rohan N Krajeski
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yifan Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Verena Volf
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Wenyuan Zhou
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samantha R Sgrizzi
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lukas Villiger
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|